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Abstract

Vertex connectivity and edge connectivity are two important parameters in interconnection networks. Even though they
reflect the fault tolerance correctly, they undervalue the resilience of large networks. By the concept of conditional connec-
tivity and super-connectivity, the concept of restricted vertex connectivity and restricted edge connectivity of graphs was
proposed by Esfahanian [A.H. Esfahanian, Generalized measures of fault tolerance with application to N-cube networks,
IEEE Transactions on Computers 38 (1989) 1586–1591]. Such measures take the resilience of large networks into consid-
eration. In this paper, we propose three families of interconnection networks and discuss their restricted vertex connectivity
and restricted edge connectivity. In particular, the hypercubes, twisted-cubes, crossed-cubes, möbius cubes, star graphs,
pancake graphs, recursive circulant graphs, and k-ary n-cubes are special cases of these families.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

For the interconnection network topology, it is usually represented by a graph G ¼ ðV ;EÞ, while vertices
represent processors and edges represent links between processors. For the purpose of connecting hundreds
or thousands of processing elements, many interconnection network topologies have been proposed in the lit-
erature. Graph theory can be used to analyze the network reliability and most of the graph definitions we use
are standard (see, e.g. [2]). We use terms graphs and networks interchangeably. G ¼ ðV ;EÞ is a simple graph if
V is a finite set and E is a subset of {ða; bÞ j ða; bÞ is an unordered pair of V}. We say that V is the vertex set and
E is the edge set. The neighborhood of a vertex v in graph G, N GðvÞ, is fx j ðv; xÞ 2 Eg. The neighbor-edge set of
v in graph G, NEGðvÞ, is fðv; xÞ j ðv; xÞ 2 Eg. The degree of v in G, denoted by degGðvÞ, is the number of vertices
in N GðvÞ. G is k-regular if degGðvÞ ¼ k, for every vertex v 2 V . A perfect matching of a graph G is a set M of
edges such that (1) no two edges are incident with a common vertex, and (2) each vertex of G is incident to
some edge in M.
0096-3003/$ - see front matter � 2006 Elsevier Inc. All rights reserved.
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A vertex cut of a graph G is a set S � V ðGÞ such that G� S has more than one connected component. It is a
known fact that only complete graphs do not have vertex cuts. The vertex connectivity of G, written jðGÞ, is
defined as the minimum size of a vertex cut if G is not a complete graph, and jðGÞ ¼j V ðGÞ j �1 otherwise. A
graph G is k-vertex-connected if jðGÞP k. Assume that graph G is k-regular with vertex connectivity j. We
say that G is maximum vertex connected if j ¼ k; and G is super-vertex-connected if it is a complete graph, or it
is maximum vertex connected and every minimum vertex cut is NGðvÞ for some vertex v. An edge disconnecting

set is a set F � EðGÞ such that G� F has more than one connected component. A graph is k-edge-connected if
every disconnecting set has at least k edges. The edge connectivity of G, written kðGÞ, is the minimum size of an
edge disconnecting set. A graph G is k-edge-connected if kðGÞP k. Assume that G is a k-regular graph with
edge connectivity k. We recall that G is maximum edge connected if k ¼ k; and G is super-edge-connected if it is
maximum edge connected and every minimum edge disconnecting cut is NEGðvÞ for some vertex v. Results
concerning the super-vertex-connectivity and super-edge-connectivity of the hypercubes, twisted-cubes,
crossed-cubes, and möbius cubes can be found in [5,6].

The fault tolerance of a network with respect to processor (respectively link) failures is directly related to
the vertex (respectively edge) connectivity of the corresponding graph. Even though j and k reflect the fault
tolerance correctly, they undervalue the resilience of large networks [14]. In interconnection networks, there
are many parameters to evaluate the performance of the network topologies. Super-vertex-connectivity and
super-edge-connectivity are extensions of j and k [5]. The concept of conditional connectivity was proposed
by Harary [12], and the extension restricted edge connectivity was given in [16,17]. Let G ¼ ðV ;EÞ be a con-
nected graph. A set of vertices S, S � V , is a 1-cut if jS \ N GðvÞj 6 degðvÞ � 1 for every vertex v 2 V ðGÞ and
G� S is disconnected. The restricted vertex connectivity j1 is defined to be the size of minimize 1-cut if such
1-cut exists and undefined otherwise. In other words, every vertex v 2 V ðGÞ has at least 1 non-faulty neighbor
vertex, even though vertex v is faulty. The definition of restricted edge connectivity k1 is defined similarly to j1.
A set of edges S, S � E, is a 1-edge-cut if jS \ NEGðvÞj 6 degðvÞ � 1 for every vertex v 2 V ðGÞ and G� S is
disconnected. The restricted edge connectivity k1 is defined to be the size of minimize 1-edge-cut if such
1-edge-cut exists and undefined otherwise. It has been shown that the hypercube Qn can tolerate upto
2n� 3 faulty vertices [10] without disconnecting under these conditions. The restricted vertex connectivity
j1 and restricted edge connectivity k1 provide more accurate measures of fault-tolerance of interconnection
networks than super-vertex-connectivity and super-edge-connectivity, respectively.

In this paper, we propose three families of interconnection networks: GðG0;G1; MÞ, SP n, and
GðG0;G1; . . . ;Gr�1;MÞ to discuss their j1 and k1 properties. We note however, many popular networks belong
to some groups of these three families, such as hypercubes [3,10], twisted-cubes [4], crossed-cubes [9], möbius
cubes [7], star graphs [1], pancake graphs [11], recursive circulant graphs [15], and k-ary n-cubes [8]. Addition-
ally, rings, meshes, tori, hypercubes, and Omega networks are isomorphic to k-ary n-cube [8].

There are many useful topologies proposed in interconnection networks. Among them, the binary hyper-
cube, Qn, is one of the most popular topology. However, a hypercube does not make the best use of its hard-
ware since it is possible to fashion networks with lower diameters than that of Qn. One such topology is the
crossed-cube CQn [9,13]. It has a diameter of dðnþ 1Þ=2e, an improvement of approximately a factor of 2 as
compared with Qn. Additionally, there are some other popular graphs, such as the twisted-cubes, möbius
cubes, star graphs, pancake graphs, recursive circulant graphs, and k-ary n-cubes each of them has some recur-
sively construction schemes similar to that of the hypercubes and crossed-cubes, and each has useful topolog-
ical properties. It has been shown that if a network possesses the restricted vertex connectivity (respectively
restricted edge connectivity) property, it is more reliable and has the smaller vertex (respectively edge) failure
rate [10,14].

The outline of this paper is as follows. In the next section, we give three families of interconnection net-
works which satisfies some of the j1 and k1 properties. In Section 3, we state and show the values of j1

and k1 for these families and discuss the j1 and k1 for some popular networks. Section 4 concludes our results.

2. Three families of interconnection networks

Many popular networks, such as the hypercubes, twisted-cubes, crossed-cubes, möbius cubes, star graphs,
pancake graphs, recursive circulant graphs, and k-ary n-cubes, are composed of some lower dimension
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Fig. 1. Graph GðG0;G1; MÞ.
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components and some specific links between components. For example, (1) the crossed-cube CQn is composed
of two CQn�1’s and a perfect matching between the two CQn�1; (2) the star graph Sn is composed of n Sn�1’s
and some additional links with a specific rule; and (3) the recursive circulant graph RCðc; d; rÞ is composed of d

RCðc; d; r � 1Þ’s and some links with a specific rule. In this section, we give three families of networks, and
show that they satisfy some properties of restricted vertex connectivity and restricted edge connectivity.

2.1. The first family G(G0;G1; M) of networks

Let G0 and G1 be two graphs with the same number of vertices. We define a new graph GðG0;G1; MÞ, which
has vertex set V ðG0Þ [ V ðG1Þ and edge set EðG0Þ [ EðG1Þ [M , where M is an arbitrary perfect matching
between the vertices of G0 and G1; i.e., a set of jV ðG0Þj cross edges with one endpoint in G0, and the other
endpoint in G1 (see Fig. 1). We observe that the hypercubes are constructed in this way, so are many variations
of the hypercubes, such as the twisted-cubes, crossed-cubes, möbius cubes etc. We also note that these cubes
do not contain any triangle, i.e., cycles of length three.

2.2. The second family SP n of networks

We define the graph SP n for n P 3. SP 3 is a cycle of length 6 which is isomorphic to the star graph S3 and
pancake graph P 3. For n > 3, SP n consists of n disjoint SP n�1’s, say SP 1

n�1; SP 2
n�1; . . . ; SP n

n�1. The vertex set of
each SP i

n�1 for 1 6 i 6 n is divided arbitrarily into n� 1 disjoint vertex sets equally, say Si;1; Si;2; . . . ; Si;n�1. For
every SP i

n�1 and SP j
n�1, i 6¼ j, there exists a perfect matching between Si;x and Sj;y for some x and y, so that SP n

is ðn� 1Þ-regular. Examples of SP 3, SP 4, and SP 5 are shown in Fig. 2. Note that the star graph Sn and pancake
graph Pn are special cases of SP n and they contain no triangle.

2.3. The third family G(G0;G1; . . . ;Gr�1;M) of networks

Let G0;G1; . . . ;Gr�1 be graphs with jV ðGiÞj ¼ t for i ¼ 0; 1; . . . ; r � 1. Let r and t be positive integers
with r P 3. We denote H ¼ GðG0;G1; . . . ;Gr�1;MÞ with V ðHÞ ¼ V ðG0Þ [ V ðG1Þ [ � � � [ V ðGr�1Þ and
EðHÞ ¼

Sr�1
i¼0 Mi;iþ1ðmodrÞ, where Mi;iþ1ðmodrÞ is an arbitrary perfect matching between V ðGiÞ and V ðGiþ1ðmodrÞÞ.

An example of graph H is illustrated in Fig. 3. Recursive circulant graphs [15] and k-ary n-cubes [8] are special
cases of this family.

3. Restricted vertex connectivity and restricted edge connectivity

We show two lemmas before showing the restricted vertex connectivity of graph GðG0;G1; MÞ.

Lemma 1. Given an n-regular graph G which contains no triangle. Then, jV ðGÞjP 2n.

Proof. Let ða; bÞ be an edge in G. Since degGðaÞ ¼ degGðbÞ ¼ n and there is no triangle, we conclude that
NGðaÞ \ N GðbÞ ¼ ;. Therefore, j N GðaÞ [ N GðbÞ j¼ 2n, and the lemma follows. h

Let Kn;n be a bipartite complete graph with V ðKn;nÞ ¼ fx1; x2; . . . ; xn; y1; y2; . . . ; yng and EðKn;nÞ ¼
fðxi; yjÞj for every i and every jg. It is clear that Kn;n is an n-regular graph containing no triangle with
jV ðGÞj ¼ 2n. Thus, the result of Lemma 1 is a tight bound. The following lemma concerning the vertex con-
nectivity of GðG0;G1; MÞ which was discussed in [5].
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Fig. 3. Graph GðG0;G1; . . . ;Gr�1;MÞ.
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Fig. 2. Graphs (a) SP 3, (b) SP 4, and (c) SP 5.
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Lemma 2. Let graphs G0 and G1 be two n-regular graphs with the same number of vertices with n P 1. Assume

that jðG0Þ ¼ jðG1Þ ¼ n. Then, jðGðG0;G1; MÞÞ ¼ nþ 1.

Let G0 and G1 be n-regular graphs with the same number of vertices, containing no triangle, and with con-
nectivity j ¼ n. It is trivial that GðG0;G1; MÞ is ðnþ 1Þ-regular. We shall write GðG0;G1; MÞ simply as G, if
there is no ambiguity. We show that not only jðGÞ is increasing to nþ 1, but also j1ðGÞ is increasing to
2ðnþ 1Þ � 2.
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Theorem 1. Let n and t be two positive integers with n P 2 and t > nþ 1. Let G0 and G1 be two n-regular graphs,

jV ðG0Þj ¼ jV ðG1Þj ¼ t, containing no triangle. Assume that jðG0Þ ¼ jðG1Þ ¼ n. Then, G ¼ GðG0;G1; MÞ is

ðnþ 1Þ-regular, containing no triangle, jðGÞ ¼ nþ 1, and j1ðGÞ ¼ 2n.

Proof. By definition, G is ðnþ 1Þ-regular and contains no triangle. By Lemma 2, jðGÞ ¼ nþ 1. To prove
j1ðGÞ is equal to 2n, we shall prove that both j1ðGÞ 6 2n and j1ðGÞP 2n. Since G contains no triangle,
for every edge ðu; vÞ 2 EðGÞ, jNGðuÞ [ N GðvÞ � fu; vgj ¼ 2n and G� ðNGðuÞ [ NGðvÞ � fu; vgÞ is disconnected.
Therefore, j1ðGÞ 6 2n.

To prove that j1ðGÞP 2n, we shall check that G� F is connected for every vertex subset F of G with
jF j ¼ 2n� 1 and F 6�NGðvÞ for any vertex v 2 V ðGÞ. Let F G0

¼ G0 \ F and F G1
¼ G1 \ F . Since jF j ¼ 2n� 1

and F G0
\ F G1

¼ ;, jF G0
j 6 n� 1 or jF G1

j 6 n� 1. We may without loss of generality assume that
jF G0
j 6 n� 1. Since jðG0Þ ¼ n, G0 � F G0

is connected. A cross edge of G is an edge such that one endpoint
is in G0 and the other one is in G1.

Case 1: G1 � F G1
is also connected.By Lemma 1, jV ðG0Þj ¼ jV ðG1ÞjP 2n. The number of cross edges between

G0 and G1 is at least 2n, which is great than jF j. So there exists a cross edge ða0; a1Þ such that
a0 2 V ðG0 � F G0

Þ and a1 2 V ðG1 � F G1
Þ. Thus, G� F is connected.

Case 2: G1 � F G1
is disconnected.We may without loss of generality assume that G1 � F G1

is divided into k

disjoint connected components, say H 1;H 2; . . . ;Hk, where k P 2. That is, V ðH iÞ \ V ðH jÞ ¼ ; for
every i 6¼ j and H 1 [ H 2 [ � � � [ H k ¼ G1 � F G1

. Now, we shall prove that there exists an edge
ðai; biÞ such that ai 2 G0, bi 2 H i, and ai 62 F for i ¼ 1; 2; . . . ; k. In the following two subcases, we con-
sider the number of vertices of Hi with i 2 1; 2; . . . ; k.
Subcase 2.1: jV ðH iÞj ¼ 1.

Let uh be the vertex in Hi and ðuh; ugÞ be its corresponding cross edge between Hi and G0.
By definition, NGðuhÞ 6� F . So ug 62 F . Then, uh is connected with every vertex in G0 � F .

Subcase 2.2: jV ðH iÞjP 2.
Let ðuh; vhÞ be an edge in Hi. Since there is no triangle in G, jNG1

ðuhÞ [ N G1
ðvhÞj ¼

nþ n ¼ 2n. Let jV ðH iÞj ¼ m P 2. We have the following inequality:
[

v2V ðHiÞ
NG1
ðvÞ

�����

������ jV ðH iÞjP 2n� m:
Suppose each cross edge between G0 and Hi has at least one faulty vertex, then jF jP
ð2n� mÞ þ m ¼ 2n > 2n� 1. It’s a contradiction to our assumption that jF j ¼ 2n� 1. So there exists
a cross edge ðai; biÞ such that ai 2 V ðG0Þ, bi 2 V ðH iÞ, and ai 62 F . Therefore, G� F is connected. Thus,
j1ðGÞ ¼ 2ðnþ 1Þ � 2 ¼ 2n and we complete the proof of this theorem. h
With a similar argument as above, we have the following result.

Theorem 2. Let n and t be two positive integers with n P 1 and t > nþ 1. Let G0 and G1 be two n-regular graphs,

jV ðG0Þj ¼ jV ðG1Þj ¼ t, containing no triangle. Assume that kðG0Þ ¼ kðG1Þ ¼ n. Then, G ¼ GðG0;G1; MÞ is

ðnþ 1Þ-regular, containing no triangle, kðGÞ ¼ nþ 1, and k1ðGÞ ¼ 2n.

Since graph GðG0;G1; MÞ is a generalization of the hypercubes Qn, twisted-cubes TQn, crossed-cubes CQn,
and möbius cubes MQn, we have the following corollary.

Corollary 1. j1ðQnÞ ¼ j1ðTQnÞ ¼ j1ðCQnÞ ¼ j1ðMQnÞ ¼ 2n� 2 for n P 3 and k1ðQnÞ ¼ k1ðTQnÞ ¼ k1ðCQnÞ ¼
k1ðMQnÞ ¼ 2n� 2 for n P 2.

For the connectivity of SP n for n P 3, jðSP nÞ ¼ degSP n
ðvÞ ¼ n� 1 for every vertex v 2 V ðSP nÞ. Since the

proof is very similar to that of the connectivity of GðG0;G1; MÞ in [5], we omit the proof here.

Lemma 3. jðSP nÞ ¼ n� 1 for n P 3.
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For the restricted vertex connectivity j1 of SP n, we show that j1ðSP nÞ ¼ 2ðn� 1Þ � 2 ¼ 2n� 4.

Theorem 3. j1ðSP nÞ ¼ 2n� 4 for n P 3.

Proof. To prove that j1ðSP nÞ ¼ 2n� 4 for n P 3, we shall prove that j1ðSP nÞ 6 2n� 4 and j1ðSP nÞP 2n� 4.
Since SP n contains no triangle, for every edge ðu; vÞ 2 EðSP nÞ, jNSP nðuÞ [ NSP nðvÞ � fu; vgj ¼ 2n� 4 and
SP n � ðNSP nðuÞ [ NSP nðvÞ � fu; vgÞ is disconnected. Therefore, j1ðSP nÞ 6 2n� 4 for n P 3.

Now, to show that j1ðSP nÞP 2n� 4 for n P 3, we need to check that SP n � F is connected for every vertex
subset F of SP n such that jF j ¼ 2n� 5 and F 6�NSP nðvÞ for any vertex v 2 V ðSP nÞ. Let F i ¼ SP i

n�1 \ F for
1 6 i 6 n.

Case 1: SP i
n�1 � F i is connected for 1 6 i 6 n.jV ðSP i

n�1Þj ¼ ðn� 1Þ! and jF j ¼ 2n� 5. For every 1 6 i 6¼ j 6 n,
there are ðn� 2Þ! cross edges between SP i

n�1 � F i and SP j
n�1 � F j. Because ðn� 2Þ! > jF j ¼ 2n� 5 for

every n P 5. Therefore, for n P 5 and every 1 6 i 6¼ j 6 n, there exists a cross edge ðu; vÞ between
SP i

n�1 � F i and SP j
n�1 � F j. As for n ¼ 3; 4, it can be proved by brute force that SP n � F is connected.

So SP n � F is connected.
Case 2: Some of SP 1

n�1 � F 1, SP 2
n�1 � F 2; . . . ; SP n

n�1 � F n are disconnected.We may without loss of generality
assume that SP 1

n � F 1 is disconnected. Thus, jF 1jP n� 2 and jF � F 1j 6 n� 3. So SP 2
n�1 � F 2,

SP 3
n�1 � F 3; . . . ; SP n

n�1 � F n are all connected. Similarly to the proof of Case 1, SP n � ðSP 1
n�1 [ F Þ is

connected.Now, we may without loss of generality assume that SP 1
n�1 � F 1 is divided into k disjoint

connected components, say H 1;H 2; . . . ;H k, where k P 2. That is, V ðH iÞ \ V ðH jÞ ¼ ; for every i 6¼ j
and H 1 [ H 2 [ � � � [ H k ¼ SP 1

n�1 � F 1. Now, we shall prove that there exists a cross edge ðai; biÞ such
that ai 2 V ðH iÞ, bi 2 V ðSP n � SP 1

n�1Þ, and bi 62 F for i ¼ 1; 2; . . . ; k. In the following two subcases, we
consider the number of vertices of Hi with i ¼ 1; 2; . . . ; k.
Subcase 2.1: jV ðHiÞj ¼ 1.

Let uh be the only vertex in Hi and ðuh; uÞ be its corresponding cross edge between Hi

and SP n � SP 1
n�1. By definition, NSP nðuhÞ 6� F . So u 62 F . Then, SP n � F is connected.

Subcase 2.2: jV ðHiÞjP 2.Let ðuh; vhÞ be an edge in Hi. Thus, jNSP 1
n�1
ðuhÞ [ N SP 1

n�1
ðvhÞj ¼ ðn� 2Þþ

ðn� 2Þ ¼ 2n� 4. Let jV ðH iÞj ¼ m P 2. We have the following inequality:
[

v2V ðHiÞ
N SP 1

n�1
ðvÞ

�����

������ jV ðHiÞjP ð2n� 4Þ � m:
Suppose each cross edge between Hi and SP n � SP 1
n�1 has at least one faulty vertex, then

jF jP ð2n� 4� mÞ þ m ¼ 2n� 4 > 2n� 5. It is a contradiction to our assumption that jF j ¼
2n� 5. So there exists a cross edge ðwh;wÞ such that wh 2 V ðH iÞ, w 2 V ðSP n � SP 1

n�1Þ, and w 62 F .
Therefore, SP n � F is connected. So j1ðSP nÞ ¼ 2n� 4 for n P 3. Thus, we complete the proof of this
theorem. h
With a similar argument as above, we have the following theorem.

Theorem 4. k1ðSP nÞ ¼ 2n� 4 for n P 3.

It is easy to check that j1ðS3Þ and j1ðP 3Þ is exactly 2. As a consequence of the above two theorems, we have
the following corollary about the restricted vertex connectivity of the star graphs Sn and pancake graphs Pn.

Corollary 2. j1ðSnÞ ¼ j1ðP nÞ ¼ 2n� 4 and k1ðSnÞ ¼ k1ðP nÞ ¼ 2n� 4 for n P 3.

For the third family, the degree of every vertex in GðG0;G1; . . . ;Gr�1;MÞ is increasing by 2 as compared
with that of Gi’s, and the connectivity is also increasing by 2. Moreover, the restricted vertex connectivity
is 2ðnþ 2Þ � 2 ¼ 2nþ 2.

Theorem 5. Let n, r, and t be positive integers with r P 3 and t > nþ 1. Assume that Gi is an n-regular maximum

vertex connected graph with no triangle and jV ðGiÞj ¼ t for 0 6 i 6 r � 1. Let H ¼ GðG0;G1; . . . ;Gr�1;MÞ,
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where M ¼
Sr�1

i¼0 Mi;iþ1ðmodrÞ and Mi;iþ1ðmodrÞ is any arbitrary perfect matching between V ðGiÞ and V ðGiþ1ðmodrÞÞ.
Then, H is ðnþ 2Þ-regular, contain no triangle, jðHÞ ¼ nþ 2, and j1ðHÞ ¼ 2nþ 2.

Proof. By definition, H is ðnþ 2Þ-regular and contains no triangle. It is proved in [5] that jðHÞ ¼ nþ 2. Now, we
shall prove that j1ðHÞ ¼ 2ðnþ 2Þ � 2 ¼ 2nþ 2. To prove that j1ðHÞ ¼ 2nþ 2, we shall prove that j1ðHÞ 6
2nþ 2 and j1ðHÞP 2nþ 2. Since graph H contains no triangle, for every edge ðu; vÞ 2 EðHÞ, jNH ðuÞ [
NH ðvÞ � fu; vgj ¼ 2nþ 2 and H � ðNH ðuÞ [ NH ðvÞ � fu; vgÞ is disconnected. Therefore, j1ðHÞ 6 2nþ 2.

To show that j1ðHÞP 2nþ 2, we need to check that H � F is disconnected for every vertex subset
F of H such that jF j ¼ 2nþ 1 and F 6�NH ðvÞ for every vertex v 2 V ðHÞ. Let F i ¼ Gi \ F for 0 6 i 6 r � 1.

Case 1: GðGi;Giþ1ðmodrÞ; MÞ � F is connected for 0 6 i 6 r � 1.
Thereby, H � F is also connected.

Case 2: GðGi;Giþ1ðmodrÞ; MÞ � F is disconnected for some i 2 f0; 1; . . . ; r � 1g.
We may without loss of generality assume that (1) GðGr�1;G0; MÞ contains the most faulty vertices
among GðGi;Giþ1ðmodrÞ; MÞ for 0 6 i 6 r � 1; and (2) GðGr�1;G0; MÞ � F is disconnected. Hence,
jF 0 [ F r�1jP nþ 1 and H � ðGðGr�1;G0; MÞ [ F Þ is connected. Now, we shall show that for every
non-faulty vertex v in GðGr�1;G0; MÞ, v is connected to H � ðGðGr�1;G0; MÞ [ F Þ. We may assume that
GðGr�1; G0; MÞ � F is divided into k disjoint connected components, say H 1;H 2; . . . ;Hk, where k P 2.
Now, we shall prove that there exists a cross edge ðai; biÞ such that ai 2 H � GðGr�1;G0; MÞ, bi 2 H i,
and ai 62 F for i ¼ 1; 2; . . . ; k. In the following two subcases, we consider the number of vertices of
Hi with i 2 1; 2; . . . ; k.
Subcase 2.1: jV ðH iÞj ¼ 1.

Let uh be the vertex in Hi and ðuh; ugÞ be its corresponding cross edge between Hi and
H � GðGr�1;G0; MÞ. By definition, NH ðuhÞ 6� F . So ug 62 F . Then, uh is connected with
every vertex in H � ðGðGr�1;G0; MÞ [ F Þ.

Subcase 2.2: jV ðH iÞjP 2.
Let ðuh; vhÞ be an edge in Hi. jN GðGr�1;G0;MÞðuhÞ [ NGðGr�1;G0;MÞðvhÞj ¼ ðnþ 1Þ þ ðnþ 1Þ ¼
2nþ 2 since there is no triangle in H. Let jV ðH iÞj ¼ m P 2. We have the following
inequality:
[

v2V ðHiÞ
NGðGr�1;G0;MÞðvÞ

�����

������ jV ðH iÞjP ð2nþ 2Þ � m:
Suppose each cross edge between H � GðGr�1;G0; MÞ and Hi has at least one faulty vertex, then
jF jP ð2nþ 2� mÞ þ m ¼ 2nþ 2. It is a contradiction to that jF j ¼ 2nþ 1. So there exists a cross
edge ðwh;wgÞ such that wh 2 V ðH iÞ, wg 2 V ðH � GðGr�1;G0; MÞÞ, and wg 62 F . Hence, H � F is con-
nected. That is, j1ðHÞ ¼ 2nþ 2 and we complete the proof of this theorem. h
With a similar argument as above, we have the following theorem.

Theorem 6. Let n, r, and t be positive integers with r P 3 and t > nþ 1. Assume that Gi is an n-regular maximum

edge connected graph with no triangle and jV ðGiÞj ¼ t for 0 6 i 6 r � 1. Let H ¼ GðG0;G1; . . . ;Gr�1;MÞ, where
M ¼

Sr�1
i¼0 Mi;iþ1ðmodrÞ and Mi;iþ1ðmodrÞ is any arbitrary perfect matching between V ðGiÞ and V ðGiþ1ðmodrÞÞ. Then,

H is ðnþ 2Þ-regular, contain no triangle, kðHÞ ¼ nþ 2, and k1ðHÞ ¼ 2nþ 2.

Most of the recursive circulant graphs RCðc; d; rÞ are special cases of GðG0;G1; . . . ;Gr�1;MÞ. Let RCðc; d; rÞ
be k-regular, we have the following corollary.

Corollary 3. j1ðRCðc; d; rÞÞ ¼ 2k � 2 and k1ðRCðc; d; rÞÞ ¼ 2k � 2 with r P 0, d > 2, and 1 6 c < d.

The k-ary n-cube is also a special case of GðG0;G1; . . . ;Gr�1;MÞ for k P 3. In this paper, we do not consider
the 3-ary n-cube since it contains triangles. By definition, the k-ary n-cube is 2n-regular for k P 3. We denote
k-ary n-cube as Gr;n. Along the way, we establish some results on the k-ary n-cube for k P 4.



Corollary 4. j1ðGr;nÞ ¼ 4n� 2 for k ¼ 4; 5, n P 2, or k P 6, n P 1. k1ðGr;nÞ ¼ 4n� 2 for k P 4 and n P 1.
4. Conclusion and discussion

The vertex connectivity and edge connectivity of many popular networks have been already established. In
this paper, we address the restricted vertex connectivity j1 and restricted edge connectivity k1 on the three
families of interconnection networks: GðG0;G1; MÞ, SP n, and GðG0;G1; . . . ;Gr�1;MÞ. In particular, hyper-
cubes, twisted-cubes, crossed-cubes, möbius cubes, star graphs, pancake graphs, recursive circulant graphs,
and k-ary n-cubes are special cases of these families. As a corollary, we have obtained the restricted vertex
connectivity j1 and restricted edge connectivity k1 of these graphs.

Finally, we raise a few questions. Are there other families of graphs worth discussing their restricted vertex
connectivity and restricted edge connectivity? In addition, if we restrict the fault condition that every vertex in
graph G has at least i non-faulty neighbor vertices (respectively edges) for i > 1, what is the restricted vertex
connectivity (respectively restricted edge connectivity) in each of these graphs?
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