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Convergence of phase fluctuation induced by
intrachannel four-wave mixing in differential

phase-shift keying transmission systems via phase
fluctuation averaging
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This work investigates the effect of phase fluctuation averaging on phase fluctuation induced by intrachan-
nel four-wave mixing (IFWM) in highly dispersed differential phase-shift keying transmission systems.
Through repeatedly averaging the phase fluctuations of adjacent pulses, a simple analytical model and nu-
merical simulation revealed that the IFWM-induced differential phase fluctuation is suppressed and con-
vergent, even after an ultralong transmission. The influence of averaging the phase fluctuations on the bit
error rate is also evaluated by the semianalytical method. © 2007 Optical Society of America
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In recent years, the return-to-zero (RZ) differential
phase-shift keying (DPSK) format has become a
promising alternative to the traditional on–off keying
format, especially for long-haul high-speed optical
communication systems.1 However, since DPSK sig-
nals are demodulated via a delay interferometer in
front of a receiver, both amplitude fluctuation (AF)
and phase fluctuation (PF) will degrade the perfor-
mance of received signals, and the regeneration of
the DPSK format should be able to reduce AF and/or
PF to extend the transmission distance. Although a
phase-sensitive amplifier could eliminate both AF
and PF simultaneously, a complicated and impracti-
cal optical phase-locking pump beam is required.2

Nevertheless, the AF of DPSK signals can be effec-
tively eliminated by several phase-preserving ampli-
tude regenerators.3,4 Thus, in the amplitude-
managed DPSK systems with these regenerators,
accumulated PF is mainly responsible for the limit on
the reach of signals. Moreover, with respect to
dispersion-managed high-speed transmissions, the
nonlinear phase noise generated from the beating be-
tween the amplified spontaneous emission (ASE)
noise and the signal could be reduced through noise
suppression4 and pulse broadening.5 Accordingly, the
accumulated PF in amplitude-managed highly dis-
persed RZ DPSK systems is due mostly to the linear
phase noise caused by the ASE noise and the nonlin-
ear PF induced by intrachannel four-wave mixing
(IFWM).

A novel phase noise averager (PNA) was recently
proposed to average the PFs of two adjacent pulses,6

and the differential PF (DPF) between neighboring
bits converges even after an ultralong distance. How-
ever, the earlier work considered the PFs of neighbor-
ing bits to be uncorrelated.6 For a high-bit-rate
��40 Gbits/s� system, since IFWM leads to partial
correlation between the PFs of adjoining bits,7 the ef-

fects of PNAs must be reexamined. Extending the
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previous work,6 this Letter discusses the effect of PF
averaging on IFWM-induced PF. Even though a cor-
relation exists between the PFs, this work confirms
that IFWM-induced DPF remains suppressed and
convergent in DPSK transmission systems with peri-
odically inserted PNAs. By estimating the bit-error
rate (BER) with a semianalytical method, the effect
of PF averaging is corroborated with the estimations
of nonlinear penalties. To our best knowledge, the
IFWM-induced PF is effectively eliminated for the
first time.

Although the IFWM-induced PF is caused by the
beating of broadened optical pulses under highly dis-
persive conditions, and therefore its strength is de-
terministic, it shows almost random statistics due to
the random data of optical pulses.7 However, the
characteristics of IFWM-induced PF differ from those
of ASE-related phase noise. First, if fiber spans in-
cluding standard single-mode fiber (SSMF) and cor-
responding dispersion-compensating fiber (DCF) are
employed repeatedly one after the another, the PFs
generated in all spans are identical and add coher-
ently span after span as the worst case.8 Hence,
while the variance of the PF caused in each span is
�2, then the variance becomes N2�2 after N spans, in-
stead of N�2. Second, the PFs of adjacent bits are cor-
related, and this correlation is given by ��m�n�
=�2C�m−n�, where �·� denotes an expectation value; �n
is the IFWM-induced PF of the nth bit in each span,
and Ck is the correlation coefficient between the PFs
of two pulses away from k bits. As a result, after N
spans, the total DPF, ��, is N��n−�n−1�, and its vari-
ance is ���2�=2N2�2�1−C1�.

Since a PNA can transform PF, �n, to become
�n

�1�= ��n+�n−1� /2, when the signals are sent
through PNAs M times, the PF becomes �n

�M�

=2−M�k=0
M � M

k ��n−k,6 where � M
k � is defined as ��M
+1� / ���k+1���M−k+1�� and ��·� is the gamma func-
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tion. Consequently, when a PNA is inserted behind
every span, the total PF after N spans is �n

=�M=1
N �n

�M�=�k=0
N ��M=1

N � M
k � /2M��n−k. Note that this re-

sult is derived from the characteristics of the PF: �n
are identical in all spans. Therefore the total DPF
can be written as ��=�n−�n−1=�k=0

N+1ak�n−k, where
the coefficients ak are �M=1

N �� M
k �− � M

k−1 �� /2M=�0,k+�1,k
− � N+1

k � /2N and �i,j is the Kronecker delta function.
Since �n are mutually correlated, the variance of the
total DPF is not ��k=0

N+1ak
2��2. This correlation is con-

sidered by writing the variance as

���2� = 	�
k

CkAk
�2, �1�

where Ak is the autocorrelation of ak:

Ak = ak � a−k = 2�0,k + �1,k + �−1,k

+ 4�	
2N + 2

N + k + 1

22N+2 −

	N + 2

k + 1

2N+2 −

	 N + 2

− k + 1

2N+2 � �2�

and � denotes convolution. The last three terms in
Eq. (2) could be viewed as the binomial distributions,
Pp�k �Z�= � z

k ��pk�1−p�z−k with p=0.5, centered at k
=0, N /2, −N /2, with variances of �N+1� /2, �N+2� /4,
and �N+2� /4, respectively. Then ���2� is expected to
approach a maximum value, when the first binomial
distribution contributes the most to the product in
Eq. (1), but the second and the third terms contribute
little. Moreover, if two pulses are far from each other
in the time domain, the correlation between their
PFs should be zero. Consequently, as N is large, the
main contribution to the DPF is 2�0,k+�1,k+�−1,k in
Eq. (2). That is, ���2� converges to 2�1+C1��2. How-
ever, the correlation coefficients are necessary to de-
termine in detail the variation of the DPF with peri-
odic PF averaging.

For simplicity to calculate Ck, the optical field of
the nth pulse of RZ DPSK signals is assumed to be
un�t�=sn
P exp�−�t+nT�2 / �2	2��, where sn= ±1 indi-
cates binary data encoded by a phase shift of either 0
or 
; T is the bit period, and 1.66	 is the full width at
half-maximum. Moreover, the nonlinear effect is
treated as a perturbation to determine theoretically
the distribution of the IFWM-indcued PF. However,
in previous work,7,8 nonlinearity in DCF was ne-
glected. Actually, it significantly influences the char-
acteristics of IFWM-induced PF, and especially the
correlation between the PFs of neighboring bits. Ac-
cordingly, our analysis is extended to the nonlinear
effects in both SSMF and DCF. From the previous
work7,8 and considering a complete postdispersion
compensating scheme, the nonlinear PF can be rep-
resented as

�n = �
l,m

slsmsnsl+m−n��1P1Fl,m�L1,�1,
1��

− �2P2e−�2L2Fl,m�− L2,�2,
2���, �3�

where �i, Pi, Li, �i, and 
i� are the nonlinear coeffi-

cients, the launch peak power, the length, the loss,
and the group-velocity dispersion of SSMF �i=1� and
DCF �i=2�, and Fl,m�L ,� ,
�� is

Fl,m�L,�,
�� = R��
0

L e−�z


1 + 2j
�z/	2 + 3�
�z/	2�2

� exp�− 	T

	

2� 3lm

1 + 3j
�z/	2

+
�l − m�2

1 + 2j
�z/	2 + 3�
�z/	2�2��dz� , �4�

giving the strength of the nonlinear effect from the
lth, mth, and �l+m�th pulses. The first and second
terms of Eq. (3) represent the nonlinear effects occur-
ring in SSMF and DCF, respectively. Throughout this
Letter, 40 Gbit/s RZ DPSK signals with a 33% duty
cycle are considered; the length of SSMF in each span
is 80 km; the nonlinear coefficients, the loss, and the
group-velocity dispersion of SSMF and DCF are 1.3
and 5.4 W−1 km−1, 0.2 and 0.65 dB/km, and −21.7
and 127.6 ps2/km, respectively; the launch power of
DCF is 7 dB lower than that of SSMF, and this power
is chosen by setting the mean nonlinear phase shift
�nl=N�1P1,aveL1,eff+N�2P2,aveL2,eff to a specific value,
where Li,eff is the effective length per span and
Pi,ave=

Pi	 /T is the average launch power. Since
the pulses are highly broadened when sent into DCF,
two pulses will interact even though these pulses are
far away from each other. Hence, all distributions of
−22� l, m , l+m�22 in Eq. (3) are considered to fully
capture pulse-to-pulse interactions, and l�n and m
�n are set to exclude self- and intrachannel cross-
phase modulation effects. With a De Bruijn sequence
of 216 bits and �nl=1 rad after 40 spans, Fig. 1 plots
the correlation coefficients of PFs contributed to by
both SSMF and DCF, SSMF only, and DCF only, and
the corresponding distributions of �n and �n−1 caused
in each span are shown in insets. These figures
clearly show that the nonlinear effect in DCF cannot

Fig. 1. (Color online) Correlation coefficients of the IFWM-
induced PFs. Insets, corresponding distributions of �n and

� .
n−1
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be neglected, and it increases the correlation of PFs
of remote bits but decreases that of adjoining bits.

Based on the results of Fig. 1 and Eq. (1), Fig. 2
analytically plots the variance of DPF as a function of
the number of the spans. The variance is maximal
near 20 spans and converges to about 3�2 very
slowly. Figure 2 also plots the results of a numerical
simulation using commercially available software to
verify the effect of PF averaging. All of the param-
eters of the simulation are identical to those in Fig. 1,
and ASE noise is neglected to focus on the pattern ef-
fects. When the number of spans is smaller than 20,
the theory agrees excellently with the simulation.
Since the amplitude of the signals is not regenerated
in the simulation, the IFWM-induced AF generates
additional nonlinear PF increasingly. Therefore, for
N�35, ���2� with PNAs begins to increase rather
than decrease. However, if ideal phase-preserving
amplitude regenerators are inserted behind each
span, then the simulation results will be identical to
the theoretical results. Furthermore, both results
without PNA in Fig. 2 agree that ���2� increases as
the square of the distance.

To further investigate the improvement by PF av-
eraging, a semianalytical method is used to compute
the BER and the nonlinear penalties. The BER re-
lated to a signal-to-noise ratio (SNR), �s, and the non-
linear DPF is equal to8,9

pe =�Q1	
2�s�sin
��

2 �,
2�s�cos
��

2 �
 −
e−�s

2

� I0��s�sin ����� , �5�

where Q1�· , · � is the Marcum Q function and I0�·� is
the modified Bessel function of the first kind. The
BER curves as functions of the SNR with the IFWM-
induced PFs are calculated based on Eqs. (3)–(5), and
the conditions of �nl=1,3,5 rad after 40 spans with
and without PNAs are both plotted in Fig. 3. For
comparison, the baseline shown in Fig. 3 is the BER
without the PFs of e−�s /2. Note that all the BER
curves with periodic PF averaging overlap the base-
line, and this fact indicates that the nonlinear pen-
alty is negligible. Moreover, both increasing the
transmission distance and the launch power will in-
crease and therefore degrade DPSK signals increas-
ingly. In addition, longer sequences (up to 224) are
tested in calculating both Ck and the BER, and the
results do not change significantly with the length of
the pulse train as it exceeds 216.

This work demonstrates that periodically inserting
PNAs into RZ DPSK transmission systems can effec-
tively suppress IFWM-induced PF. A comprehensive
theoretical model that incorporates the nonlinear ef-
fect of DCF is established, and the results indicate
that the PF induced in DCF cannot be neglected. A
strong agreement between theoretical analysis and
numerical simulation is shown, confirming the con-

vergence of IFWM-induced PF with periodic PF aver-
aging. Further, the semianalytical method is used to
compute BER and shows that PF averaging can obvi-
ate nonlinear penalties.
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