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Strictly Nonblocking f -Cast Logd(N;m; p) Networks
Frank K. Hwang, Yang Wang, and Jinzhi Tan

Abstract—Necessary and sufficient conditions for Logd(N;m; p)
network to be point-to-point strictly nonblocking are known. Re-
cently, Kabacinski and Danilewicz obtained necessary and
sufficient conditions for the Log2(N; 0; p) network to be broadcast
strictly nonblocking. In this paper, we give necessary and sufficient
conditions for Logd(N;m; p) to be f -cast strictly nonblocking for
every f , thus covering the point-to-point case (f = 1) and the
broadcast case (f = N) as special cases.

Index Terms— -cast, broadcast, strictly nonblocking.

I. INTRODUCTION

LEA [1] first introduced the Log network which
has inputs and outputs and stages. The first

(input) stage has crossbars, the last (output) stage has
crossbars, and the inner stages consist of copies of an

-stage inverse banyan network , where each input
(output) crossbar is connected to every copy of .
(See Fig. 1 for an example of .)

Shyy and Lea [2] extended this network to Log
by replacing in the middle with -extra-stage
inverse banyan networks where the connection
pattern of the extra stages is a mirror reflection of the
first stages of the inverse banyan network. (See Fig. 1
for an example of , Fig. 2 for an example of
Log .) Note that Log is the Cantor net-
work [3] with copies of the Benes network [4] in the middle.
The Log network can further be extended to the
Log network by using -ary crossbars. (See Fig. 3
for an example of Log .)

Nonblocking networks are favorable in designing switching
networks, since a conflict-free path is available for any pair of
idle input and output. There are several kinds of nonblocking-
ness. Strictly nonblocking means that any pair of idle input and
output in a network can be connected regardless of the existing
connections of other pairs in the network (all connecting paths
must be link disjoint).

Hwang [5] extended a result of Shyy and Lea from binary to
-ary, as follows.
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Fig. 1. BY (4; 0) and BY (4; 2).

Theorem 1: The sufficient condition for Log to be
point-to-point strictly nonblocking is

A careful examination shows that the worst-case scenario as-
sumed in the proof of the theorem can be realized. So the con-
dition in Theorem 1 is also necessary.

Lea mentioned that his argument for the point-to-point
network can also apply to multicast traffic. Tscha and Lee [6]
gave necessary and sufficient conditions for Log to
be multicast strictly nonblocking, but the result is really for
wide-sense nonblocking, since a special routing algorithm is
used. Kabacinski and Danilewicz [7] gave the following result.

Theorem 2: The necessary and sufficient conditions
for Log to be broadcast strictly nonblocking are

.
To clarify our terminology, -cast means an input can request

to be connected to at most outputs. When is unspecified, we
use the general term multicast. When , i.e, is uncon-
strained, then we use the term broadcast.
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Fig. 2. Log (8; 1; 3).

Fig. 3. Log (27; 0; 2).

In this paper, we give necessary and sufficient conditions for
Log to be -cast strictly nonblocking for all , thus
generalizing Theorem 2 in three directions: 1) from binary net-
work to -ary network; 2) from no extra stage to extra stages;
and 3) from to general . Our strategy is to deal with
the case first in Section II, and then extend the result to
the general case in Section III. We summarize our findings in
Section IV.

II. LOG

Consider a request from input to output . Then the
channel graph is simply the path from to consisting of
links . A path from to is called

a -intersecting path if it contains . Note that a path can be
both -intersecting and -intersecting. An input is called a -in-
tersecting input if it can start a -intersecting path. Note that
a -intersecting input is also a -intersecting input for

. An input is -marginal if it is -intersecting but
not -intersecting. Similarly, an output is -intersecting if
it can end a -intersecting path. A -intersecting output is also
a -intersecting output for . An output is -marginal
if it is -intersecting but not -intersecting. We use the
following definitions.

the set of -intersecting inputs;

the set of -marginal inputs;

the set of -intersecting outputs;

the set of -marginal outputs.

Let denote the cardinality of the set . Note that in the
Log network, , , and

Take Log as an example to explain the preceding
definitions. Since Log contains three identical
copies of in the middle, we will only use one
middle copy to illustrate the concepts. In Fig. 4, suppose the
request to be connected is from input 0 to output 0. Then,

, , ,
,

, , ,
. , ,

, , , ,
, Request generates a 1-in-

tersecting path, request generates a 4-intersecting
path.

Lemma 3: If , then .
Proof:

Theorem 4: Log is -cast strictly nonblocking for
if and only if

Proof: Suppose the current request involves outputs.
Since we can connect the outputs independently one by one,
we may assume . Let the current request be . Note
that previous connections from cannot block since they
can share links. Therefore, these connections will be ignored in
the counting of intersecting paths.
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Fig. 4. BY (5; 0).

Suppose . The upper bound implies

for

Hence

which implies that there are always enough outputs in to
receive requests from . Thus the maximum number of -in-
tersecting paths is just .

By Lemma 3, the lower bound implies

i.e., the combined -marginal and -marginal inputs
can use up all remaining outputs. Hence there is no need to count
intersecting paths beyond . Note that it does not matter
whether alone can use up all of , since in either case
there is a total of paths intersecting and . Thus
the total number of intersecting paths is

This maximum can be achieved since the proof assures the
availability of inputs and outputs for all the intersecting paths
counted (just make out a request frame according to the de-
scription given in the proof).

Again use as an example. When , con-
sider requests , , which will use
15 copies. When , consider requests ,

, , which will use 12 copies.
When , consider requests , ,

, , , which will use 9
copies.

Setting and ,
respectively, in Theorem 4, we obtain the following.

Corollary 5: Log is broadcast strictly nonblocking
if and only if .

Corollary 6: Log is point-to-point strictly non-
blocking if and only if .

These two results are, of course, known in the literature, in
[5] and [7].

III. LOG

We now study the general extra stages case.
Theorem 7: Log is -cast strictly nonblocking if

and only if the equation shown at the bottom of the page holds
true.

if

if

if

if

if
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Fig. 5. Channel graph of Log (8; 1; 3).

Proof: Again, we may assume that the current request is
point-to-point and from input to output . For , the
channel graph has stage- and stage- links
in every middle copy. Hence it takes -intersecting paths
to block the channel graph of one middle copy (see Fig. 5).
Using an argument of Shyy and Lea [2], each -intersecting path
blocks only portion of the channel graph of the middle
copy, or blocks copy of the Log network. For

, the channel graph of every middle copy
has links; hence each -intersecting path blocks copy.

Let be the set of all inputs except , and all outputs
except . Notice that an intersecting path originated from ,

, can arrive at every output of . Similarly, any
intersecting path to , , can start from
any input of . Furthermore, requests from , or to ,

, can block copy, as mentioned above. In
the worst case, requests from or to will take pri-
ority over connections from , or to for

, since they have stronger blocking ability. In the
Log network, we have , for ,
and , for

if
if

if
if

Note that

for

We proceed by counting intersecting paths in the order and
, and , and , , ,

, and stop whenever the counted intersecting paths have
used up the remaining outputs. The proof is partitioned into
cases depending on when the remaining outputs are used up.

1)

Then , which
means the -cast requests from and to can use
up , and the number of blocked copies is .

2)
.

The upper bound and the lower bound are equivalent to

Thus, and , , all together will block

copies. The remaining outputs will be used up by requests
from or to , each such intersecting
path blocks copy. Therefore, the total number of
blocked copies is

3) .
The upper bound and the lower bound are equivalent to

Hence, the requests from and to cannot use up ,
but the requests from can overflow from to .
Further

Hence there is no need to count beyond stage . Thus
the total number of blocked copies is

4) .
The upper bound is equivalent to

Hence, requests from do not overflow to . The
lower bound implies that, by setting and

in Lemma 3

i.e., all outputs available at step will be used up by
the next step. Again, it does not matter whether they are
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if

if

if

Fig. 6. BY (3; 1).

used up at step . Thus the total number of blocked
copies is

5) , .
The middle stages consist of copies of

, which we will refer to as the reduced inverse banyan net-
works. The upper bound of says that the outputs of these re-
duced inverse banyan networks are intact, i.e., none of them is
used by requests from . Hence, we can apply Theorem 4 with

replaced by everywhere. Note that for stage in a re-
duced inverse banyan network

which are times of a normal . However, to
block a copy of takes the blocking of copies
of the reduced inverse banyan networks. So the net effect of
blocking in the reduced inverse banyan network is same as in
the normal , and Theorem 4 applies.

Again, the worst case described above can be achieved, since
the description in the proof assures the availability of the inputs
and outputs counted in the intersecting paths.

Note that in the first three cases, outputs in are used up.
In the last two cases, may not be used up by , but are not
available for .

Let us take Fig. 6 as an example to see the concept of over-
flow. In the figure, we have , , . Setting

, then it is the third case, that is, requests from and to
cannot use up , but requests from can overflow from
to . In the figure, input 1 generates requests to outputs

, which include one output of .
Again, setting and , respectively, we obtain

the following.
Corollary 8: Log is broadcast strictly non-

blocking if and only if .

Corollary 9: Log is point-to-point strictly non-
blocking if and only if

Setting , we obtain the following.
Corollary 10: The -ary Cantor network is -cast strictly

nonblocking if and only if the equation shown at the top of the
page holds true.

IV. CONCLUSION

Recently, Kabacinski and Danilewicz gave necessary and suf-
ficient conditions for Log to be broadcast strictly non-
blocking. We extended it to Log . Further, we ob-
tained the surprising result that the conditions are independent
of (Corollary 8).

Bassalygo and Pinsker [8] proved that a strictly nonblocking
broadcast network contains at least crosspoints, not
fewer than those of an crossbar. Thus the only hope is
to construct efficient -cast strictly nonblocking networks.

We gave necessary and sufficient conditions for
Log to be -cast strictly nonblocking for every

, thus containing the point-to-point and broadcast
as special cases. Note that the number of copies

of in the middle decreases rapidly with . For
example, the number is for , and is the minimum
integer larger than

for . In particular, we obtain necessary and sufficient
conditions for the Cantor network, i.e., Log , to
be -cast strictly nonblocking. Though we get the strictly non-
blocking condition as above, it only guarantees the existence of
a path. How to find it efficiently is still an issue, and we will take
it for future research.
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