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Limited structural information of drug targets, cellular toxicity possessed by lead compounds, and large amounts of potential
leads are the major issues facing the design-oriented approach of discovering new leads. In an attempt to tackle these issues,
we have developed a process of virtual screening based on the observation that conformational rearrangements of the dengue
virus envelope protein are essential for the mediation of viral entry into host cells via membrane fusion. Screening was based
solely on the structural information of the Dengue virus envelope protein and was focused on a target site that is presumably
important for the conformational rearrangements necessary for viral entry. To circumvent the issue of lead compound toxicity,
we performed screening based on molecular docking using structural databases of medical compounds. To enhance the
identification of hits, we further categorized and selected candidates according to their novel structural characteristics. Finally,
the selected candidates were subjected to a biological validation assay to assess inhibition of Dengue virus propagation in
mammalian host cells using a plaque formation assay. Among the 10 compounds examined, rolitetracycline and doxycycline
significantly inhibited plaque formation, demonstrating their inhibitory effect on dengue virus propagation. Both compounds
were tetracycline derivatives with IC50s estimated to be 67.1 mM and 55.6 mM, respectively. Their docked conformations
displayed common hydrophobic interactions with critical residues that affected membrane fusion during viral entry. These
interactions will therefore position the tetracyclic ring moieties of both inhibitors to bind firmly to the target and,
subsequently, disrupt conformational rearrangement and block viral entry. This process can be applied to other drug targets in
which conformational rearrangement is critical to function.
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INTRODUCTION
The Dengue virus (DV) belongs to the Flavivirus family and has

become a major threat to public health globally, especially in

tropical and subtropical areas, due to the increases in population

density and environmental changes. There are approximately 2.5

billion people who live under the shadow of DV infection. Other

well-known Flaviviruses include yellow fever virus, Japanese

encephalitis virus, West Nile virus [1,2], and Murray Valley

encephalitis virus [3]. The Dengue virus has four serotypes and is

transmitted by Aedes mosquitoes. Patients with DV infection show

various clinical symptoms that range from no significant illness or

mild fever to life-threatening Dengue hemorrhagic fever (DHF)

and Dengue shock syndrome (DSS) [4]. Currently, only supportive

treatments are available. Although considerable research has been

directed towards the development of a safe and effective DV

vaccine since the mid-20th century, there are no approved

commercial products available [5]. Therefore, to combat DV and

other related viral diseases, it is advisable to develop novel

strategies for discovering new antiviral agents. Recent progress in

the biology has brought with it many protein structures for virtual

screening (VS) as drug targets [6–9]. However, without a pre-

viously validated target site on the targeted protein as a reference

point, the number of lead candidates obtained from this type of

screening is very large. Cellular toxicity further complicates

biological activity assays as well. Therefore, the utilization of VS

is somewhat hindered by the processes that follow, namely, the

labor-intense, time-consuming verification process and the toxicity

assays required for processing large amounts of lead candidates.

Here, in an attempt to devise a less resource-demanding screening

process, we have focused on computational approaches that are

solely based on the structures of a designated region of the target

protein. Then, we performed VS on a set of medical compounds

because we recognized that using medical compounds could

potentially minimize cellular toxicity. To reduce the number of

lead candidates, we further refined the VS output by structural

clustering for the identification of novel structural characteristics.

Compounds with novel structures were then subjected to

a biological assay to validate their activities. In summary, we

sacrificed the diversity of leads in exchange for the efficiency of

screening.

The DV envelope (E) protein is 495 amino acids in length,

forms oligomers, and, along with the M protein, constitutes most

of the accessible virion surface that is covered by the envelope

membrane. The E protein is responsible for activating ‘‘membrane

fusion’’, the central molecular event during the entry of enveloped

RNA viruses into host cells. The Dengue virus enters a host cell

when the E protein binds to the virus receptor [10] on the host cell

surface and activates its conformational rearrangement, causing

the E protein in its dimeric pre-fusion form to transform into

Academic Editor: Martin Egli, Vanderbilt University, United States of America

Received February 9, 2007; Accepted April 13, 2007; Published May 9, 2007

Copyright: � 2007 Yang et al. This is an open-access article distributed under
the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

Funding: Y.-L. Yang, Y.-Y. Tu, and K.-R. Yen, are supported by National Chiao Tung
University under the MoE ATU plan, grant 95W821, and Academia Sinica under
grant AS91IMB7PP. J.-M. Yang and Y.-F. Chen are both supported by the National
Science Council and a grant from the University System at Taiwan-Veteran
General Hospital.

Competing Interests: The authors have declared that no competing interests
exist.

* To whom correspondence should be addressed. E-mail: yyang@mail.nctu.edu.
tw

PLoS ONE | www.plosone.org 1 May 2007 | Issue 5 | e428



a trimeric post-fusion structure. This essentially irreversible

conformational change induces the fusion between the viral

envelope membrane and the host cell membrane [11], allowing

entry to be completed. In short, the DV E protein mediates host

cell binding and is essential for infection via a conformation-

induced membrane fusion event between the host cell and the

virion. In addition, it is also the primary antigen that induces

protective immunity and the major antigen for virus neutralization

[10].

The crystal structures of the E protein of DV type 2 in both the

presence (pre-fusion) and absence (post-fusion) of a bound ligand

were deposited in the Protein Data Bank {PDB codes 1oke [5] and

1ok8 [11], respectively; Figure 1). The key difference between

these two structures is a local rearrangement of the ‘‘kl’’ b-hairpin

(residues 268–280) and the concomitant opening up of a hydro-

phobic pocket for ligand binding. For example, the detergent n-

octyl-b-D-glucoside (BOG) can occupy this pocket [11]. Mutations

that affect the pH threshold for membrane fusion have also been

mapped to this hydrophobic pocket [12,13]. Therefore, Modis et

al. proposed that this pocket was a hinge point in the fusion-

activating conformational change and suggested that it could be

a target site for the development of fusion inhibitors [5,11] that

could disrupt or even block the correct conformational changes

necessary for DV entry. This concept made the utilization of

structure-based VS to identify inhibitors of DV infection plausible.

Therefore, in this study, a well-developed docking tool, GEM-

DOCK [14–17], was utilized to perform VS on the Comprehensive

Medicinal Chemistry (CMC) database for substances that could dock

in this hydrophobic pocket of E proteins [5]. These compounds were

then selectively tested, based on distinct structural characteristics, for

the inhibition of DV propagation. We have now successfully

identified two tetracycline derivatives [18,19] that displayed

significant inhibitory effects on the propagation of the DV type 2

PL046 strain in cell cultures. According to the docked conformations

of these two active, and of two inactive tetracycline-derived

compounds, we have proposed a model for the inhibition of DV E

protein conformational change, which may provide a future

direction for lead compound optimization.

RESULTS

Virtual screening for inhibitors of the E protein
To assess the VS program, we first evaluated the docking accuracy

of GEMDOCK for the DV E protein by docking the detergent

ligand (BOG) into the binding site. The docked conformation of

BOG (Figure 2A) with the lowest scoring value was compared with

the crystal structure of BOG based on the root mean square

deviation (RMSD) of heavy atoms. The average RMSD of 10

independent runs was less than 1.20 Å. Molecular recognition of

the E protein was also investigated to determine the constraints of

the ligand and pharmacophore preferences during the VS. This

detergent-binding pocket, located at the juxtaposition of domains I

and II of the E protein, is hydrophobic in the pocket [5,11] and

hydrophilic on both sides of the protein surface.

GEMDOCK was then used to perform VS on the DV E

protein using a screening set from the CMC database that

contained 5,331 molecules between 200 and 800 Daltons. Since

the binding site of the DV E protein is hydrophobic, we set the

electrostatic constraint, based on the upper bound number of

charged atoms, to 0 and the hydrophilic constraint, based on the

upper bound fraction of polar atoms, to 0.3 (equation 4 in

Materials and Methods) to reduce the effects of GEMDOCK bias

toward charged polar compounds. The ligand preference served as

a hydrophilic filter and penalized compounds that had high

Figure 1. Pre-fusion (PDB code 1oke) and post-fusion (PDB code 1ok8) conformations of Dengue virus E protein and the ligand-binding pocket
for virtual screening. (A) Dengue virus E protein structures in pre-fusion (gray) and post-fusion (blue) states and the position of the binding regions
(black strand representing D9, k, l in pre-fusion state, colored strand representing the post-fusion state). (B) The conformation rearrangement of the
binding areas. Higher-order structures and domains I, II, and III are defined according to Modis et al. [11].
doi:10.1371/journal.pone.0000428.g001
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hydrophilicity. Since our previous studies indicated that the ligand

and pharmacophore preferences contributed to improvements in

the enrichment of VS [14,16], we used the scoring values of both

the empirical scoring function and pharmacophore-based scoring

function as ranking conditions to identify inhibitor candidates of

the DV E protein.

We selected the top-ranking 3% of compounds (,173

compounds, see Appendix S1 in supporting material) for further

analyses to enrich the hit rate after GEMDOCK screening. These

candidate compounds were then clustered using a hierarchical

cluster method based on both their two-dimensional compound

structures and protein-ligand interactions [20,21], similar to Jain’s

work [22]. Here, atomic environments [20,21] were used to

represent the two-dimensional compound structure for measure-

ments of compound similarities and the protein-ligand interactions

were used for the identification of docked positions and hot spots.

Based on structural similarities, docked positions, protein-ligand

interactions, and the limitations of commercial availability, two

groups of structures (Figure 3) distinguished themselves for use in

the in vivo plaque formation assay for their potential inhibitory

effects on DV propagation in cultured cells. One group consisted

of two tetracycline derivatives (tetracycline and rolitetracycline)

and the other group consisted of connected ring structures with

additional flexibility. To enrich possible hits, two more tetracycline

derivatives (doxycycline and oxytetracycline) under similar atomic

conditions were also included for the biological activity assay.

Docked conformations of these selected compounds are shown in

Figure 2B and the four tetracycline derivatives are indicated as

blue (rolitetracycline), green (doxycycline), orange (tetracycline),

and red (oxytetracycline). As shown in Figure 2A, BOG is docked

in the pocket and is situated centrally among Gly275, Lys128,

Leu277, and Gln52. All ten selected candidate compounds were

able to dock in the pocket at various locations (Figure 2B).

In vivo plaque formation assay
To assess whether those individual compounds obtained by

screening could indeed affect the propagation of Dengue virus

replication as predicted, different concentrations of the com-

pounds were added separately to cultures of BHK-21 cells,

followed immediately by the addition of the DV type 2 PL046

strain at a fixed number of plaque forming units (PFUs). If the

compounds bind to the E proteins as predicted, they may interfere

with the interactions between the E protein and the host surface

receptor, particularly with the E protein conformational change

that is necessary to activate viral entry. This inhibition would

reduce the frequency of DV infection in BHK-21 cells. Since every

successful infection leads to the formation of a plaque, the number

of plaques on the assay plate indicates the number of infection

events. As a fixed number of PFUs was originally added to the

culture, the reduction in the number of plaques reflected the

portion of the virion infection that was inhibited by the presence of

the particular compound. Therefore, using the number of PFUs

from the culture plates added only media (no compounds) as

100%, the relative percentage of the PFUs from the culture plates

with compounds was calculated. Of the 10 compounds, rolite-

tracycline and doxytetracycline (Figure 4) showed dramatic

inhibitory effects on DV propagation. In addition, another

compound, oxethazaine, also showed mild inhibition. There was

a 12% reduction (down to 88% from that of control) in the PFUs

when the concentration of oxethazaine in the culture was

increased from 200 mM to 500 mM. For 10 mM rolitetracycline,

there was almost no effect on DV plaque formation. But as the

concentration of rolitetracycline was increased, there were

significant inhibitory effects on DV propagation. Compared with

controls, there were only 20% of the PFUs remaining at 100 mM

and approximately 5% at 300 mM, yielding an estimated IC50

value of 67.1 mM (Figure 4). At 500 mM, there were less than 3%

Figure 2. Docked conformations of the candidate compounds in the BOG binding site according to GEMDOCK. The residues affecting the pH
threshold of fusion are indicated. (A) The crystal conformation is shown in the CPK model (i.e., oxygen in red, nitrogen in blue, and carbon in gray),
and the docked conformation of the BOG is shown in yellow. The formation of the hydrogen bonds is shown by a green dashed line. The RMSD of the
conformations is 1.20 Å, and both pre-fusion and post-fusion conformations form hydrogen bonds with Glu49 and Gln271. (B) The docked
conformations of the 10 selected compounds are shown. The four tetracycline derivatives are colored (doxycycline in green, rolitetracycline in blue,
tetracycline in orange, and oxytetracycline in red). The inhibitory compounds (doxycycline and rolitetracycline) are docked in the vicinity of residues
Thr48, Glu49, Ala50, Lys51, and Gln52.
doi:10.1371/journal.pone.0000428.g002
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Figure 3. The ten compounds selected for competitive blocking assay of DV propagation. 1, rolitetracycline; 2, doxycycline; 3, tetracycline, 4,
oxytetracycline; 5, kanamycin; 6, proscillaridin; 7, astemizole; 8, ergosterol; 9, glipizide; 10, terfenadine.
doi:10.1371/journal.pone.0000428.g003

Figure 4. Effects of (A) doxycycline and (B) rolitetracycline on Dengue virus type 2 plaque formation using BHK-21 mammalian cells. The IC50

values of rolitetracycline and doxytetracycline are 67.1 mM and 55.6 mM, respectively. The x axis shows the percentage of the amount of plaque
formation compared with control. The y axis denotes the drug concentration.
doi:10.1371/journal.pone.0000428.g004
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PFUs remaining. As for doxycycline, 87% of the PFUs were

retained at 10 mM and 14% were retained at 100 mM. When the

concentration of doxycycline reached 500 mM, there was only 1%

of the PFUs remaining, yielding an IC50 value of 55.6 mM

(Figure 4). Interestingly, neither tetracycline nor oxytetracycline

showed an effect on DV propagation at concentrations ranging

from 10 mM to 10 mM (data not shown), even though they share

the tetracyclic ring structure with both rolitetracycline and

doxycycline. Figure 5 shows the molecular structures and IC50

values of the tetracycline derivatives. These compounds had no

cellular toxicity effects within the range of concentrations tested as

judged from both cellular morphology and growth with one

possible exception. When the culture contained doxycycline at

a concentration of 500 mm or greater, the cell density appeared to

be reduced. We further tested the effects of those compounds by

the addition of 500 mm of individual compounds together with or

at intervals after the addition of DV to the cultured cells. The

results revealed that when 500 mM of either one of the active

compounds were added to the cell cultures together with a fixed

number of PFUs, the number of plaques formed was approx-

imately 3% or less compared with controls, whereas approxi-

mately 75% of the PFUs remained when the compound was

added 2 hours after the presence of viruses in the cell culture.

Therefore, the inhibitory effect is time-dependent. That is, if the

compounds are added after sufficient time was allowed for the

infection to proceed, the compounds lost potency.

Computational analysis of inhibitor-E protein

interactions
The docked conformations of the two tetracycline-derived

inhibitors were consistently different from those of the eight non-

inhibitory compounds according to the computation program used

(Figures 2B, 6, and 7). The inhibitors, doxytetracycline (green) and

rolitetracycline (blue) were docked on the outside of the binding

pocket and extended into the pocket while the non-inhibitory

compounds (CPK model) were docked inside the pocket

(Figure 2B). The inhibitors were docked between the D and I

segments of which the conformations significantly differed between

the pre-fusion and post-fusion forms (Figures 1B and 7). In fact, the

inhibitors were docked very close to or at the D9c space and their

tetracyclic structure was beneath D9c between D9c and Ic

Figure 5. Chemical Structures and IC50s for the tetracycline derivatives. Name, chemical name; IC50, the half maximal inhibitory concentration; NA,
not applicable.
doi:10.1371/journal.pone.0000428.g005
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(Figures 1B and 7). Those compounds could not only cause steric

hindrance by their structures per se but could also interact with the

polypeptide stretch of residues 48 to 52 via their functional groups

(Figure 6 A–B and 7 A–B). The residues in the stretch, formed by

Thr48, Glu49, Ala50, Lys51, and Gln52 and several others in the

vicinity, were shown to affect the pH-dependent membrane fusion

process [5,12,22–26]. The locations of these residues in the crystal

model are indicated in Figure 2. On the other hand, the two

inactive tetracycline compounds were docked further away from

the D9c space and their tetracyclic structures were localized above

D9o and D9c. Hence, they would not create steric hindrance during

the switch from D9o to D9c (Figure 7, C–D). Figure 6 shows the

hydrogen-bonding networks and orientations of the four tetracy-

cline derivatives with regard to the E protein in the pre-fusion

form. We also observed that the derivatives could be divided into

two groups by their docked locations. Those with inhibitory

effects, rolitetracycline (Figure 6A) and doxycycline (Figure 6B),

were docked in positions near residues 48–52 and formed

hydrogen-bonding networks with residues Thr48, Glu49, Ala50,

Lys51, and Gln52, as well as Gln271 and Gln200. Conversely, the

other two compounds, tetracycline (Figure 6C) and oxytetracycline

(Figure 6D), formed hydrogen bonds primarily with residues

Thr280, Phe279, Gln271, and Gln200. Tetracycline interacted

with the 48–52 stretch only at Thr48 while oxytetracycline

interacted with residues Thr48 and Ala50 and both appeared to

prefer Phe279 and Thr280. In addition, the inhibitors bound to

opposite sides of the surrounding wall (residues 48–52 vs. residues

200 and 271) of the binding pocket and extended their structures

centrally into the pocket, while the non-inhibitors bound entirely

to one side of the pocket (residues 200, 271, 279, 280, and 48)

(Figures 2B and 6). Furthermore, GEMDOCK yielded lower

binding energies for the two inhibitors than for the inactive

compounds. The energy minimization process performed by

SYBYL 6.9 also indicated that the predicted inhibitor complexes

had lower energies than the non-inhibitors. The energies of

rolitetracycline, doxytetracycline, tetracycline, and oxytetracycline

were 2395.2, 2398.7, 2356.8, and 2371.8 kcal/mol according

to SYBYL 6.9.

Figure 6. Docked conformations and hydrogen bonding of rolitetracycline (A), doxycycline (B), tetracycline (C), and oxytetracycline (D) to the
BOG binding site of the DV E protein. Atoms of the E protein are shown in yellow and compound ligands are shown in CPK model. The hydrogen
bonds are represented as green dashed lines. Not all residues are displayed for the sake of clarity. Thr48, Glu49, Ala50, Lys51, and Gln52 are in the D90

segment (Figure 1B), while Gln271 and Phe279 are in the ko and lo segments, respectively.
doi:10.1371/journal.pone.0000428.g006
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DISCUSSION
For the eradication of infections caused by enveloped viruses, the

identification of compounds that can block the function of viral

envelope proteins to prevent viral entry has been a long-standing

idea in the field. However, mass screening is usually considered too

costly and, for the more design-oriented approaches, VS with

limited information tends to yield too many candidates for

biological activity assays and is usually further complicated by

the cellular toxicity possessed by many of the candidates. Here, we

have devised a scheme in which VS focused on both the steric

hindrance and atomic environment between the compounds and

the targeted E protein to minimize the number of candidates. And,

to further reduce the number of candidates, instead of using the

whole E protein structure as the target for VS, we isolated the

small region around a chosen target site to serve as the target.

Although this approach may limit the diversity of the potential

leads due to the diminished choices of possible target sites for VS,

we believe that this methodology will, in fact, help to enhance the

chance of a successful hit because the program can screen many

more compounds with more thoroughness within the same time

frame. In this study, we chose the hydrophobic detergent-binding

pocket reported by Modis et al. as the target [5,11]. This putative

detergent-binding site is located in the E protein between domains

I and II, which are the key structural elements involved in the pH-

induced conformational rearrangement that is essential for DV

entry. Therefore, a suitable target for small-molecule inhibitors

would be the blockade of the conformational change of the E

protein and, subsequently, the inhibition of viral-host membrane

fusion, which would interrupt viral entry and block infection

[5,11]. Additionally, mutations in the DV E protein mapped to

this pocket indeed affect the pH threshold of fusion [5,12,22–26].

In short, based on the structural study of Modis et al. [5,11], we

developed a VS process and was successful in applying it to the

identification of lead compounds that inhibit DV propagation.

After computation, there were only ten non-toxic candidate

compounds that required validation by biological activity assays.

It is very interesting that in this study, even though tetracycline

and oxytetracycline share similar tetracyclic ring structures with

both rolitetracycline and doxycycline, they are not inhibitory

(Figure 5). Tetracycline derivatives are a group of broad-spectrum

antibiotics and were first discovered in the 1940s [19]. The

mechanism of action of tetracycline and its derivatives on bacteria

is via the inhibition of cellular protein synthesis by preventing the

attachment of aminoacyl tRNAs to the ribosomal acceptor (A) site

[18,19,27]. Those antibiotics consist of a linear, fused tetracyclic

core to which a variety of functional groups are attached [19].

Tetracycline, in fact, contains the minimal common structure of

the tetracycline-related molecules in this study. Therefore, this

common structure per se does not possess the inhibitory effect on

DV propagation. Instead, the substituted functional groups appear

to confer anti-Dengue virus activity.

On the other hand, it is also possible that the active compounds

affect the host cells instead of the virions. If this is the case, the

compounds might inactivate a host cellular component that is

essential for viral propagation. We believe that this scenario is

unlikely since there are no significant differences in cellular

morphology and growth, unless the function of such a cellular

component, when compromised, affects only the viruses. Nonethe-

less, to test this hypothesis, we performed an assay in which the

compounds were added to the cultures either together or 2 hours

after the presence of viruses in the cell cultures. If the compounds

were active against the viruses instead of the hosts, then adding

them together to the culture should effectively block viral infection

whereas the addition of the compounds 2 hours after the presence

of viruses would not have the same effect since the viruses would

have already proceeded through the entry event and infected the

host cells. As expected, when the compounds were added together

with the viruses, the PFUs were approximately 3% or less than

controls, whereas those added two hours later were approximately

75% of control levels. Therefore, the compounds were less potent

after the viruses had entered the host cells. Hence, these

compounds most likely act upon a virus target site and only affect

an event that occurs prior to the completion of viral entry.

Another possibility is that the compounds act on viral RNA at

locations where the RNA structures are similar to the tetracycline-

binding sites on the ribosomal RNAs or tRNAs of the bacteria.

This possibility requires that these compounds can penetrate the

virion structure to interact with the viral RNA to prevent viral

Figure 7. Docked conformations of the four tetracycline derivatives related to residues 48–52 in the BOG binding site in the pre-fusion (gray)
and post-fusion (blue) states. (A) rolitetracycline, (B) doxycycline, (C) tetracycline, and (D) oxytetracycline. Atoms within the compounds are
displayed using the CPK model (oxygen in red, nitrogen in blue, and carbon in gray). The side chains of certain residues that overlap with the
compounds are displayed. The segments D9o, ko, and lo are present in the pre-fusion conformation, while D9c, kc, and lc are present in the post-fusion
conformation.
doi:10.1371/journal.pone.0000428.g007
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entry while, simultaneously, they do not affect the viral RNAs

inside the host cells when these same compounds are added two

hours later. We believe this scenario is also highly unlikely. First,

for the compounds to reach the viral RNAs in the virions, they

would have to overcome the physical obstacle consisting of viral

structural proteins. Second, if the viral RNAs are indeed the

targets, the compounds should be effective regardless of the time of

compound addition because they could still enter the host cells and

bind the viral RNAs to disrupt replication.

As for the possibility that the compounds affect viral proteins

other than the E protein, we believe that this scenario is also

unlikely since the E protein is the only protein required for viral

entry. However, we cannot rule out that the compounds may bind

at sites other than our predicted locations on the E protein. To

reveal the exact location of the compound-E protein interaction, it

may be necessary to devise an experiment, such as co-

crystallization of the protein and those compounds, in which the

compounds can be labeled and traced at an atomic level so their

exact docking locations can be identified relative to the binding

pocket.

Nonetheless, we have conducted computational modeling in an

attempt to provide a direction for future investigation. First, to

assess the results of the binding of tetracycline derivates to the DV

E protein, we compared the BOG binding sites of the DV E

protein to the tetracycline-binding site on the tetracycline

repressor, TetR. TetR regulates resistance to tetracycline in

gram-negative bacteria. The tetracycline-binding site of the TetR

protein has been defined and the structure determined by

crystallography [28]. We found that the TetR protein shares

similar characteristics with the E protein in the binding sites for the

tetracycline derivatives. First, there is an appropriate volume in the

binding sites. The volumes of the binding sites of various TetR

crystals range from 359 Å3 to 495 Å3 whereas the BOG binding

site on the E protein is 481 Å3, according to the tool program, Q-

SiteFinder [29] (the first column of Table S1). Therefore, there is

proper space for the tetracycline derivatives to fit into the BOG

binding site. Second, there are hydrophobic surfaces in the pockets

of both binding sites (Figure S1). Third, according to the results of

a cross-docking test performed for TetR and the tetracycline

derivatives (Table S1), the binding sites of the DV E protein and

TetR permit the binding of the tetracycline derivatives. In

addition, the hydrogen bonds formed between the tetracycline

derivatives and the DV E protein are similar to those between

TetR and the tetracycline-derived ligands (Table S2). Therefore,

tetracycline derivatives should reasonably bind the BOG pocket of

the DV E protein.

On the other hand, only two of the derivatives are inhibitory;

therefore, the atomic details of the functional groups and the

tetracyclic core must confer the inhibitory activity. Hence, we have

analyzed the docked conformations and hydrogen bonding of the

derivatives to assess the interaction between those compounds and

the E protein. There are distinct differences between the effective

and ineffective compounds (Figures 6, 7, and S2); the effective

compounds have their tetracyclic cores positioned inside the

pocket while their side chains form hydrogen bonds with the

residues located on the opposite sides of the wall around the pocket

and are capable of creating steric hindrance to the conformational

alteration of the E protein. In contrast, the ineffective compounds

form hydrogen bonds only with one side of the wall and their cores

lean away from the pocket.

Next, on an atomic level, the predicted positions of the tetracycline

derivatives with the E protein are shown in Figures 6 and 7. The

fused tetracyclic rings of rolitetracycline and doxytetracycline bind

along the D9o strand and occupy the D9c space of the E protein. The

residues 48–52 are in the D segments. These compounds both

interact mainly with Thr48, Glu49, Ala50, Gln200, and Gln271

through hydrogen bonds. Such a hydrogen-bonding network

provides strong attraction forces to stabilize the binding of

rolitetracycline and doxytetracycline to the D9o strand and the kl

b-hairpin. In contrast, although these compounds have the same

tetracyclic core structures, neither tetracycline nor oxytetracycline is

inhibitory. Both compounds form hydrogen-bonding networks with

Thr48, Gln200, Gln271, Phe279, and Thr280 (Figure 6); therefore,

their tetracyclic rings are docked toward one side of the binding site

and contact the surrounding hydrophobic residues via van der Waals

interactions, which are very different from those of rolitetracycline

and doxytetracycline.

During the process of E protein-host membrane fusion, the E

protein structure is dramatically re-configured to allow the fusion

peptide to properly interact with the host membrane. This event is

marked by the rearrangement of the kl b-hairpin and the D9o

segment (Thr48, Glu49, Ala50, Lys51, and Gln52) in the BOG

binding site (Figures 1A and 6). The docked positions of the

inhibitors suggest that they occupy the D9c and kl b-hairpin spaces

in the post-fusion state and form a stable hydrogen-bonding

network (Figures 6A, 6B, 7A and 7B). Therefore, these compounds

block the rearrangement of the b-hairpin and D9o strand, and

thereby block the rearrangement of domains II and I of the E

protein during membrane fusion. Residues 48-52 are not only

important to inhibitor binding but may also directly affect

flavivirus membrane fusion. This hypothesis is consistent with

previous reports that Gln52 may affect the pH threshold of fusion

in flaviviruses [5].

Our study has presented a cost-effective and time-saving

screening process that is based on limited structural information.

We have successfully identified two novel tetracycline-derived

inhibitors of the propagation of flavivirus DV type 2 PL046, by the

computer-aided screening of the E protein structure followed by

the biological assay validation of the candidate compounds in a cell

culture system. These compounds may serve as the basis for the

development of new treatments against Dengue virus infection.

This procedure may be applied to other viral pathogens or for any

other mechanism that involves specific conformational alterations

for biological function. Our study also highlights the additional

characteristics of certain tetracycline derivatives as effective

inhibitors of DV propagation, which will allow further refinement

of our screening program and potential medical application.

MATERIALS AND METHODS
The VS method generally encompasses four phases that are based

on high-throughput molecular docking methods and the crystal

structures of the target proteins. These phases include target

protein preparation, compound database preparation, molecular

docking, and post-docking analysis [6]. The preparation phases

involve formatting the structural data from the target protein and

compounds into acceptable forms for the docking program. Then,

the method of molecular docking is employed to screen the

compound library for potential leads that can dock onto the target

protein, whereas post-docking analysis serves to enrich the hit rate.

Preparations of the target protein and screening set
We prepared the compound set from the CMC database in May

2004 based on two criteria: molecular weights ranging between

200 and 800 Daltons and excluding compounds with multiple

components. We eventually obtained a set of structures that

consisted of 5,331 compounds. To reduce the complexity and

running time of the computational program, we isolated the
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structure of the BOG binding pocket of the DV E protein

(Figure 1B) in the BOG-bound conformation {PDB code 1oke

[5]} and prepared it for the docking tools. The isolated area

included amino acids enclosed within a 10-Å radius that centered

on the bound ligand. The coordinates of the protein atoms were

taken from the PDB for the screening process. GEMDOCK

docked each compound in the screening set against this binding

cavity and ranked each compound by the docked energy of the

docked conformation. Then, those candidates were subjected to

structural clustering [21]. According to the ranking, compound

structures and the interactions between compounds and residues

in the binding site were further selected for in vivo biological

activity assays to assess their inhibitory effect on Dengue virus

propagation in cell culture.

Docking method and scoring function
Our previous work [14–17] showed that the docking accuracy of

GEMDOCK was better than some well-known docking tools,

such as GOLD [30] and FlexX [31], on a diverse data set of 100

protein-ligand complexes suggested by Jones et al. [30]. The

accuracy of GEMDOCK was also better than GOLD, FlexX, and

DOCK on screening the ligand database from Bissantz et al. [32]

for TK [33] and the ER-antagonist receptor [16]. In this study,

GEMDOCK parameters for flexible docking included the initial

step sizes (s= 0.8 and Y = 0.2), family competition length (L = 2),

population size (N = 300), and recombination probability (pc = 0.3).

For each ligand screened, GEMDOCK optimization was

terminated either when the convergence was below a certain

threshold value or when the iterations exceeded a maximal preset

value of 60. For the latter case, GEMDOCK produced 800

solutions in one generation and was terminated after it exhausted

48,000 solutions for each compound in the screening set.

The screening quality of the docking methods using energy-

based scoring functions alone is often influenced by the structure of

the ligand screened (e.g., the numbers of charged and polar

atoms). These methods are often biased toward charged polar

compounds due to the pair-atom potentials of the electrostatic and

hydrogen-bonding energies. In order to reduce this effect,

GEMDOCK can evolve the pharmacological preferences from

either a number of known active ligands or domain knowledge to

take advantage of the similarities of putative ligands to those that

are known to bind a protein’s active site, thereby guiding the

docking of the putative ligands [16]. Therefore, GEMDOCK is

capable of using either a purely empirical scoring function [15] or

a pharmacophore-based scoring function [16]. When GEM-

DOCK uses a pharmacophore-based scoring function, either

certain known active ligands (more than two) or domain

knowledge are required for the evolution of the pharmacological

consensus. The empirical binding energy (Ebind) is given as [15]:

EGEMDOCK{Binding~EinterzEintra ð1Þ

where Einter and Eintra are the intermolecular and intramolecular

energies, respectively [15]. The pharmacophore-based energy

function can be expressed as [16]:

EGEMDOCK{Pharma~EGEMDOCK{bindingzEpharmazEligpre ð2Þ

where EGEMDOCK-Bind is the empirical binding energy defined in

Equation (1), Epharma is the energy of the binding site pharmaco-

phores (hot spots), and Eligpre is the penalty value when a ligand

does not satisfy the ligand preferences [16]. Epharma and Eligpre are

especially useful in the selection of active compounds from

hundreds of thousands of non-active compounds by the exclusion

of ligands that violate the characteristics of known active ligands

(or domain knowledge). The pharmacophore-based interaction

energy (Epharma) between the ligand and the protein is calculated

with the assumption that the binding energies of all hot-spot atoms

can be represented by the following equation [16]:

Epharma~
Xlig

i~1

Xhs

j~1

CW Bij

� �
F r

Bij

ij

� �
ð3Þ

where CW(Bij) is a pharmacological-weight function of a hot-spot

atom j with interaction type Bij, F r
Bij

ij

� �
is as defined previously

[15], lig is the number of heavy atoms in a screened ligand, and hs

is the number of hot-spot atoms in the protein. The ligand

preference (Eligpre) is the penalty value for the screened ligands that

violate the electrostatic or hydrophilic constraints. Eligpre is given as

[16]:

Eligpre~LPeleczLPhb: ð4Þ

where LPelec and LPhb are the penalties for the electrostatic (i.e., the

number of charged atoms in a screened ligand) and hydrophilic

(i.e., the fraction of polar atoms in a screened ligand) constraints,

respectively.

Plaque formation assay for the inhibitory effects of

compounds on DV2 propagation
A local DV type 2 strain, PL046, was used to infect mosquito C6/

36 cells for the production of DV type 2 virions. Mammalian BHK-

21 host cells were cultured at 37uC with 5% CO2 in MEM medium

(Gibco) supplemented with 0.22% sodium bicarbonate and 10%

fetal bovine serum (FBS) (Gibco). C6/36 cells were grown at 28uC
in MEM medium (Gibco) supplemented with 0.11% sodium

bicarbonate and 10% FBS [23]. BHK-21 cells were plated at

a density of 46105 cells per well in 6-well plates and incubated at

37uC with 5% CO2 for 48 hours. Different dilutions of the

compounds were added to the 6-well plates followed by 0.5 mL of

medium containing 200 PFUs of the DV type 2 PL046 strain per

well. The mixtures were mixed gently and then incubated at 37uC
with 5% CO2 for 1 hour. The supernatant in the culture was

aspirated prior to the addition of a 1:1 mixture of MEM

medium:2% methylcellulose. The culture was then incubated at

37uC with 5% CO2 for 7 days. The medium was aspirated prior to

fixation of the cells with 3.7% formaldehyde for 30 minutes. Then,

the fixing solution was removed and the cells were stained with 1%

crystal violet in 3.7% formaldehyde. Finally, the plates were

washed with 3.7% formaldehyde prior to scoring of plaques [34].

SUPPORTING INFORMATION

Table S1 GEMDOCK cross-docking results of docking seven

tetracycline-derivatives into five TetR protein structures and DV E

protein

Found at: doi:10.1371/journal.pone.0000428.s001 (0.02 MB

PDF)

Table S2 Comparisons of the hydrogen bonds of five

compounds between the dengue E protein and TetR protein

Found at: doi:10.1371/journal.pone.0000428.s002 (0.02 MB

PDF)

Figure S1 Docked conformations of the four tetracycline-

derivatives. The two active compounds are rolitetracycline (blue)
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and doxycycline (green). The two inactive compounds are

tetracycline (orange) and oxytetracycline (red). The inhibitory

compounds are docked in positions leaning on the residues of the

48–52 stretch, of which the conformations in prefusion and

postfusion states are very different. Residues affecting the pH

threshold of fusion are indicated by numbers.

Found at: doi:10.1371/journal.pone.0000428.s003 (0.07 MB

PDF)

Figure S2 The surfaces and the docked conformations of the

four tetracycline-derivatives on TetR protein and DV E protein

according to GEMDOCK. (A) TetR protein (PDB code 2TRT);

(B) DV E protein (PDB code 1OKE). The surfaces and sizes of the

binding sites of these two proteins are similar. In addition, docked

conformations of the four tetracycline-derivatives in these two

proteins are also similar.

Found at: doi:10.1371/journal.pone.0000428.s004 (0.09 MB

PDF)

Appendix S1 Appendix A: The top 173 compounds of

GEMDOCK by screening the CMC database.

Found at: doi:10.1371/journal.pone.0000428.s005 (0.18 MB

PDF)
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