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ABSTRACT Disulfide bonds play an important
role in stabilizing protein structure and regulating
protein function. Therefore, the ability to infer di-
sulfide connectivity from protein sequences will be
valuable in structural modeling and functional
analysis. However, to predict disulfide connectivity
directly from sequences presents a challenge to
computational biologists due to the nonlocal nature
of disulfide bonds, i.e., the close spatial proximity of
the cysteine pair that forms the disulfide bond does
not necessarily imply the short sequence separation
of the cysteine residues. Recently, Chen and Hwang
(Proteins 2005;61:507–512) treated this problem as a
multiple class classification by defining each dis-
tinct disulfide pattern as a class. They usedmultiple
support vector machines based on a variety of
sequence features to predict the disulfide patterns.
Their results compare favorably with those in the
literature for a benchmark dataset sharing less
than 30% sequence identity. However, since the
number of disulfide patterns grows rapidly when
the number of disulfide bonds increases, their
method performs unsatisfactorily for the cases of
large number of disulfide bonds. In this work, we
propose a novel method to represent disulfide con-
nectivity in terms of cysteine pairs, instead of disul-
fide patterns. Since the number of bonding states of
the cysteine pairs is independent of that of disulfide
bonds, the problem of class explosion is avoided.
The bonding states of the cysteine pairs are pre-
dicted using the support vector machines together
with the genetic algorithm optimization for feature
selection. The complete disulfide patterns are then
determined from the connectivity matrices that are
constructed from the predicted bonding states of
the cysteine pairs. Our approach outperforms the
current approaches in the literature. Proteins
2007;67:262–270. VVC 2007Wiley-Liss, Inc.
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INTRODUCTION

In recent years, there is an increasing interest in
developing ab initio approaches1–6 to predict disulfide
connectivity directly from protein sequences. Fariselli
and Casadio1 converted the problem of disulfide connec-

tivity to a graph matching (GM) problem. In their
approach, the graph vertices are equivalent to the cys-
teines that form disulfide bridges, and the weight edges
are equivalent to contact potentials. They used the
Monte-Carlo (MC) simulated annealing (SA) method to
optimize the weights, with which they identified disul-
fide bridges through the maximal weight perfect match-
ing. We will refer to this method as MCSA. Later the
same group improved on their own approach with the
neural networks (NN), instead of MCSA, to determine
the cysteine pairwise interactions.2 They were able to
yield much better prediction accuracies for the case of
two disulfide bonds. This method will be referred to as
NNGM. Vullo and Frasconi3 applied an ad hoc recursive
neural network (RNN) to improve the overall protein-
based prediction accuracy by around 10% for the same
test data set. Baldi et al.4 applied two-dimensional re-
cursive neural networks (2D-RNN) to this problem and
obtained a protein-based prediction accuracy of 49%.
Recently, Chen and Hwang5 treated each disulfide con-
nectivity pattern as a separate class and treated it as a
multiclass classification problem. They used the support
vector machines7 (SVM) based on a variety of sequence
features and the combinations of them. They found that
the sequence separation between the cysteine pair that
forms a disulfide bridge is one of the most important
sequence features related to disulfide connectivity. This
is consistent with the recent reports8,9 that the cysteine
separations and the disulfide patterns are closely
related. Chen and Hwang5 were able to obtain an overall
protein-based prediction accuracy of 55% for the dataset
sharing less than 30% sequence identity. However, since
the number of possible disulfide patterns NB is related
to disulfide bonds B by the relation: NB ¼ (2B � 1)!! ¼
(2B � 1)(2B � 3). . .1, the number of disulfide patterns
grows rapidly when the number of disulfide bonds
increases [Fig. 1(A)]. Their method performs unsatisfac-
torily for the cases of large number of disulfide bonds. In
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this work, we use the cysteine pairs to define disulfide
connectivity, thereby reducing the number of classifica-
tion classes. In addition, we use the genetic algorithm
(GA) for feature selection to remove noisy or irrelevant
features. We are able to obtain an overall protein-based
prediction accuracy over 70%.

Disulfide Patterns in Cysteine-Pair
Representation

We use the notation I ¼ {C1, C2} to denote the cyste-
ine pair comprising C1 and C2. For each cysteine pair,
there are two possible bonding states: r1 ¼ C1 � C2,
where � denotes a disulfide bridge between C1 and C2,
and r2 ¼ C1 � C2, where � denotes no disulfide bridge
between C1 and C2. In this way, we can define the disul-
fide connectivity patterns in terms of the bonding states.
For example, for a sequence with two disulfide bonds
denoted by [C1C2, C3C4], which means that C1 and C2

form the first disulfide bridge, and C3 and C4 form
the second one, this disulfide pattern can be uniquely
defined by the following states: C1�C2, C1�C3, C1�C4,
C2�C3, C2�C4, and C3�C4. We will refer to this type of
representation of the disulfide pattern as the CP1 repre-
sentation. Likewise, we can use two cysteine pairs to
define the disulfide pattern, i.e. I ¼ {C1,C2,C3,C4}, where

C1, C2, C3, and C4 are any four distinct cysteines. For
four cysteines, there are 10 possible bonding states: r1

¼ (C1 � C2,C3 � C4), r2 ¼ (C1 � C2,C3 � C4), r3 ¼ (C1 �
C2,C3 � C4), r4 ¼ (C1 � C3,C2 � C4), r5 ¼ (C1 � C3,C2 �
C4), r6 ¼ (C1 � C3,C2 � C4), r7 ¼ (C1 � C4,C2 � C3), r8

¼ (C1 � C4,C2 � C3) r9 ¼ (C1 � C4,C2 � C3), and r10 ¼
(C1 � C2,C3 � C4). Note that r10 is a shorthand notation
of the state that has no disulfide bond between any pair
of the cysteines. We will refer to this type of representa-
tion of the disulfide pattern as the CP2 representation.
Figure 1(B) plots the numbers of bonding states in terms
of the CP1 and CP2 representations as a function of the
number of disulfide bonds. Figure 2 schematically shows
the 10 bonding states in the CP2 representation. It is
possible to use more disulfide pairs (i.e. n � 3) to define
the disulfide connectivity patterns, but the number of
bonding states will increase rapidly.

The Support Vector Machines

The SVM has recently found many applications5,10–16 in
computational biology. Here, we will give only a brief
sketch of the SVM, since the SVM has been reviewed in
many excellent textbooks.7,17 The basic idea of the SVM is
simple: given training vectors xi and a vector y ¼
(y1,. . .,yl) defined as: yi ¼ 1 if xi is in one class, and yi ¼ �1
if xi is in the other class. What the SVM tries to do is to
locate the separating hyperplane wTxi þ b ¼ 0 with the
largest distance between two classes, measured along a
line perpendicular to this hyperplane. This requirement
is equivalent to minimizing the following equation:

min
w;b;n

1

2
wTwþ C

Xl

i¼1

ni

under the constraints

yi wTUðxiÞ
� �þ b
� � � 1� ni; i ¼ 1; . . . ; l:

where C is the penalty parameter to be optimized. If the
penalty parameter C is large enough and the data is line-

Fig. 1. (A) The number of disulfide patterns, Np, versus that of di-
sulfide bonds, B. (B) The number of bonding states of disulfide bonds
in the CP1 (empty bar) and CP2 (solid bar) representations.

Fig. 2. Ten bonding states in the CP2 representation with each cys-
teine denoted by the letter ‘‘C.’’ The line connecting two cysteines rep-
resents the disulfide linkage between them.
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arly separable, all ni will be zero.18 In practice, we need to
calculate only the kernel function given by

Kðxi;xjÞ ¼ UðxiÞTUðxjÞ

In this work, we use the radial basis function (RBF) ker-
nel given by e�gkxi–xjk2, where g is the kernel parameter.
All the SVM calculations are performed using
LIBSVM.19 For SVM training, both the penalty parame-
ter C and the kernel parameter g must be determined in
advance. In this work, we perform the grid-search on C
and g using cross-validation for the model selection.20

Although the grid-search is a time-consuming process, it
can be easily parallelized to save computational cost.

The Feature Vectors

We used the feature vectors previously proposed by
Chen and Hwang5: the cysteine separations, the amino
acid composition, and the coupling between the local
sequence environments of cysteine pairs. A brief expla-
nation of these feature vectors is given in the following
sections. More details of the feature codings can be
found in Ref. 5.

Cysteine separation

Let {cicj,. . .} denote the set of cysteine pairs forming a
disulfide bridges, where ci and cj form a disulfide bond.
The cysteine separation feature vector D is given by
{dij,. . .}, where dij ¼ jci – cjj is the sequence separation
between ci and cj. We will use CS to denote the cysteine-
separation coding scheme. The sequence separations
between cysteine pairs have been recently shown to be
closely related to the disulfide patterns.8,9

Amino acid composition

The amino acid composition of the whole protein chain
is an effective global sequence feature in fold assign-
ment12,21 and in the prediction of protein subcellular
localization.14,22 The amino acid composition of the
whole protein chain is a 20-component vector, each com-
ponent representing the relative occurrence of a given
amino acid type. We will use AA to denote the amino
acid-composition coding scheme.

Cysteine–cysteine coupling

The cysteine–cysteine coupling feature vector sij
describes the correlation between the sequences environ-
ments of cysteine i and cysteine j that form a disulfide
bond. The flanking sequences of the cysteine are
described by a sequence window, which incorporates evo-
lutionary information through the use of the position
specific substitution matrix (PSSM) computed by PSI-
BLAST.23 We will use CC to denote the cysteine–cyste-
ine coupling coding scheme.

Feature Selection

We use GA to optimize feature selection. The basic
procedure is as follows: N solutions (Si, i ¼ 1,. . ., N) are
randomly generated as the starting population, where Si

is represented as a set of three feature vectors Si ¼
(Fi,Xi,Gi). The first feature vector Ui ¼ ðf i1; . . . ; f imÞ, an
m-dimensional vector, represents the binary representa-
tions of m features: If f ij ¼ 1, the j th feature is kept; if
f ij ¼ 0, the j th feature is eliminated. The other two
vectors Xi ¼ ðCi

1; . . . ;C
i
20Þ and Ci ¼ ðgi1; . . . ; gi10Þ are the

binary representations of the penalty parameter C and
the kernel parameter g of the SVM, respectively. The fit-
ness function is defined as the prediction accuracy of di-
sulfide connectivity. In the initial population, N solutions
are randomly divided into two halves. The ‘‘Father’’ a
and the ‘‘Mother’’ b of the population are defined as

a ¼ ðUa;Xb;CaÞ ¼ maxfS1; . . . ;SN=2g;

b ¼ ðUb;Xb;CbÞ ¼ maxfSN=2þ1; . . . ;SNg:

Three basic mechanisms driving the evolutionary pro-
cesses in one generation are selection, mutation, and
crossover.

Selection operator

In the sth generation, the selection operators are
defined as:

as ¼ maxfSs�1
1 ; . . . ;Ss�1

N=2;a
s�1g;

bs ¼ maxfSs�1
N=2þ1; . . . ;S

s�1
N ;bs�1g:

Note that for the special case of s ¼ 0, a0, and b0 are
defined to be 0. A new solution Ss

i is set to as if i is odd,
while Ss

i is set to bs if i is even.

Mutation operator

We apply two types of mutation to the solution Si.
In the case of i ¼ 1,. . ., N/2, every bit b of the vectors
(i.e. Fi) is subject to mutation: b ¼ �b, if the mutation
rate is less than a mutation threshold l0 ¼ 0.1. In the
case of i ¼ N/2þ1,. . ., N, we randomly choose a bit from
each of the vectors (hence, a total of three bits per each
solution Si). These bits are then subject to mutation
without any mutation threshold.

Crossover operators

The crossover operations are carried out between
S2p�1 and S2p, where p ¼ 1,. . ., N/2. The crossover opera-
tions are as follows: one-point crossover is performed
between F2p–1 and F2p if the crossover rate is less than
the crossover threshold l1 ¼ 0.5. Similar one-point cross-
over operations are also applied to the vectors X and G.
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Fig. 3. An example illustrating the construction of the connectivity matrix and the determination of disul-
fide connectivity therefrom. (A) For a sequence with six cysteines, disulfide connectivity can be represented
in terms of 15 disulfide patterns in CP2 representation. The matrix elements of the connectivity matrix are
constructed from the predicted bonding states using Eq. (1). (B) The constructed connectivity matrix. The
predicted disulfide connectivity pattern is [C1C2,C3C4,C5C6], which has maximal score XT ¼ M12 þ M34 þ
M56 ¼ 15.



The Connectivity Matrix

The connectivity matrix M is defined in terms of the
bonding states cp~Ocq. The initial matrix elements Mpq

are set to 0, and the rules to construct the matrix are:

Mpq ¼ Mpq þ 1; if ~O ¼ � ð1aÞ

Mpq ¼ Mpq; if ~O1 ¼ � ð1bÞ

The score XT of the disulfide connectivity pattern T is
computed from M by

XT ¼
XT

i< j

0
Mij ð2Þ

where S
0
indicates that any two index pairs (i,j) and

(i
0
,j

0
) under the summation sign should satisfy the

requirements i = i
0
and j = j

0
. The disulfide pattern

with the maximal score, i.e. max{XT}, is taken as the
prediction.
The notation Mv is used to denote the connectivity ma-

trix based on the v coding scheme (for example, MCP1

denotes the connectivity matrix based on CP1). We also
define the hybrid connectivity matrix as: MCP1þCP2þGA ¼
wMCP1þGA þ ð1�wÞMCP2þGA, where w is the weight. The
weight is numerically determined using the grid-search
method.
In Figure 3, we show an example to illustrate the con-

struction of the connectivity matrix for a sequence with
three disulfide bonds. In CP2 representation, the disulfide
connectivity pattern is represented in terms of 15 disulfide
patterns [Fig. 3(A)]. The connectivity matrix constructed
from these bonding states is shown in Figure 3(B). The
scores of all possible types of disulfide connectivity are
then computed by Eq. (2). In this particular example, the
predicted disulfide pattern is [C1C2,C3C4,C5C6]. The com-
plete flowchart of our method is schematically shown in
Figure 4. Optimizing feature selection is the most time con-
suming step, which will take several hours to up to 2 days
computational time on a 3-GHz Pentium processor, de-
pending on the size of the data set. The typical number of
generations is around 3000 and the features selected are
highly reproducible. The same features are used for both
training and testing processes.

Performance Indices

Following the previous studies,1,5 we use two assess-
ment indices to evaluate the performance of the classi-
fiers. The first one is the cysteine pair-based index Qc,
which is the fraction of the correctly predicted disulfide
bridges and is defined as

Qc ¼ 1

Nc

XNc

i¼1

dci ð3Þ

where Nc is the total number of disulfide bridges, and dci
is 1 if the ith predicted disulfide bridge is correct, and 0
otherwise. The second assessment measure is the pat-
tern-based index Qp, which is the fraction of proteins
whose global disulfide pattern is correctly predicted and
is defined as

Qp ¼ 1

Np

XNp

i¼1

dpi ð4Þ

where Np is the total number of disulfide proteins and
dpi

is 1 if the predicted connectivity pattern of the ith

protein is correct, and 0 if the predicted connectivity pat-
tern of the ith protein is incorrect.

Datasets

We use the same dataset as used in the previous stud-
ies.1,3,5 This dataset, extracted from the SWISS-PROT
database release no. 39,24 contains only the sequences
with experimentally verified intrachain disulfide bond
annotations and excludes those with the hypothetical di-
sulfide bonds, that is, those disulfide bonds designated
as ‘‘probable,’’ ‘‘potential,’’ or ‘‘by similarity.’’ Also, the
interchain disulfide bonds are not considered in this
study. In the SWISS-PROT data set, the sequences with
disulfide bonds from two to five account for about 80% of
the total disulfide sequences. As a result, our dataset
comprises only the sequences with 2–5 disulfide bonds:
168 sequences with two disulfide bonds (B ¼ 2), 177
three (B ¼ 3), 95 four (B ¼ 4), and 42 five (B ¼ 5). The
total number of the sequences is 482. All sequences of
the data set have pairwise sequence identities less than
30%. All results reported in this work are based on the
fourfold cross validation procedures.

Fig. 4. The flowchart of our procedure to predict disulfide connectiv-
ity from the protein sequence.
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RESULTS
Distribution of Cysteine Pairs Forming
Disulfide Bridges

Figure 5 shows the distribution of disulfide bridges for
B ¼ 2,. . .,5 in the dataset. In the simplest case of B ¼ 2
[Fig. 5(A)], two of the most populated disulfide bridges
are C1C2 and C3C4, and the dominant connectivity pat-
tern is [C1C2, C3C4]. The distribution of the connectivity
patterns becomes more complicated when the number of
disulfide bonds increases [Fig. 5(B–D)]. We notice that
there are distinct distribution patterns of the connectiv-
ity patterns for different Bs. For example, for B ¼ 3
[Fig. 5(B)], the disulfide bridges C3C6 and C1C4 are the

dominant ones; for B ¼ 4 [Fig. 5(C)], the dominant disul-
fide bridges are C2C5 and C1C8; for B ¼ 5 [Fig. 5(D)],
the most dominant ones are C1C4 and C9C10.

Results Based on Different Coding Schemes

Table I compares the prediction results based on differ-
ent coding schemes. All methods perform well for B ¼ 2,
but their performances vary significantly when B
increases. CP1 þ GA and CP2 þ GA in general outperform
CP1 and CP2. The performance gain is more significant
for larger B. For example, CP1 þ GA yields a prediction
accuracy Qp that is 13% higher than CP1 for B ¼ 2 and

Fig. 5. The distribution patterns of disulfide connectivity for (A) B ¼ 2, (B) B ¼ 3, (C) B ¼ 4, (D) B ¼ 5.
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21% higher for B ¼ 3, indicating that the effect of inherent
noise in the original feature vector becomes more pro-
nounced for larger B. Our results show that feature
extraction using GA is quite effective in extracting infor-
mation relevant to disulfide connectivity. The hybrid
method is able to achieve a prediction accuracy over 70%
in both Qp and Qc. Although CP1 and CP2 codings are the-
oretically equivalent to each other, but since they use dif-
ferent numbers of bonding states to describe the same di-
sulfide pattern [Fig. 1(B)], their performances are sub-
stantially different in practice. Such difference also
reflects that, though the performance of CP2 is better
than that of CP1, upon feature extract CP1 þ GA outper-
forms CP2 þ GA. The hybrid method can obviously take
advantage of the complementary natures of both CP1 and
CP2 codings to give the best performance. Note that the
pattern-based indices Qp monotonously decrease when B
increases. This is because Qp is a very strict assessment
index, which requires perfect prediction of all disulfide
bonds of a sequence. On the other hand, the downward
trends of the cysteine pair-based indices Qc are less pro-
nounced, which suggests that the predictions of cysteine
pairs are more or less independent of each other.
It will be instructive to examine the amino acid types

being selected by GA. We will first explain the term
called selection percentage: in the case of CP1, there are
six possible combinations of cysteine pairs for B ¼ 2, i.e.,
C1 – C2, C1 – C3, C1 – C4, C2 – C3, C2 – C4, and C3 – C4,
15 for B ¼ 3, 27 for B ¼ 4 and 45 for B ¼ 5. Since each
combination has its own feature selection sets, there are
a total of 6 þ 15 þ 28 þ 45 ¼ 94 selection sets. If the
selection percentage for the amino acid type F is 50%, it
means that there are 94 3 0.5 ¼ 46 selection sets being
selected by F. The higher the selection percentage of a
particular amino acid type, the more significant it is
related to the disulfide connectivity. Figure 6 shows the
selection percentages of amino acid types by GA for AA
and CC codings. The trends of the selection percentages
of C1 and C2 for the AA coding are in general quite simi-
lar. Amino acids like F, W, N, K, R, M, C, and P are
among the most selected, while S, E, L, A, I, and G
among the least selected. In the CC coding, the CP1 þ GA
model prefers F, S, V, Q, P, H, R, and G, while the CP2 þ
GA model does not show particular preferences for any
amino acid types.
It will be interested to check how the model perform-

ance depends on the training set size. In the case of B ¼

2, the model CP1 þ CP2 þ GA yielded an overall predic-
tion accuracy of 0.82, 0.85, 0.86 and 0.85 for the train-
ing-set size ratio of 0.6, 0.8, 0.9, and 1, respectively.
These results indicate that the performance of our model
gets better when the training size increases and appears
to reach a plateau when the size increases further.

Comparison With Other Methods

In Table II, we compare our results with those of other
methods in the literature. Our method outperforms other
approaches in all cases from B ¼ 2 to B ¼ 5. For example,
for B ¼ 2, our prediction accuracy is more than 12–30%
higher than others1–5 in both Qp and Qc (with the excep-
tion of the results of Tsai et al.,25 which will be discussed
later). For B ¼ 3, our prediction accuracy is 24–54%
higher in Qp and 11–42% higher in Qc than others. Our
overall prediction accuracy is 19–45% higher in Qp and
22–41% higher in Qc than other methods. Here we like to
comment on the recent work by Tsai et al.25 Although
they were able to obtain good overall prediction accuracy,

TABLE I. Comparison of the Prediction Results (in %) Based on Different Coding Schemes
of Disulfide Connectivity

Method

B ¼ 2 B ¼ 3 B ¼ 4 B ¼ 5 Overall

Qp Qc Qp Qc Qp Qc Qp Qc Qp Qc

CP1 72.0 72.0 42.4 52.4 15.8 26.8 4.8 12.4 44.2 44.5
CP2 73.8 73.8 49.7 60.6 27.4 41.3 7.1 36.2 50.0 55.1
CP1 þ GA 85.1 85.1 63.8 71.0 59.0 73.7 45.2 68.6 68.7 74.6
CP2 þ GA 81.0 81.0 66.1 73.3 39.0 51.8 16.7 48.6 61.6 66.0
CP1 þ CP2 þ GA 85.7 85.7 74.6 79.7 63.2 77.1 47.6 71.4 73.9 79.2

Fig. 6. The selection percentages of amino acid types by GA for
(A) AA and (B) CC coding schemes. The CP1 is in solid bar and the
CP2 is in empty bar.
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their Qp gets higher when B increases, as shown in Figure
7. Such an anomalous upward trend of Qp is in sharp con-
trast to that of other approach. Obviously, further efforts
are needed to clarify this issue.

DISCUSSION

In this work, we represent the disulfide connectivity
patterns in terms of cysteine pairs, the bonding states of
which are then predicted using SVM. In addition, GA is
used to optimize feature selection. From the bonding
states of the cysteine pairs, we are able to build the con-
nectivity matrix, through which the disulfide connectiv-
ity patterns are predicted. Our method outperforms
other methods in the literature and achieves over 70%
overall prediction accuracy in both pattern-based and
cysteine pair-based assessment indices. Our results indi-
cate that it is possible to reliably predict disulfide con-
nectivity from protein sequences. Our method may pro-
vide a useful tool for structural modeling and functional
analysis of disulfide proteins.
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MCGM1 56 56 21 36 17 37 2 21 29 38

Fig. 7. Comparison of the protein-based assessment index QP of
different methods versus disulfide bonds B.
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