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Abstract

This study has extended a vehicle routing problem, with time-windows (VRPTW), by considering the randomness of the perishable
food delivery process, and constructing a SVRPTW model, to obtain optimal delivery routes, loads, fleet dispatching and departure times
for delivering perishable food from a distribution center. Our objective was to minimize not only the fixed costs for dispatching vehicles,
but also the transportation, inventory, energy and penalty costs for violating time-windows. We also discussed time-dependent travel and
time-varying temperatures, during the day, modifying the objective functions as well as the constraints in the above mathematical pro-
gramming models. Algorithms were developed to solve the proposed models; results indicated that inventory and energy costs can sig-
nificantly influence total delivery costs. It was found that our proposed models yielded better results than the traditional VRPTW
models.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Cold chain distribution is designed to keep temperature-
sensitive food products in good condition from point of
departure to final destination. Food products often deteri-
orate, due to extended travel times and frequent stops to
serve customers, during the delivery process. It is, there-
fore, difficult to effectively manage cold chain distribution
and ensure maximum freshness during hot or humid
weather. Perishable food is delivered to retailers, using tem-
perature-controlled vehicles; these vehicles have standard
cold storage equipment and are usually more expensive,
and consume more fuel, than regular vehicles. Due to
changeable traffic conditions and the perishable nature of
the food, travel time and food’s preservation have inher-
ently been characterized as unpredictable. In addition, per-
ishable food usually has a short shelf life; thus, timely
delivery of perishable food not only significantly affects
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the delivery operator’s costs, but also the revenues of retail-
ers. Furthermore, the requirement to serving consumers
with allowable delivery time-windows can increase the
complexity of vehicle routing and scheduling problems
for operators.

Perishable food deteriorates as a result of bacteria, light
and air; the higher the temperature, the higher the rate of
spoilage. In other words, the shelf life of perishable food
depends on storage temperature; the lower the tempera-
ture, the longer the shelf life. It is critical that perishable
food with a short shelf life, such as milk or lunch box items,
be delivered in as timely a manner as possible, in order to
reduce spoilage. Perhaps the loss in retailers’ revenues
ought to be transferred to distribution center operators
as a penalty for delayed delivery. Outside temperatures
can vary widely during the journey from the distribution
center to the final destination, with different corresponding
energy requirements for maintenance of proper tempera-
tures. Thus, it is worth quantifying the changes in the qual-
ity of perishable food with corresponding time-dependent
temperatures.
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Nowadays, many convenience store operators or larger
retailers contract with distribution center operators to deli-
ver perishable food within allowable delivery times, or
time-windows. If vehicles arrive after a specified time-win-
dow, a penalty cost may be incurred. Therefore, a well
designed delivery route will not only ensure delivery of
the freshest food, but also satisfy customers’ requirements
in a cost-effective and timely manner. Fluctuating temper-
atures, at different times of day, can complicate the situa-
tion, however. Delivery time may be dependent on traffic
conditions; travel time is longer during the rush hour in
urban areas. Therefore, the consideration of time-depen-
dent travel should be incorporated into determining opti-
mal delivery routes, under time-window constraints. It
also costs more to keep food from spoilage when a delivery
vehicle is stuck in a traffic jam during hot spells. The
impact of delays in delivering perishable food, is therefore,
more critical than for general goods’ distribution.

Vehicle routing problems (VRP), related to goods deliv-
ery, have been extensively examined (e.g., Belenguer, Bena-
vent, & Martinez, 2005; Chu, 2005; Daganzo, 1987a,
1987b; Prindezis, Kiranoudis, & Marions-Kouris, 2003;
Tarantilis, Ioannou, & Prastacos, 2005). Chu (2005)
addressed the problem of routing a fixed number of trucks
with limited capacity from a central warehouse to custom-
ers with known demand. Prindezis et al. (2003) presented
an application service provider (ASP) to coordinate and
disseminate tasks and related information for solving the
VRP using appropriate metaheuristic techniques. Belen-
guer et al. (2005) developed the computer package RutaRep
as a decision support system to automatically generate
delivery routes in the meat industry. Moreover, Tarantilis
et al. (2005) surveyed the research efforts on metaheuristics
solution methodologies for the most widely studied version
of the VRP, i.e., the Capacitated VRP. Some researchers
have considered vehicle routing problems with time-win-
dow constraints, and have constructed penalty costs to
reflect violation of these time-windows (e.g., Koskosidis,
Powell, & Solomon, 1992; Sexton & Choi, 1986). These
studies have mainly focused on determining optimal routes
by minimizing total routing costs, including total distance
and time costs and the cost of waiting, due to a vehicle’s
early arrival (Solomon & Desrosiers, 1988). Taniguchi
and Shimamoto (2004) presented a dynamic vehicle routing
and scheduling model that incorporates real time informa-
tion using variable travel times. The results showed that the
total cost is decreased by the proposed model based on var-
iable travel times. Gendreau, Laporte, and Séguin (1996)
reviewed the scientific literature on stochastic VRP. In
the paper, the main problems are described within a broad
classification scheme and the most important contributions
are also summarized. Laporte, Louveaux, and Mercure
(1992) further examined vehicle routing problems, using
stochastic travel times, by formulating three stochastic pro-
gramming models. Ahn and Shin (1991) considered tempo-
ral issues in routing problems and discussed vehicle routing
problems with time-windows, under time-varying conges-
tion. Considering time-varying and stochastic travel time,
Fu (2002) focused on the dial-a-ride paratransit scheduling
problems arising in paratransit service systems that are
subject to tight service time constraints and time-varying,
stochastic traffic congestion.

In another line of research, some studies formulated per-
ishable food’s inventory models and discussed optimal eco-
nomic order quantity (EOQ) (e.g., Chakrabarty, Giri, &
Chaudhuri, 1998; Giri & Chaudhuri, 1998; Hariga, 1996).
Tarantilis and Kiranoudis (2001) developed a threshold-
accepting based algorithm to solve the heterogeneous fixed
fleet vehicle routing problem. Tarantilis and Kiranoudis
(2002) proposed an open multi-depot vehicle routing prob-
lem (OMDVRP) to deal with a real life distribution prob-
lem in Greece, in which the industry distributed fresh meat.
Burfoot, Reavell, Wilkinson, and Duke (2004) aimed at
estimating the energy savings that could be achieved using
localised air delivery system based on experiments. Little
has been done, however, to investigate inventory costs
due to deterioration of perishable food and energy costs
for cold storage vehicles, which are important issues in per-
ishable food delivery.

In this study, perishable food were assumed to decrease
in value, throughout their lifetime (Raafat, 1991), and had
to be stored at chilled temperatures; the rate of deteriora-
tion, at any moment, being dependent on the temperature.
The customers of the distribution centers are retailers sell-
ing perishable food to end-users. This study extended the
vehicle routing problem to include time-windows
(VRPTW), by considering the randomness of perishable
food delivery process, and constructed a ‘stochastic vehicle
routing problem with time-windows’ (SVRPTW) model, to
obtain optimal delivery routes and vehicle loads, as well as
fleet dispatching and departure times. Our objective was to
minimize the fixed costs of dispatching vehicles, transporta-
tion, inventory, energy and penalties for violating time-
windows. Among these costs, transportation costs are
dependent on distance traveled, while inventory costs are
related to the deterioration of perishable food; both of
these costs can be characterized as stochastic. Energy costs
arise from the energy consumption of the vehicles’ cold
storage equipment. To reflect the effects of time-dependent
temperatures and travel, this study formulated a time-
dependent deterioration function for perishable food and
calculated the probability of deterioration and the losses
involved. We further constructed a penalty cost for violat-
ing time-windows, discussed time-dependent travel and
time-varying temperatures during the day, and then modi-
fied the objective functions, as well as the constraints in the
above mathematical programming problem. Algorithms
were developed to solve the proposed models and compare
the results.

The remainder of this paper is organized as follows.
Section 2 formulates the vehicle routing problem with
time-windows for perishable food delivery. Section 3 dem-
onstrates development of the algorithms to solve the pro-
posed models. A numerical example is provided in
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Section 4, to illustrate the application of the models, and
the effects of changes in key parameters on the optimal
solutions. In Section 5, we offer concluding remarks.

2. Perishable food distribution model

This study focused on the delivery of perishable, temper-
ature-sensitive food, from a distribution center, using vehi-
cles with frozen storage equipment, to various retailers, in a
variety of locations, with delivery time-windows. This
study extends traditional VRPTW by giving further consid-
eration to the characteristics of perishable food delivery,
which include stochastic travel speed due to traffic conges-
tion, the perishable features of food within the distribution
process, energy consumed by storage equipment and soft
time-window constraints. Furthermore, considering the
influences of time-dependent temperature and travel, on
total delivery costs, we revised the VRPTW according to
time-sensitive spoilage rates of perishable food. Due to
these perishable features, the amount of food carried by
the vehicle decreases, as spoilage increases: these are
defined as undeliverable food, due to spoilage. ‘‘Delivery
failure’’ is defined as the condition where the customer
did not receive the ordered food within the appointed
time-window; this situation usually meant higher costs
for the operator, who must pay a penalty for the loss
incurred by the customer. In this study, an a priori strategy
was provided, in response to the spoilage characteristics of
perishable food; that is, extra food, added to prevent deliv-
ery failure before departure of the vehicle from the distri-
bution center, can be assessed and analyzed by the food
spoilage rate, passage of time and temperature, during
the delivery process.

Following the traditional VRP, this study defined a
completely symmetric graph G = (V,A) with node set
V = {v0,v1, . . . ,vn} and link set A = {(vi,vj) : vi,vj 2 V,
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Fig. 1. Variations in food remaining as time elapses,
i 5 j}. Let v0, vi, and di represent the distribution center,
the location and demand of customer i, i = 1,2, . . .,n,
respectively, where n is the number of customers. Further-
more, let l denote the vehicle serving each route,
l = 1,2, . . .,m, where m represents the total number of vehi-
cles required for serving all customer demands and is a
decision variable in the model. The transportation cost
on link (vi,vj) for vehicle l is defined as cl

ij and cl
ij ¼ cl

ji.

2.1. Deterministic vehicle travel time

The total delivery costs for VRP, with hard time-win-
dows, included fixed costs for dispatching vehicles, trans-
portation costs, inventory costs and energy costs. The
fixed costs for dispatching vehicles can be expressed asPm

l¼1f l, where fl is the fixed cost for dispatching vehicle l,
l = 1,2, . . . ,m. Transportation costs related to distance
traveled were formulated as

Pm
l¼1

Pn
i¼0

Pn
j¼0cl

ijg
l
ij, where

gl
ij is an indicator variable; and gl

ij ¼ 1 for vehicle l travel-
ing via link (vi,vj), otherwise, gl

ij ¼ 0.
Inventory costs arise from the delivery process of perish-

able food, with spoilage increasing as temperatures and
time increase. We assumed that the vehicles’ refrigeration
equipment was able to ensure optimal temperatures, after
which, we concluded that the loss of food was attributable
to the time accumulated during the delivery process; this
was dependent on vehicle travel time, and the frequency
of opening the cargo hold, while unloading perishable food
and serving customers. Fig. 1(a) and (b) show variations in
the remaining food, as time elapsed, in vehicles departing
from the distribution center, and in situations both with
and without spoilage features, respectively. In these figures,
yi and ui represent the vehicle arrival times, and duration,
at customer i.

Considering the situation illustrated in Fig. 1(b), the
total food lost was the sum of the loss resulting from the
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vehicle travel time between two adjacent customers, labeled
(2), and the loss due to opening the cargo hold at customer
stops, labeled (3). The total loss is labeled (1) and the
amount of food delivered to customers is labeled (4), in
Fig. 1. Using the total load carried before departure as a
basis for comparison, the amount of loss for the situation
considering the spoilage feature, is larger than that without
the spoilage feature, as shown in Fig. 1(a) and (b).

Growth of metabolites, during the delivery process, is
characterized as a random variable (Chu, Cheng, & Lee,
1998), which influences the loss of food, as a function of
delivery time. Let ~bi represent the loss of inventory in the
vehicle from the time of departure from customer (i � 1)
to the time customer i, had been served, which includes
vehicle travel time from customer (i � 1) to i and serving
time at customer i. Since ~bi depends on the deterioration
function, it is also characterized as a random variable.
The cost resulting from the above loss was defined as
inventory cost, which also represents the penalty paid for
carrying the extra food. Thus, the total expected inventory
cost is formulated as

P
Xm

l¼1

Xn

i¼1

zl
i
�bi; ð1Þ

where �bi denotes the expected loss from departure from
customer (i � 1) to finishing serving customer i, P is the
cost per item of food and zl

i is an indicator; if vehicle l

serves customer i, then zl
i ¼ 1; otherwise, zl

i ¼ 0.
When vehicles stop to serve customers, the spoilage rate

increases, with the rising temperatures, due to the opening
of the cargo hold, with corresponding heat transfer from
cold to warm. This study has assumed the loss of food
due to opening the cargo hold resulted mainly from the
time it was left open, related to the amount of customer
demand; that is, duration increased with an increase in
demand. Let G(di) represent the probability that the food
perished, due to an opened cargo hold, being a function
of customer demand di, i = 1,2, . . . ,n; and let d0 be the total
amount loaded into the vehicle in the distribution center.
Assume the spoilage of food had not yet begun at the dis-
tribution center, thus G(d0) = 0. Let f(y) denote the proba-
bility that the food had spoiled at time y and let F(Æ) be the
cumulative probability density function of f(y). Further-
more, let yi, ui and Ll denote arrival time at customer i, ser-
vice time required to serve customer i and the load of
vehicle l, respectively. Then, the expected loss for serving
customer i, �bi can be formulated as

�bi ¼ Ll �
Z yiþui

yl
s

f ðtÞdt þ GðdiÞ
" #

; i ¼ 1; 2; . . . ; n; ð2Þ

where yl
s is the departure time from the distribution center

of vehicle l. As shown in Eq. (2), the first term corresponds
to vehicle travel time from the distribution center to the
location of customer i plus time spent serving customer i,
while the second term is related to the time duration of
an opened cargo hold, which further depends on the de-
mand volume of customer i. Let xl
0i be the binary variable

which represents the relationship between vehicle l and cus-
tomer i; that is, for xl

0i ¼ 1, vehicle l is assigned to serve cus-
tomer i, otherwise, xl

0i ¼ 0. Since loss does not exist in the
distribution center, that is F ðyl

sÞ ¼ 0, then
R yiþui

yl
s

f ðtÞdt in
Eq. (2) can be expressed in the form of a cumulative prob-
ability density function F(Æ) as

xl
0i

�bi ¼ xl
0iL

l � ½F ðyi � yl
s þ uiÞ þ GðdiÞ�;

i ¼ 1; 2; . . . ; n; l ¼ 1; 2; . . . ;m: ð3Þ

Without loss of generality, the loss for serving customer i

can also be modified in terms of the load of food after serv-
ing customer (i � 1) and time spent from the point of
departure from customer (i � 1) to finishing serving cus-
tomer i, which yields:

xl
ði�1Þi

�bi ¼ xl
ði�1ÞiL

l
ði�1Þ � ½F ðyi � yl

s þ uiÞ � F ðyði�1Þ � yl
s

þ uði�1ÞÞ þ GðdiÞ�; i ¼ 2; 3; . . . ; n;

l ¼ 1; 2; . . . ;m; ð4Þ

where Ll
ði�1Þ is the load of vehicle l after serving customer

(i � 1) and xl
ði�1Þi represents the relationship between vehi-

cle l and customer i, i = 2,3, ., n. The load of food in vehicle
l, after serving customer i can be calculated as
Ll

i ¼ Ll
ði�1Þ � �bi � di, which is constrained to be larger than

or equal to zero, or else customer i cannot be assigned to
vehicle l.

Regarding energy costs, thermal load originates from
the sun’s radiation heating the ground and warming the
air; heat conduction results from the difference in tempera-
ture between the inside and outside of the cargo hold
(MOEA-IDB, 2001). In practice, the thermal load, result-
ing from thermal convection by opening the cargo hold,
can be calculated as follows (MOEA-IDB, 2001):

Qs ¼ ð0:54V l þ 3:22ÞðT O � T IÞ � b; ð5Þ
where Qs is the thermal load per hour (kcal/h), Vl is the vol-
ume of the cargo hold, TO and TI represent outer and inner
temperature and b is an indicator, reflecting the frequency
of opening the cargo hold, respectively.

This study assumed homogenous vehicles, shipping the
same kinds of food, so the volume and inner temperature
of the cargo hold was the same for all vehicles. Symbol b
represents the frequency of door openings and relates to
the demand and spatial pattern of customers. This study
also assumed that the operator had planned delivery routes
in advance, so as to satisfy the time-constraints agreed to
with customers. Therefore, the frequency of opening each
vehicle’s cargo hold can be represented by its expected
value, �b. Then, Eq. (5) can be written as follows:

Qs ¼ as
�bðT O � T IÞ; ð6Þ

where as is a constant and equals (0.54Vl + 3.22) in Eq. (5).
Furthermore, this study assumed that the outside tempera-
ture was known; thus, the thermal load can be further sim-
plified as a constant, i.e., the energy loss of opening the
cargo hold, per hour, is fixed. For an operator with specific
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customers, if the demand pattern is fixed, then the energy
cost of each vehicle, due to opening the cargo hold, is
merely a function of total travel time and time serving cus-
tomers. In practice, thermal conduction, due to the differ-
ence between the cargo hold’s inside and outside
temperatures can be estimated as

QT ¼ U
ffiffiffiffiffiffiffiffiffiffi
AIAO

p
ðT O � T IÞð1þ qÞ; ð7Þ

where QT represents thermal load per hour (kcal/h), U de-
notes the conductivity of the cargo hold (kcal/h m2 �C),
while AI and AO represent the surface area of the inner
and outer cargo hold, respectively, and q denotes the de-
gree of inferior quality of the cargo hold. We have ignored
the impact of the cargo hold on conductivity, the surface
area and degree of inferior quality on the thermal load.
Therefore, thermal load is mainly dependent on the tem-
perature difference between the inside and the outside of
the cargo hold. Thus, Eq. (7) is expressed as

QT ¼ aTðT O � T IÞ; ð8Þ
Similarly, the thermal load is a constant under the given
outside temperature; total energy loss, due to thermal con-
duction during the delivery process, is then dependent on
total travel time. The energy cost of the vehicle depends
on energy loss, energy cost per kcal and total travel time.
Total energy cost for all vehicles can be expressed as

q
Xm

l¼1

½aðyl
f � yl

sÞ�; ð9Þ

where yl
f denotes arrival time at the distribution center

after the delivery process for vehicle l, a is the thermal load,
a ¼ ðas

�bþ aTÞðT O � T IÞ and q represents the energy cost
per kcal. Let �q denote the energy cost per hour, �q ¼ qa,
and then Eq. (9) can be simplified as �q

Pm
l¼1ðyl

f � yl
sÞ.

From the discussions above, the VRPTW for perishable
food delivery can be formulated as follows:

Min
gl

ij;yi;y
l
s;y

l
f ;b

l;zl
i ;m

Xm

l¼1

f l þ
Xm

l¼1

Xn

i¼0

Xn

j¼0

cl
ijq

l
ij þ P

Xm

l¼1

Xn

j¼1

zl
j
�bj

þ �q
Xm

l¼1

ðyl
f � yl

sÞ; ð10aÞ

s:t:
Xm

l¼1

zl
i ¼

m i ¼ 0;

1 i ¼ 1; . . . ; n;

�
ð10bÞ

Xn

i¼0

gl
ij ¼ zl

j; j ¼ 0; . . . ; n; l ¼ 1; . . . ;m;

ð10cÞ
yðiþ1Þ P yi þ ui þ tl

iðiþ1Þ � ð1� xl
iðiþ1ÞÞM ;

i ¼ 1; . . . ; n; l ¼ 1; . . . ;m; ð10dÞ
yi P yl

s þ tl
0i � ð1� xl

0iÞM ; i ¼ 1; . . . ; n;

l ¼ 1; . . . ;m; ð10eÞ
yl

f P yðiþ1Þ þ uðiþ1Þ þ tl
ðiþ1Þ0 � ð1� xl

ðiþ1Þ0ÞM ;

i ¼ 1; . . . ; n; l ¼ 1; . . . ;m; ð10fÞ
ri 6 yi 6 si; i ¼ 1; . . . ; n; ð10gÞ

Ll ¼
Xn

i¼1

zl
i di þ bl

6 Kl; l ¼ 1; . . . ;m;

ð10hÞ
xl

0i
�bi ¼ xl

0iL
l � ½F ðyi � yl

s þ uiÞ þ GðdiÞ�;
i ¼ 1; . . . ; n; l ¼ 1; . . . ;m: ð10iÞ

Eq. (10a) is an objective function that minimizes the sum of
fixed costs for dispatching vehicles, transportation costs,
inventory costs and energy costs. Eqs. (10b)–(10h) are
constraints as described in the VRPTW formulations. Eq.
(10i) expresses the loss of food for serving customer i for
vehicle l. The decision variables are gl

ij; yi; yl
s; yl

f ; bl; zl
i

and m.
That is, the operator can apply the model to optimally

decide the vehicle delivery route, arrival time of each vehicle
for serving each customer, departure time and return time
of vehicles, the extra vehicle load, customers served by each
vehicle, and the size of the delivery fleet. A trade-off rela-
tionship exists between transportation and inventory costs.
That is, a larger fleet incurs a higher fixed cost for dispatch-
ing vehicles, but assigned customers and routing time are
less for each vehicle within the fleet, thereby resulting in less
inventory costs and less extra loads.
2.2. Stochastic vehicle travel time

The discussions in Section 2.1 dealt with deterministic
travel time; however, vehicle travel speed may be affected
by factors such as traffic volume, the weather and acci-
dents, which are characterized as random in nature. Let
~tl

ij denote travel time on the link (vi,vj) for vehicle l. This
study adopted travel time, based on Lambert, Laporte,
and Louveaux (1993). Let A and A 0 denote the sets of links
without traffic congestion and with the probability of traffic
congestion, respectively, A � A 0. For every link (vi,vj) 2 A,
travel time on link (vi,vj) can be expressed as tl

ij ¼ b0cl
ij,

where b0 is a parameter. Assume some links of A 0 have
the probability p of being congested. For every link
ðvi; vjÞ 2 A0; tl

ij is equal to b1cl
ij with probability p and equal

to b2cl
ij with probability (1 � p), where b2 6 b1. Then,

expected travel time on link (vi,vj) for vehicle l, �tl
ij, is given

by

�tl
ij ¼

b0cl
ij if ðvi; vjÞ 2 A;

½pb1 þ ð1� pÞb2�cl
ij if ðvi; vjÞ 2 A0;

(

i ¼ 1; . . . ; n; j ¼ 1; . . . ; n; l ¼ 1; . . . ;m; ð11Þ

where cl
ij represents travel costs on link (vi,vj).

Because of the randomness of travel time on links, arri-
val time at each customer location is also characterized as a
random variable. Since the real-time traffic conditions for
every link is unknown before departure from the distribu-
tion center, arrival time at each customer is difficult to pre-
dict. Rather than trying to identify this uncertain travel
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time, we have employed the expected value of arrival time
and revised Eqs. (10d)–(10f), which yield:

yðiþ1Þ P yi þ ui þ�tl
iðiþ1Þ � ð1� xl

iðiþ1ÞÞM ;

i ¼ 1; . . . ; n; l ¼ 1; . . . ;m; ð12Þ

yi P yl
s þ�tl

0i � ð1� xl
0iÞM ; i ¼ 1; . . . ; n; l ¼ 1; . . . ;m;

ð13Þ

yl
f P yðiþ1Þ þ uðiþ1Þ þ�tl

ðiþ1Þ0 � ð1� xl
ðiþ1Þ0ÞM ;

i ¼ 1; . . . ; n; l ¼ 1; . . . ;m: ð14Þ

Due to stochastic travel time, the time-window constraint
of Eq. (10g) can be revised according to Lambert et al.
(1993) as

ðri � yl
sÞ p

b1

b2

þ ð1� pÞ
� �

þ yl
s 6 �yi

6 ðsi � yl
sÞ p þ ð1� pÞ b2

b1

� �
þ yl

s; i ¼ 1; . . . ; n: ð15Þ

Since b1

b2
> 1, the left hand side of Eq. (15) is larger than the

lower bound of time-window, ri; the right hand side of Eq.
(15) is also smaller than the upper bound of time window,
si. Therefore, the duration of the time-window, considering
stochastic travel time, is narrower than when no consider-
ation was given. Moreover, the equations involved with ar-
rival time and travel time have been revised accordingly;
i.e., the loss of food during delivery process as Eq. (10i);
and the inventory and energy cost in the objective function
as Eq. (10a).

2.3. Relaxation from hard time-windows to soft time-

windows

The time-window constraints, discussed in Section 2.1,
were ‘‘hard’’ constraints, which cannot be violated. These
hard time-window constraints increase the complexity of
determining optimal delivery routing, however. In contrast,
in the case of soft time-windows, constraints can be vio-
lated, but with a penalty cost. When a vehicle arrives early,
or with an acceptable delay, the food can still be delivered,
R r Ss

M

0 Time

Penalty
 cost

Fig. 2(a). The relationship between arrival time, time-windows and
penalty cost.
with a penalty cost. The relationship between penalty cost
and arrival time can be seen in Fig. 2(a).

Let R and S denote the earliest acceptable time for early
arrival and the latest acceptable time for late arrival, R 6 r

and S P s, respectively. As shown in Fig. 2(a), the accept-
able periods for early arrival and delay are [R, r) and (s,S],
respectively; within each range, there are different penalties.
When arrival time is beyond [R,S], customers may refuse
to receive the food, and a large M, representing a huge pen-
alty, has been introduced to avoid this occurrence. When
early arrival lies within [R, r), the operator must decide
whether to immediately serve the customer or wait until
time r. In practice, the increased cost resulting from waiting
until the beginning of the time-window is very low; this is
because the difference between the earliest acceptable time,
R, and the beginning of the time-window, r, is usually rel-
atively small. Therefore, this study assumed the operator
would rather wait and serve on time, since the increased
cost is negligible; consequently, R is approximated to r,
similar to hard time-window constraints.

To avoid double counting, the penalty cost for violating
the time-window was considered as the revenue lost due to
late delivery. The probability, that perishable food can be
sold, depends on the time between purchasing and expira-
tion date; this probability decreases, at an increasing rate,
as the time of purchase nears the expiration date. Thus,
customer revenue may be reduced due to late delivery.
The penalty cost, due to violating the upper bounds of
the time-window, specified by customer i, si, can be formu-
lated as g(yi � si)

t · P · di, where t and g represent param-
eters, and t > 1. Substituting k for g · P, the penalty cost
can be simplified as kdi(yi � si)

m, and is given by

QiðyiÞ ¼

M ; yi < ri

0; ri 6 yi 6 si

kdiðyi � siÞv; si < yi 6 Si

M ; yi > Si

8>>><
>>>:

9>>>=
>>>;
; i ¼ 1; . . . ; n;

ð16Þ
where Qi(yi) represents the penalty cost of customer i, and
is a function of vehicle arrival time at customer i, yi . The
M

Time
R r s S

Penalty
cost

0

Fig. 2(b). The revised relationship between arrival time, time-windows
and penalty cost.
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revised relationship between arrival time, time-window and
the penalty cost is illustrated in Fig. 2(b).

The vehicle routing problem with soft time-window con-
straints (VRPSTW) discussed above can be formulated as
follows:

Min
gl

ij ;yi;y
l
s;y

l
f
;bl;zl

i ;m

Xm

l¼1

f l þ
Xm

l¼1

Xn

i¼0

Xn

j¼0

cl
ijq

l
ij þ P

Xm

l¼1

Xn

j¼1

zl
j
�bj

þ q
Xm

l¼1

½aðyl
f � yl

sÞ� þ k
Xn

i¼1

di½ðyi � siÞþ�m;

ð17Þ

s:t: ð10bÞ–ð10fÞ; ð10hÞ and ð10iÞ;

ri 6 yi 6 Si; i ¼ 1; . . . ; n; ð18Þ

where (yi � si)
+ = max{0, (yi � si)}.

2.4. Time-dependent temperatures and vehicle travel time

This study further relaxes the assumption of a constant
temperature, discussed in Section 2.1. Let H(y), DH(y) and
H0 denote the temperature at time y, the difference in tem-
perature between the outer and inner cargo hold at time y

and the optimal inner temperature, required to keep the
food fresh, respectively, where DH(y) = H(y) � H0. The
spoilage rate, due to an opened cargo hold to serve cus-
tomer i can, thus, be revised as G 0(di) = g(di)DH(y), where
g(di) is the average rate of spoilage per unit temperature
difference and is a function of the demand of customer i, di.

As stated, the total energy cost arises from the thermal
load, due to an opened cargo hold and travel time; both
of these influences depend on the difference between out-
side and inside temperatures, as shown in Eqs. (6) and
(8), respectively. Then, the energy cost of vehicle l, during
one routing period, from distribution center departure to

return, can be formulated as q
R yl

f

yl
s

a0DHðyÞdy, where a 0

denotes the energy loss per hour per unit temperature dif-
ference. The energy cost per hour, under one unit temper-
ature difference, can be further expressed by energy loss per
hour under one unit temperature difference, a 0, and energy
cost per kcal, q, that is, �q0 ¼ qa0. Moreover, the total energy
cost of m vehicles can be expressed as

�q0
Pm

l¼1

R yl
f

yl
s

DHðyÞdy
� �

. To show how time-dependent traffic

can affect travel time on a link, this study considered travel
time on link (vi,vj) as a function of entering time on link
(vi,vj), y0i, that is, tl

ijðy0iÞ. If traffic is heavy on link (vi,vj) at
time y0i, more time is spent navigating that link.

3. Algorithm

The VRP inherently belongs to the NP-hard problem
(Golden & Assad, 1988) and a VRP with a hard time-win-
dow is more complex than the simple VRP (Solomon,
1987). This study adopted a heuristic method, which
extended the ‘‘Time-Oriented Nearest-Neighbor Heuristic’’
by Solomon (1983). The heuristics for the VRP with a hard
time-window consist of the following steps:

Step 1. Input basic data, such as demand, supply parame-
ters and network, G = (V,A).

Step 2. Denote the distribution center as the beginning of
a route.

Step 3. Determine the customer closest to the last cus-
tomer added to the route.

Step 4. Repeat Step 3 until the vehicle is filled to capacity.
Step 5. Assign another vehicle and repeat Step 2 until all

customers have been served.

The details for Step 3 are described as follows:
Assume customer i is the first customer added to the

route and customer (i + 1) represents the next customer
added to the route. Two constraints must be satisfied
before the closest customer can be determined: (1) the
time-window constraint, specified by customer (i + 1); (2)
the food remaining in excess of the demand of customer
(i + 1). In this study, the factors determining whether the
closest customer can be added to the route included the
demand of customer (i + 1), d(i+1), travel costs from cus-
tomer i to customer (i + 1), hi(i+1), time duration between
finishing serving customer i to arrival at customer (i + 1),
Dyi(i+1), and duration from the end of the time-window
of customer (i + 1) to the earliest service time for customer
(i + 1), ai(i+1). Among these factors, hi(i+1) was classified as
the spatial distance factor, while Dyi(i+1) and ai(i+1) are time
distance factors. The definitions of Dyi(i+1) and ai(i+1) are
Dyi(i+1) = y(i+1) � (yi + ui) and ai(i+1) = s(i+1) � (yi + ui +
ti(i+1)), respectively, where y(i+1) represents arrival time at
customer (i + 1). Then, the cost function determining the
closest customer can be formulated as

Ciðiþ1Þ ¼ d1hiðiþ1Þ þ d2Dyiðiþ1Þ þ d3aiðiþ1Þ þ d4dðiþ1Þ; ð19Þ

where Ci(i+1) is the cost function for customer (i + 1), while
d1, d2, d3 and d4 express the weights of these influences, and
represent the marginal cost of the objective function in the
constructed model with respect to the addition of one unit
of hi(i+1), Dyi(i+1), ai(i+1) and d(i+1), respectively. The cus-
tomer with the smallest Ci(i+1) is closest. Note that
d1 + d2 + d3 + d4 = 1 and d1 P 0, d2 P 0, d3 P 0, d4 6 0.
The weights of d1, d2, d3 and d4 can be further evaluated as:

(1) Travel cost from customer i to (i + 1), hi(i+1). An
increase of one unit of hi(i+1) means customers i and
(i + 1) are one more distance apart, and the addition of
customer (i + 1) will further increase the total delivery cost
by d1 units.

(2) Time duration from finishing serving customer i to
arrival at customer (i + 1), Dyi(i+1). The costs incurred by
one more unit of Dyi(i+1) can be divided into energy and
inventory costs. Suppose there is an increase of one unit of
Dyi(i+1), meaning that customer (i + 1) and i are one more
time-distance apart; the energy costs are increased by d units.
Moreover, the increased inventory cost is brought about by
the loss of food due to one additional unit of travel time. Let



Table 1
Initial values of parameters

Symbol Definition Initial value

s Average travel speed (km/h) 30
fl Fixed cost for dispatching vehicles

(NT $/vehicle)
750

P Purchasing cost per item (NT $/item) 50
�q Energy cost per hour (NT $/h) 30
Kl Vehicle capacity (items) 300
F(Æ) Cumulative probability density function of f(y) Dy

1440

G(di) The probability that the food is di
28;800
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l represent the average life of the perishable food: the aver-
age spoilage rate is 1/l. And, let Ll

i denote the food remain-
ing after serving customer i using vehicle l. The increased
inventory costs, due to an increase of one unit in travel time
can be formulated as p � Ll

i=l. One procedure in the algo-
rithm is the addition of customers into the routes, one after
the other, implying that the remainder of food, after serving
customer i is known before construction of the route has
been completed. Let /i be the total amount of food delivered
after serving customer i, then the remainder of food becomes
Kl � /i. In sum, the total delivery costs are increased by
a + p(Kl � /i)/l due to one additional unit of Dyij.

(3) The time duration from the end of the time-window
of customer (i + 1) to the earliest service time for customer
(i + 1), ai(i+1) . Factor ai(i+1) represents the influence result-
ing from the order of the customers’ time-windows on the
delivery routes. Because of the order of the time-windows,
adding customer (i + 1) may mean that other customers
cannot join the route. Only if ai(i+1) P 0, will the time-win-
dow of customer (i + 1) be satisfied and customer (i + 1)
will be considered to be added into the route.

(4) Demand of customer (i + 1), d(i+1). Once customer
(i + 1) has been added into the route, the load carried by
the vehicle is increased by one additional unit of d(i+1)

and the inventory cost, per unit, reduced accordingly.
The decrease in total delivery cost due to the increase of
one unit, d(i+1), can be estimated by the purchasing cost
per unit of food, and the average loss of food per hour,
due to serving customer (i + 1).

The modifications in Step 2 of the proposed heuristics
were necessary to solve the VRP models with soft time-win-
dows, time-dependent temperatures and vehicle travel
times. To reflect the impact of soft time-window customer
constraints in determining the delivery routes, the time
duration from the end of the time-window of customer
(i + 1) to the earliest service time for customer (i + 1),
a0iðiþ1Þ, was modified as a0iðiþ1Þ ¼ Sðiþ1Þ � ðyi þ ui þ tl

iðiþ1ÞÞP
0, where S(i+1) denoted the end of soft time-window of cus-
tomer (i + 1). The condition a0iðiþ1Þ < 0 holds for models
with soft time-windows, and the penalty cost, due to adding
customer (i + 1) into the route, with a violation of the time-
window, is kdðiþ1Þa0miðiþ1Þ, as shown in Eq. (16). The marginal
cost of the objective function in the constructed model, with
respect to the additional unit of a0iðiþ1Þ, can then be formu-
lated as kdðiþ1Þa0m�1

iðiþ1Þ. In practice, the operator will try to
avoid an enormous penalty cost; kdðiþ1Þa0miðiþ1Þ was assumed
to be ten percent, or less, of the fixed cost fl. In response
to time-dependent temperatures and travel time, related
parameters and variables of the cost function in Step 2 must
be revised accordingly, i.e., using time-dependent penalty

cost, a
0
DH(y), and time-dependent travel speed, s� tl

ij

tlijðy
0
iÞ
.

perished due to an opened carriage
p The probability that the link of A 0 is congested 0.5
b0 1/100
b1 1/100
b2 1/120
l Life cycle of lunch box (h) 24
4. Numerical example

This section presents an application of the proposed
models, using a numerical example. A rectangular grid net-
work was used in this study, with one depot at coordinate
(0,0), representing the distribution center, which dispatches
vehicles to deliver lunch box items to local retail customers.
The study covered an area of fifty square kilometers and
comprised a random extraction of the characteristics of
fifty customers, which included locations, time-window
constraints and demand; customers’ time-windows were
randomly generated between 6:20–11:00 a.m. and customer
demand ranged between ten items to items making up one-
quarter of vehicle capacity. Identical customer time-win-
dow duration, i.e., one half hour, was assumed, in order
to simplify the problem, while service times for customers
were demand-dependent, i.e., ui ¼ di

20
(min). The life cycles

of the lunch box items, and the required temperature to
preserve these items, were 24 h and 18 �C, respectively.
For simplification, the perishable rate of the lunch box
items was estimated by the reciprocal of the life cycle,
which was a constant, under the appropriate temperature;
in addition, the cumulative probability function, F(Æ), can
be simplified as Dy

1440
, where the denominator represents

the life cycles of the lunch box items (min). We further
assumed the spoilage of food, due to the opened cargo
hold, was double that due to vehicle travel time: i.e.,
GðdiÞ ¼ ui

1440
¼ di

28;800
. Base values for the parameters in the

total delivery cost function, and time-window constraints,
were estimated by interviewing the distribution center oper-
ator, as listed in Table 1.

For comparisons, the traditional VRPTW, giving no
consideration to either energy or inventory costs, was
applied here, in order to determine optimal delivery routes,
where three sets of weights, i.e., (d1,d2,d3) = (0.5,0.5,0),
(0.4,0.4,0.2), (0.3,0.3,0.4) were employed to explore
changes to these optimal solutions, due to variations in
key parameters. Table 2 shows the results for a basic model
with deterministic and stochastic travel time, respectively,
together with models, both with and without consideration
being given to energy and inventory costs, using various
values of d3. The total inventory cost was divided into:
(1) inventory cost due to vehicle travel time; (2) inventory
cost due to opening of the cargo hold as shown in Table 2.



Table 2
Results from basic models with hard time-windows (unit: NT $)

Parameter Inventory
cost

Energy
cost

Transportation
cost

Fixed costs for
dispatching vehicles

Total delivery
cost

(1) (2)

Deterministic
travel time

With considering the
loss of food and
energy cost

d3 = 0 3600 500 549 1530 9000 15,180

d3 = 0.15 4100 550 556 1557 8250 14,963
d3 = 0.3 5050 450 568 1639 7500 15,206

Without considering the
loss of food and energy cost

(d1,d2,d3) = (0.5,0.5,0) 3550 550 585 1597 9000 15,281

(d1,d2,d3) = (0.4,0.4,0.2) 4350 650 624 1397 8250 15,270
(d1,d2,d3) = (0.3,0.3,0.4) 5550 650 512 1557 7500 15,769

Stochastic
travel time

d3 = 0.15 5350 500 708 1750 9000 17,308

Percentage of the
total delivery cost

33% 4% 10% 53% 100%
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Table 2, compares different costs, using percentage of
total delivery cost. Total inventory cost accounts for the
highest percentage, i.e., 33%, with inventory cost due to
routing time with time-dependent vehicle travel time and
inventory cost due to opening the cargo hold, accounting
for approximately 29% and 4%, respectively. The percent-
age total, of both inventory and energy costs, was 37%.
Parameter d3 represents the weight that the operator placed
on customers’ time-window constraints during the delivery
route design, regarding sequence of service. With a larger
value of d3, there were less vehicles required, as well as a
lower fixed cost for dispatching vehicles. On the other
hand, without considering the order of time-windows,
i.e., d3 = 0, more vehicles would have to be dispatched;
however, inventory costs, due to vehicle routing time,
was higher for models with a higher value of d3 than for
those with a smaller value of d3, which shows that a
trade-off relationship exists between inventory costs and
total costs for dispatching vehicles. An appropriate value
of d3 may not only reflect the impact of time-window con-
straints on the service sequence of customers, but may also
result in the lowest total delivery costs. As shown in Table
2, d3 = 0.15 and (d1,d2,d3) = (0.4,0.4,0.2) yielded the low-
est total delivery costs for the deterministic models, with
and without consideration being given to energy and inven-
tory costs, respectively.

As for the traditional VRPTW with no consideration
for energy and inventory costs, transportation and fixed
costs, for dispatching vehicles, were the most influential
factors in total delivery costs. However, the revised results,
after applying the proposed model in this study, i.e., Eqs.
(1) and (9), show that total energy and inventory costs
account for a significant percentage of the total costs,
i.e., 37%, which implies that the delivery route, using the
traditional VRPTW, is not optimal, since neither energy
nor inventory costs, critical to delivery of perishable food,
were considered. Furthermore, the average total delivery
costs, using models with no consideration given to energy
and inventory costs was NT $15,440, which is greater than
for those models which took these costs into consideration,
i.e., NT $15,116. Further comparison of models with
deterministic and stochastic travel time, where energy
and inventory costs were both considered, showed that
total delivery costs were higher for the model with
stochastic vehicle travel time, than for the model with
deterministic vehicle travel time. This finding implies that
time-window constraints are more rigid, with respect to
stochastic travel time, with more vehicles required to sat-
isfy customers’ demand. In addition, the inventory, energy
and transportation costs, for models using stochastic travel
time, were higher than for those using deterministic travel
time.

Table 3 shows the results of revised models with soft
time-windows and time-dependent temperature and travel.
As shown in Table 3, penalty costs arose, due to violations
of time-window constraints, which were relaxed here, as
soft time-windows. Fixed costs for dispatching vehicles,
using the model with soft time-windows were less than
for the model which considered hard time-windows for
d3 = 0.15, shown in Table 2, respectively; this indicates that
the release of hard time-window constraints resulted in a
smaller number of vehicles being required to serve custom-
ers. However, a delay in delivery may result in higher
inventory costs than when delivery is achieved within
time-window constraints. The models, which considered
time-dependent travel and temperature, captured the
impact of variations in these functions, at different times,
on optimal decisions; therefore, total delivery costs as well
as inventory, energy and transportation costs were lower in
these models, than in those which did not consider time-
dependent travel and temperatures. Table 3 also shows
the service sequence of vehicle routing and cost compo-
nents related to each vehicle for models with soft time-win-
dows and time-dependent temperature and travel time,
where the parentheses denote customer demand, and aster-
isks show that customer time-windows have been violated,



Table 3
Results from revised models with soft time-windows and time-dependent temperature and travel (unit: NT $)

Inventory
cost

Energy
cost

Penalty
cost

Transportation cost Fixed costs for
dispatching vehicles

Total delivery
cost

(1) (2)

Revised modela 5050 450 619 103 1834 7500 15,453
Revised modelb 4500 500 538 178 1426 6750 13,713
Route sequences
1 0! 35! 40! 1! 30*! 24! 50 600 50 67 16 184 750 1651

(16)(26) (56) (32) (14) (42)
!10! 49! 46! 23! 0
(21) (24) (13) (35)

2 0! 32! 5! 42! 28! 25! 750 50 63 0 168 750 1781
(54) (43) (27) (49) (27)
16! 0
(74)

3 0! 7! 0 50 0 14 0 82 750 896
(31)

4 0! 15! 11*! 6*! 12*! 13! 300 100 49 33 138 750 1337
(58) (63) (74) (46) (22)
36! 0
(18)

5 0! 43! 20! 14*! 27! 37! 600 100 64 0.4 115 750 1629
(65) (60) (41) (36) (58)
26! 0
(23)

6 0! 33! 31! 38! 3! 47! 2! 550 50 69 52 196 750 1615
(16) (17) (61) (31) (66) (32)
39! 29*! 0
(22) (42)

7 0! 48! 21! 4*! 41*! 44! 950 50 97 76 253 750 2100
(36) (50) (25) (39) (21)
17*! 19*! 0
(24) (35)

8 0! 18! 34! 0 200 0 48 0 105 750 1103
(54) (51)

9 0! 9! 45! 22! 8! 0 500 100 66 0 186 750 1602
(67) (72) (61) (71)

Note: Parentheses denote customer demand and customers with asterisks show that the time-window specified by that customer is violated.
a Model with soft time-windows.
b Model with soft time-windows and time-dependent temperature and travel time.
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respectively. Ten customers were identified as having had
their time-window constraints violated, with the operator
having to pay a small penalty, i.e., NT $178; this shows
that most customers can put up with time-window viola-
tions. The VPRSTW is capable of finding solutions in cases
where a hard time-window formulation would fail. Prob-
lems resulting from tight time-windows and a small fleet
may not be able to satisfy all customers, while a small fleet
may not be able to satisfy all customers on time. In this
case, the VRPSTW would yield a solution where some of
the customers would not be serviced on time. Naturally,
this solution is not feasible for hard time-window models,
but the operator would, at least, have a solution at hand.
This solution can be either accepted as is, or can be
improved by adjusting the appropriate time-windows, to
produce routes to service more, or all of the customers,
on time. The VRSPTW solution can provide ample infor-
mation on the customers to whom the schedule is infeasi-
ble; the ‘‘trouble maker’’ can be easily identified from the
routes at hand (Koskosidis et al., 1992).
5. Conclusions

This study has focused on determining the optimal
delivery routing, loads and departure times of vehicles, as
well as the required number of vehicles for delivering per-
ishable food to many customers, from a distribution center.
Features related to delivery of perishable food were consid-
ered, such as the time-window constraints of customers and
the stochastic characteristics of travel time and food’s pres-
ervation. Models, using stochastic vehicle routing problems
with time-windows, for perishable food, were constructed
using mathematical programming methods. Time-depen-
dent temperatures and travel time, and soft time-windows
with penalty costs, were further discussed and the objective
functions, as well as the constraints, in the mathematical
programming models were modified, accordingly.

The results showed that the sum of inventory and energy
costs constitutes a significant percentage of total costs,
which cannot be ignored. We also discovered a trade-off
relationship between the fixed costs of dispatching vehicles
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and inventory costs, showing that delivery, using a smaller
number of vehicles, may result in lower fixed costs, but
higher inventory costs. The models we have proposed,
which take the energy and inventory costs, related to deliv-
ery of perishable food, into consideration, yielded better
results for deciding optimal delivery routes than the tradi-
tional VRPTW. These results also showed that, when no
consideration was given to the order effects of time-win-
dows on total delivery costs, the operator had to dispatch
more vehicles to satisfy customer time-windows; an appro-
priate setting of parameters may reflect not only the impact
of time-window constraints on customer service sequenc-
ing, but may also result in the lowest delivery costs. The
results from the models using stochastic travel times
implied that time-window constraints were more difficult
to satisfy than models using deterministic travel times,
requiring more vehicles to be dispatched, in order to satisfy
customers’ needs. The models with soft time-windows also
yielded a smaller vehicle requirement than those incorpo-
rating hard time-windows; a delay in delivery, however,
may result in higher inventory and penalty costs. Models
considering time-dependent travel and temperatures were
shown to result in lower total delivery costs, as well as
lower inventory, energy and transportation costs, than
those which did not consider these factors.

In summary, this study has shown how crucial charac-
teristics, related to the delivery of perishable food may be
considered in formulating vehicle routing solutions, with
time-window constraints. The proposed models provide
effective tools, which may enable operators to make effec-
tive delivery decisions, under time-varying temperatures
and time-dependent travel, by assessing the impact of ran-
dom delivery times, food’s spoilage and time-windows on
vehicle routing and the resultant costs.
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