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Abstract — This paper presents a new algorithm for 

progressive image coding, called Tag Setting In Hierarchical 
Tree (TSIHT). The TSIHT coding can save the memory 
requirement while keeping the low-bit-rate quality high. The 
TSIHT algorithm has been implemented onto a chip with 
0.35μ 1P4M CMOS technology. The chip can handle 256×256 
gray-scale images and the gate count is about 2560 gates 
within 247500 μm2 area. The latency of the critical path is 
6.32 ns, and the maximum working frequency can be as high 
as 158 MHz.1 
 

Index Terms — Image compression; VLSI; Progressive coding 

I. INTRODUCTION 
Rapidly growing number of high-resolution images have 

come with the advancement of consumer products in various 
multimedia applications. Due to the huge amount of data 
involved, even a compressed image is significant in size, large 
image sent over low-bandwidth links will still need lengthy 
transmission-time, especially in computation-limited or 
network-limited environment, such as the portable device. A 
better solution is to encode image as transmit bit-stream 
simultaneously and progressively. Progressive image 
transmission (PIT) technique provides the capability that it 
allows to interrupt the transmission when the quality of the 
received image has reached a desired accuracy. When the 
receiver recognizes that the image is not interesting or only a 
specific portion of the complete image is needed, PIT can also 
terminate transmission at any point of bit-stream. Newer 
coding techniques, such as JPEG2000 [1]-[2], and MPEG4 [3] 
standards, have supported the progressive transmission feature. 

PIT via wavelet-coding using the Embedded Zerotree 
Wavelet (EZW) algorithm was firstly presented by Shapiro [4] 
in 1993. Later in 1996, Said and Pearlman [5] presented a 
better implementation based on Set-Partitioning In 
Hierarchical Trees (SPIHT) underlying the principles of EZW 
method. The set-partitioning algorithm uses the principles 
including self-similarity across scales as in EZW, partial 
ordering by magnitude of the wavelet-coefficients, set-
partitioning into hierarchical tree, and ordered bit-plane 
transmission of the refinement-bits. Due to the excellent 
performance in peak-signal to noise ratio (PSNR) [5] 
measurement, SPIHT coder has been approved that the 
encoding procedures are faster and more efficient than EZW 
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coding. Therefore, many coding algorithms have been 
developed by [6]-[10] based on SPIHT coding. 

However, the memory requirements of the SPIHT-based 
algorithms are incongruous for hardware design. Considering 
SPIHT coding in a practical implementation, the significance 
information of image is stored in three ordered lists, called list 
of insignificant sets (LIS), list of insignificant pixels (LIP) and 
list of significant pixels (LSP). For a typical 256×256 gray-
scale image, each entry of the lists requires at least 8+8=16 
bits to store the row and column coordinate values. Thus, 
SPIHT coding needs 2×16×256×256 bits = 256 K bytes 
memory to store both LIP and LSP lists. In addition to LIS list, 
it also needs 2×16×256×256 bits = 256 K bytes memory, 
where each entry requires 2 bits to indicate type A or type B 
node of LIS list. Totally, SPIHT coding needs 512 K bytes 
memory for a 256×256 gray-scale image, in worse case. 

In this paper, we suggest a new coding algorithm for 
progressive image transmission called Tag Setting In 
Hierarchical Tree (TSIHT). The proposed TSIHT coding 
keeps low bit-rate quality as SPIHT algorithm and has three 
improved features. Firstly, to reduce the amount of memory 
usage, TSIHT coding introduces tag flags to store the 
significant information instead of the coordinate-lists in 
SPIHT. The tag flags are four two-dimensional binary tag-
arrays including Tag of Significant Pixels (TSP), Tag of 
Insignificant Pixels (TIP) and Tag of Significant Trees (TST) 
respectively. When comparing with SPIHT coding, TSIHT 
only needs 26 K bytes memory to store four tag-arrays for a 
256×256 gray-scale image. Secondly, both sorting-pass and 
refinement-pass of SPIHT coding are merged in one in TSIHT 
coding in order to simplify hardware-control and save 
unnecessary memory. Finally, TSIHT uses the Depth-First-
Search (DFS) traversal order to encode bit-stream rather than 
the Breadth-First-Search (BFS) method as the SPIHT coding. 
Since, DFS method searches the root node and each one of the 
branching node of the immediate descendants until it reaches 
the deepest leaves. For the hierarchical pyramid nature of the 
spatial orientation tree, DFS provides a better architecture 
than BFS method. 

Additionally, a VLSI image compressor called PIE 
(Progressive Image Encoder) core for TSIHT coding has been 
implemented onto a chip with 0.38 μm one-poly-four-metal 
CMOS technology. The prototype of PIE core can handle 
256×256 gray-scale images. The gate count of PIE core is 
about 2560 gates within 247500 μm2 area. The latency of the 
critical path is 6.32 ns, and the maximum working frequency 
is about 158 MHz. 

The remainder sections of this paper are organized as 
follows. Section 2 is the background of progressive image 
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transmission, EZW and SPIHT coding. Section 3 addresses 
the proposed TSIHT coding algorithm. Section 4 addresses 
the software implementation of TSIHT coding. Section 5 
presents the VLSI architecture of the proposed PIE core. 
Section 6 shows the synthesis result and performance analysis 
of PIE core. Finally, the conclusion is given in Section 7. 

II. BACKGROUND 

A. Progressive Image Transmission 
A key for the progressive image transmission is to apply 

multi-resolution decomposition on the target image. The 
multi-resolution decomposition provides multi-resolution 
representation of an image. At different resolution, the details 
of an image characterize different physical structures of the 
scene. At a coarse resolution, these details correspond to the 
larger structures which provide the image content. It is 
therefore natural to analyze the image details at a coarse 
resolution first and then gradually increase the resolution. 
Usually, multi-resolution decomposition defines a set of 
orthonormal basis, such as the Haar basis [11] in wavelet-
decomposition. By applying decomposition-transformation, it 
is possible to represent an image based on the coefficients in 
an orthonormal basis expansion. 

Let pi,j be a two-dimensional image, where i and j are the 
indices of pixel coordinates. The multi-resolution 
decomposition of image pi,j is written as 

c = Ω(p). (1) 
Where Ω(⋅) is a transformation of multi-resolution 

decomposition. Two-dimensional coefficient array c has the 
same dimensions as image p, and each element ci,j is the 
transformation coefficient of p at coordinate (i,j). In a 
progressive image transmission, receiver updates received 
reconstruction coefficient cr according to the coded message 
until approximate or exact amount coefficients have been 
received. Then, the decoder can obtain a reconstructed image 
by applying inverse transformation 

pr = Ω-1(cr). (2) 
Where pr is the reconstructed image, and cr are 

progressively received coefficients. Image distortion of 
reconstructed image pr from original image p can be measured 
by using Mean Squared Error (MSE), that is 

( ) ( )
21 ( )
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Where MN is the total number of all image pixels. In a 
progressive image transmission process, the transmitter 
rearranges the details within the image in the decreasing order 
of the importance. From Equation (3), it is clear that if an 
exact value of the transform coefficient cri,j is sent to the 
decoder, then the MSE decreases by | ci,j |2 / MN [5].This 
means that the coefficients with larger magnitude should be 
transmitted first because they have a larger content 
information. 

B. Embedded Zerotree Wavelet Algorithm 
Embedded Zerotree Wavelet (EZW) algorithm was 

suggested by Shapiro in 1993 [4]. Shapiro uses a simple and 
general model to describe the distribution of the wavelet 
coefficients obtained from a Discrete Wavelet Transformed 
(DWT) image. The DWT decomposes the input image into a 
set of sub-bands in multiple resolutions. Generally, most of 
the energy in an image is concentrated in the low-frequency 
region. When an image is subjected to n-level decomposition 
using DWT, the n-th level would correspond to the lowest 
frequency sub-band and would correspond to the coarsest 
resolution. Thus, when one moves from higher levels to lower 
levels of sub-band decomposition, there would be a decrease 
in the energy content of the sub-band. In each decomposition 
level, the coarse sub-band is a low-pass approximation of the 
original image, and the other sub-bands are finer scale 
refinement. Every coefficient in each decomposition level, 
expect the highest frequency, can be related to a set of 
coefficients of similar orientation at the next finer scale level. 
The coefficient at the coarse scale is called the parent, and all 
coefficients at the same spatial location of similar orientation 
at the next finer scale level are called the children. 

To rearrange the wavelet coefficients in the decreasing 
order of the importance, Shapiro defines the insignificant 
concept and a data structure zerotree. A wavelet coefficient x 
is said to be insignificant with respect to a given threshold T if 
|x|<T. The zerotree is a tree structure based on the hypothesis 
that if a wavelet coefficient at a coarse scale is insignificant 
with respect to a given threshold T, then all wavelet 
coefficients of the same orientation in the same spatial 
location at finer scales are also significant with respect to T. 
To coding wavelet coefficients, EZW algorithm uses zigzag-
scanning coding sub-band by sub-band. The scanning order of 
wavelet coefficients begins from the lowest frequency sub-
band and continuously searches with the breadth-first-search 
(BFS) to the higher frequency sub-bands. Parents are scanned 
before any of their children, but after all neighboring parents 
have been scanned. Each coefficient is compared against the 
current threshold T. A coefficient is significant if its amplitude 
is greater than T. A significant coefficient is then encoded 
using one of the symbols NS (negative significant) or PS 
(positive significant). The ZTR (zerotree root) symbol is used 
to signify an insignificant coefficient. The IZ (isolated zero) 
symbol signifies a coefficient below T but with at least one 
child not below T. For significant coefficients, EZW further 
encodes coefficient values using a successive approximation 
quantization (SAQ) scheme. SAQ uses to provide a multi-
resolution representation of the coefficients and to facilitate 
the embedded coding. Then, coding is done bit-plane by bit-
plane. 

C. Set Partitioning in Hierarchical Tree 
Set Partitioning In Hierarchical Tree (SPIHT) is an image 

coding algorithm suggested by Said and Pearlman in 1996 [5]. 
Based on EZW [4] concept framework, SPIHT algorithm 
provides a better performance and less complexity 
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implementation than EZW. The EZW coding is essential to 
compress the ordering information as conveyed by the results 
of the significance tests. In SPIHT algorithm, the ordering 
data is not explicitly transmitted. Instead, SPIHT coding 
algorithm uses a partitioning of trees in a manner that it tends 
to keep insignificant coefficients together in large subsets. 
Herein, the subset partitioning is so effective, and the 
significance information is so compact that SPIHT has better 
performance than the EZW algorithm. 

 

 
Fig. 1. Parent-offspring dependencies in a spatial orientation tree 

 
The SPIHT algorithm exploits the coefficients obtained 

from DWT transformed image. These DWT pyramid 
coefficients are energy compaction, cross sub-band similarity 
and decaying of coefficient magnitude across sub-bands. To 
apply SPIHT algorithm, a tree structure, called spatial 
orientation tree, is defined as the spatial relationship on the 
hierarchical pyramid. The tree is defined in such a way that 
each node has either no offspring (the leave) or four 
offsprings, which form a group of 2×2 adjacent pixels. For 
instance, Figure 1 indicates the spatial orientation tree and 
corresponding parent-offspring relationships across the sub-
bands. The pixels in the highest level of the pyramid are tree 
roots, and 2×2 adjacent pixels are grouped into blocks. Their 
branching offsprings, except the leaves, also have 2×2 
adjacent pixels grouped into blocks. Let ci,j denote the wavelet 
transform coefficient at (i,j) in the DWT transformed image. 
The parent-offspring linkage, except at the highest and the 
lowest pyramid levels, is 
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Where O(i,j) is the set of all immediate descendants of 
node (i,j). The set of all descendants of the node (i,j) is 
denoted by D(i,j). The set of all descendants D(i,j) but 
excluding immediate descendant is L(i,j)=D(i,j) \ O(i,j). The 
relationships between these coordinate sets are shown in 
Figure 2. While performing the SPIHT coding algorithm, it 
needs three ordered lists including list of insignificant set 
(LIS), list of insignificant pixels (LIP), and list of significant 
pixels (LSP) to store the signification information. In LIP 
and LSP, the entries represent individual pixels identified by 

coordinate (i,j). In LIS list, each entry represents an element 
either in the set D(i,j) with type A or in the set L(i,j) with 
type B. 

 
O (i, j)root (i, j)D (i, j)

L (i, j)  
Fig. 2. Relationship between different coordinate sets 

 
The essential of SPIHT coding algorithm is to identify 

which coefficients are significant, sort selected coefficients in 
each sorting pass, and transmit the ordered refinement bits. A 
function Sn(T) is used to indicate the significance of a set of 
coordinates T, that is 
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During the sorting pass, the pixels in the LIP, which was 
insignificant in the previous pass, are tested, and those that 
become significant are moved to the LSP. Similarly, it tests 
each entry in LIS list. When a set if found to be significant, it 
is removed from the list and partitioned. The new subsets with 
more than one element are added back to the LIS, while the 
single-coordinate set are added to the end of the LIP or the 
LSP. The LSP contains the coordinates of the pixels that are 
visited in the refinement pass. Then, for each entry (i,j) in the 
LSP, except those included in the last sorting pass, output the 
n-th most significant bit of |ci,j|. Node tests and descendant 
tests are performed with the maximum threshold 2N first. 
Then, it repeats with smaller threshold, 2n, n=N-1, N-2,…, 
iteratively until the compressed bit amount reaches a 
predefined value. 

III. PROPOSED TSIHT CODING ALGORITHM 

A. Principles 
The proposed TSIHT (Tag Setting in Hierarchical Tree) 

coding is based on SPIHT algorithm. To implement the 
TSIHT on a silicon, we examine the performance and memory 
requirement of a hardware implementation. In our opinion, the 
TSIHT coding has three essential advantages as following. 

(1) Less memory required: 
When applying SPIHT algorithm, large amount of 
memory may be occupied to store LSP, LIP and LIS 
lists. Instead, the TSIHT coding algorithm uses three tag 
flags including TSP (Tag of Significant Pixels), TIP (Tag 
of Insignificant Pixels) and TST (Tag of Significant 
Tree) to distinct different entries in LSP, LIP and LIS 
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respectively. For a typical 256×256 gray-scale image, 
both of each TSP and TIP lists need 256×256 bits, and 
TST list needs 128×128 bits. Thus, TSIHT coding totally 
needs 2×256×256+128×128 (bits) = 18 K bytes memory. 
It is apparent that the proposed TSIHT coding occupies 
less memory than SPIHT, which needs 2×16×256×256 
(bits) = 250 K bytes to store three lists. 

(2) Improved refinement pass 
In the SPIHT algorithm, refinement pass is to output the 
n-th most significant bit of |ci,j| which is in the LSP list 
except those included in the last sorting pass. To 
implement coding algorithm on a chip, SPIHT needs 
more hardware control and more memory space to store 
extra information in refinement pass. However, there is 
no precedence relation between the sorting pass and the 
refinement pass. A better approach proposed in TSIHT is 
to put refinement pass before the sorting pass. Thus, 
TSIHT does not need to store last address or information 
of the refinement pass and is more efficient than SPIHT 
coding. 

(3) Efficient depth-first-search (DFS) 
The spatial orientation tree is defined on the hierarchical 
pyramid. In the sorting pass, SPIHT coding algorithm 
uses breadth-first-search (BFS) to traverse all the nodes 
in the tree structure. In order to access each node in the 
tree, an input buffer is needed to hold all the ancestor-
descendant relations of the coefficients. Thus, the 
location addresses of the four immediate descendants of 
a node can be calculated systematically. As showing in 
Figure 3, it is easily to calculate the addresses from root 
node to the descendants within the first three steps. 
However, while proceeding to step 4, there is no more 
ancestor-descendant relations to calculate node 
addresses. In proposed TSIHT algorithm, we use depth-
first-search (DFS) [12] method instead. As showing in 
Figure 4, the DFS method searches the root node and 
each one of the branching to the immediate descendants 
until it reaches the leaves. By using DFS method, the 
address generation of the ancestor-descendant 
coefficients is more efficient than SPIHT coding. 
 

 
Fig. 3. BFS traversal in SPIHT coding 

 
Proposed TSIHT coding is based on SPIHT algorithm 

extended by using above principles. Besides, in our 
experimental result, it shows that TSIHT also keeps low bit 
rate quality as SPIHT does, even better. In the following 

section, we will discuss the implementation detail of TSIHT 
coding. 

 
Fig. 4. DFS traversal in TSIHT coding 

 

IV. SOFTWARE IMPLEMENTATION 
Let TSP, TIP and TST be the two-dimensional binary 

arrays, whose entries are either ’0’ or ’1’. The overall TSIHT 
coding algorithm includes six steps as follows. 

(1) Initialization: output n = ⎣log2( max{|ci,j|} )⎦; set each 
value of all entries in TSP, TIP and TST arrays to ’0’. 

(2) Refinement output: 
(a) for each entry (i,j) in the TSP do: 

(i) if TSP=1 then output the n-th most significant 
bit of |ci,j|; 

(3) TIP testing: 
(a) for each entry (i,j) in the TIP do: 

(i) if TIP=1 and Sn(ci,j) = 1 then 
(A) output ‘1’ and output sign of ci,j; 
(B) set value TIP := 0 and TSP := 1; 

(ii) otherwise, if TIP=1 and Sn(ci,j) = 0 then output 
‘0’; 

(4) TST update: 
(a) for each entry (k,l)∈O(i,j) do: 

(i) if TST=0 and Sn(ci,j) = 1 then set value TST:=1; 
(5) Spatial orientation tree encoding: 

(a) for each entry (i,j) using DFS method do: 
(i) if TSP=0 and TIP=0 then 

(A) if Sn(i,j) = 1 then output ‘1’, sign of ci,j and 
the value of TST; set value TSP:=1; 

(B) otherwise, if Sn(i,j) = 0 then output ‘0’ and 
the value of TST; set value TIP:=1; 

(6) Quantization-step update: decrease n  by 1 and go to 
Step 2. 

 
In Step 1, TSIHT coding first calculates initial threshold 

and sets the values of three tag flags TSP, TIP and TST to ’0’ 
initially. In Step 2, the entry marked with TSP=1, which is 
evaluated in the last Step 5, is significant. The entry, TIP=1, 
tested as insignificant in last Step 5 may be significant in Step 
3 due to the different threshold. Thus, the algorithm performs 
TIP testing to update TIP value in Step 3. In Step 4, it updates 
TST value of each coefficient except the leave nodes and 
prepares to perform tree encoding in next Step. If a node is 
TST=0, its descendants are all insignificant; in the other 
words, the tree leading by that node, TST=0, is a zerotree. The 
algorithm searches those nodes, TST=0, using depth-first-
search (DFS) method and outputs an ’0’ in Step 5 to keep low 
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bit rate as SPIHT coding does. At last, it decreases 
quantization step n  by 1 and go to Step 2 iteratively. 

Proposed TSIHT coding algorithm is the same as what the 
SPIHT coding does but using different data structures. For 
instance, in the refinement output and TIP testing steps, 
TSIHT uses tag flags TSP and TIP to indicate whether a node 
is significant or not. Then, TSIHT can output and encode the 
image stream by investigating the TSP and TIP tags. On the 
other hand, SPIHT coding uses coordinate sets LSP and LIP 
to store coordinate information of nodes. When comparing 
both methods, the information stored in TSP (LSP) is the same 
as in TIP (LIP). Besides, in the spatial orientation tree 
encoding step of TSIHT coding, if a node is TST=1, it trends 
to searching its descendants using DFS method without any 
output. However, in the sorting pass of TSIHT coding, each 
node in LIS list with type A  may change to type B  and 
apply encoding again. Thus, in general case, TSIHT has lower 
bit rate quality than SPIHT does. 

To see the experimental result, we use Matlab as the 
software implementation to evaluate TSIHT coding algorithm. 
The relation of bit-rate and PSNR illustrated in Figure 5 is 
obtained by apply TSIHT coding on the 256×256 gray-scale 
lena image. 

 

 
Fig. 5. Bit-rate and PSNR relationship of TSIHT coding 

V. VLSI ARCHITECTURE OF TSIHT ENCODER 

A. Architecture Overview 
Based on the proposed TSIHT coding algorithm, a 

hardware implementation, called the Progressive Image 
Encoder (PIE), is introduced in this section. In our work, PIE 
is designed as a VLSI IP (Intellectual Property) core for the 
purpose of various image compression applications. The pin 
assignment for PIE IP core is shown in Figure 6. Note that, 
PIE reads the wavelet coefficients from external memory 
using a 16-bit input signal, Coeff[0:15], and it reads the tag 
flags of TSP, TIP and TST from external tag memory using 8-
bit input signals, TSP[7:0], TIP[7:0] and TST[7:0] 
respectively. If PIE want to read coefficients or tags from 
memory, it first generates the address, Addr[15:0], of the data, 
and then it reads the data using input signals. PE outputs the 

encoded bit-stream using signal bit_out when sync asserts. 
The signals TSP_in, TIP_in and TST_in are used to output 
tag data. PIE uses read-enable signals, TSP_ren, TIP_ren 
and TST_ren, or write-enable signals, TSP_wen, TIP_wen 
and TST_wen, to control the reading or writing action of tag 
memory. 

bit_out
sync
TSP_ren
TIP_ren
TST_ren
TSP_wen
TIP_wen
TST_wen
TSP_in[7:0]
TIP_in[7:0]
TST_in[7:0]
Addr[15:0]

PIE

clk

reset

Coeff[15:0]

TSP[7:0]

TIP[7:0]

TST[7:0]

 
Fig. 6. Pin assignment for PIE IP core 

 
In Figure 7, it shows the overall architecture of PIE encoder. 

Except the external coefficient and tag memory, PIE includes 
six blocks as following. Address Generator, which is the most 
complex component in PIE, generates the location addresses 
of the coefficient and the tag memory. Clock Divider 
generates three clock signals with different frequencies to 
synchronize internal circuit. Threshold Generator calculates 
the initial value n and updates its value at every iteration. Tag 
Access Unit controls the access of three tags, TSP, TIP and 
TST. Bit-Stream Generator outputs the encoded bit-stream of 
PIE. Controller is the master of all blocks. We will discuss 
each block in the following sections. 

 

 
Fig. 7. Progressive Image Encoder hardware architecture 

 
B. The Components of PIE 
(1) Address Generator (AG): In order to access the 

coefficient and tag from external memory, Address Generator 
(AG) provides a mapping from the (row,col) coordinate to the 
linear address of memory. On the other words, AG is used to 
generate a 16-bit address signal, while the signal Addr[15:8] 
is the row address, and the signal Addr[7:0] is the column 
address, such that, each address pair to the coordinate of the 
coefficient or the tag can be located from memory. The 
hardware architecture of PIE is illustrated in Figure 8. 
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Fig. 8. Address Generator architecture 

 
To adapt different data structures of external memory 

content, AG behaves as a mapping function from current 
address to the next address depends on five selection cases 
from F1 to F5 as following. 

(A) F1: Wavelet coefficient address generation 
When PIE performs TSIHT coding in TST update step, 
AG is used to generate the wavelet coefficient address 
with bottom-up direction. For an instance, the wavelet 
coefficients of third order DWT transform are shown in 
Figure 9. While updating TST, AG first searches the 
most peripheral starting at the start mark toward the 
inner nodes of every scanning line. Let c_col and 
c_row be the current column and row addresses; n_col 
and n_row be the next column and row addresses. 
Assuming tmp_size is the coordinate boundary in each 
level. The flowchart of the F1 address generation is 
illustrated in Figure 10. Note that, as showing in Figure 
10, next address is obtained from current address 
depends on different boundary conditions. 

 

 
Fig. 9. Bottom-up searching direction 

 
(B) F2: Ancestor address generation 

In TST update step, for each entry (k,l)∈O(i,j), if it 
finds that a descendant coefficient, (k,l), with TST=0 is 
significant, the TST value of the parent, (i,j), assigned 

to TST=1. To locate the ancestor address from its 
descendant coefficient, bitwise-shifting operation on 
descendant coordinate is used. For instance, Figure 11 
illustrates the ancestor-descendant relations labeled 
with row and column address. The ancestor address 
can be obtained by right-shifting one bit on each of its 
descendant coordinate. 

 
Fig. 10. The flowchart of F1 address generator 

 

parent

child 1
child 2

child 3
child 4

parent

child 1

child 2

child 3

child 4

(row, col)

(62, 24)

(124, 48)

(124, 49)

(125, 48)

(125, 49)

row

00111110

01111100

01111100

01111101

01111101

col

00011000

00110000

00110001

00110000

00110001

 
Fig. 11. Ancestor-descendant relations of node coordinates 

 
(C) F3: Descendant address generation 

In spatial orientation tree encoding step, TSIHT uses 
DFS method to traverse all the nodes of the spatial 
orientation tree. It first searches the root node and each 
one of its branching to its immediate descendants until 
to the leaves. As similar to F2, the descendant address 
may be obtained by left-shifting one bit with adding 
certain necessary values. 

(D) F4: General linear counter 
Within the first three steps of the TSIHT coding 
algorithm, AG behaves a general two-dimensional 
counter. When AG works in mode F4, the address of 
scanning line is generated row-by-row and column-by-
column sequentially. 

(E) F5: Neighbor address generation 
The addresses of the four neighbor nodes originated 
from the same ancestor have the same property that 
their row or column addresses are identical except the 
last bit. And, their address pairs (row,col) of the last bit 
are variety with following sequence (0,0) → (0,1) → 
(1,0) → (1,1). When AG works in mode F5, the 
neighbor addresses of each node can be generated by 
using such principle. Since, each iteration of TSIHT 
coding algorithm ends at F5, after PIE finishes working 
at mode F5, an iteration flag signal It_flag is produced 
to notify other control units. 
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When PIE performs TSIHT coding algorithm, AG 
generates the addresses of the coefficients with coordinate pair 
(row,col) using one of above function units to access the 
coefficient or tag memory. Only one function unit is allowed 
to read input data and execute its task each time. At the front 
of each function unit, a latch is added to reduce the power 
consumption as showing in Figure 8. Besides, before entering 
one function from others, it may also need to clear previous 
state. All these function units are controlled by AG_controller. 
Let C1 and C2 be the clear states, and {s0, s1,…, s11} be the 
control state set of AG controller. The finite state machine of 
AG_controller is illustrated in Figure 12. It also shows the 
states, functions and the corresponded proceeding stages of 
TSIHT coding. 

 
Fig. 12. Finite state machine of AG_controller 

 
(2) Threshold Generator (TG): TG is used to generate 

initial threshold, n = ⎣log2( max{|ci,j|} )⎦, from all coefficients 
and to generate the value n at every iteration in TSIHT coding. 
The hardware architecture of TG is illustrated in Figure 13. 
TG first reads all the coefficients and performs or operation 
bit-by-bit to find the maximum coefficient and store it in the 
buffer. After finding the maximum coefficient, Leading Zero 
Detector is used to find the position of most significant bit 
(MSB) to obtain the initial value n. Then, count-down counter 
continually decreases n by 1 and outputs the value to other 
circuits at every iteration. 

(3) Bit-stream Generator (BG): In PIE, Bit-stream 
Generator (BG), as showing in Figure 14, generates the 
encoded bit stream bit-by-bit. The primary component, 
Significance Test Unit, of BG is used to check whether a 
coefficient is significant is significant or not. According to the 

TSIHT algorithm, BG outputs values depend on threshold, 
TST signal, magnitude and sign of coefficient. The output 
signals of BG include the bit_out bit stream and synchronous 
sync signals. Note that, only when sync asserts, the bit stream 
appearing at bit_out signal is meaningful. 

 
Fig. 13. Threshold Generator 

 

M
ux

 
Fig. 14. Bit-stream Generator 

 
(4) Tag Access Unit (TAU): To store three two-dimensional 

tag arrays, two 256×256 bits and one 128×128 bits RAM 
blocks are needed and controlled by Tag Access Unit. In this 
work, each tag memory is 8 bits wide; however, each tag flag 
is a one-bit data. To access each bit from 8 bits wide memory 
using 16-bit address signal, Addr[15:0], TAU uses a similar 
architecture shown in Figure 15. When TAU reads one bit 
from tag memory, it first generates a 13-bits address signal, 
Addr[15:3], to read one byte data, then it uses the lowest 3-
bits address signal, Addr[2:0], to indicate that one-bit tag. 
When TAU writes one bit of tag memory, it first reads the 
mentioned bytes as reading operation, then it replaces that 
one-bit tag to tag memory. Thus, TAU needs one clock cycle 
to read each bit and two clock cycles to write it. 

replace

TSP_out

TSP_out

TAU

TSP
Memory

Addr[15:3]Addr[2:0]Addr[15:0]

 
Fig. 15. TSP memory access in Tag Access Unit 

 
(5) Clock Divider (CD): As mentioned in previous sections, 

TAU needs one clock cycle for reading operation and two 
clock cycles for writing. Besides, AG also needs at most three 
clock cycles to output encoded bit stream including value ’1’, 
sign of coefficient and TST value when it finds a coefficient is 
significant. Thus, PIE needs three different clock frequencies 
in hardware circuit. In this work, Clock Divider generates 
three clocks using divide-by-2 and divide-by-8 circuits. Figure 
16 illustrates these clocks, clk1, clk2 and clk3 respectively. 
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TAU
read

TAU
read
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read
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write TSP write TSP write TSP

valid address

 
Fig. 16. Three different working clocks 

 

VI. VLSI ARCHITECTURE OF TSIHT ENCODER 

A. Synthesis Result 
A prototype of a 256×256 gray-scale image PIE core for 

progressive image transmission has been designed using 
standard cells in a semi-custom methodology. The PIE core 
has been synthesized with VHDL based top-down design flow 
and implemented by using a 0.35-μm one-poly-four-metal 
CMOS technology. The chip has an area of 550 μm × 450 μm 
= 247500 μm2, where the AG accounts for 66% of the total 
surface. Figure 17 illustrates the IC layout of the PIE core. 
The gate count statistics of each circuit component is 
illustrated in Table I. The hardware characteristics of PIE core 
are shown in Table II. 

 

 
Fig. 17. PIE core layout 

 
TABLE I 

GATE COUNT STATISTICS 
 AG TG TAU FSM BG CD Total 

#. 1687 264 264 255 56 34 2560 
% 66% 10% 10% 11% 2% 1%  

 

B. Performance 
Table III lists the latency of the critical path and the gate 

count of the proposed PIE core and other encoders. The gate 
count of EZT encoder in [13] is reported about 5 K gates, it is 
almost twice as proposed PIE core. The gate count of EZW 
encoder in [14] in about 3889 gates, and the latency of the 
critical path is 16.53 ns. Although, the handling image size of 

proposed PIE is less than others. While considering larger 
image size implementation, PIE core only increases the 
memory size but few the gate count of the circuit. Moreover, 
the latency of the PIE core is less than EZT in [13] and EZW 
encoder in [14]. Thus, PIE core is a faster and simpler 
architecture than others. 

 
TABLE 2 

HARDWARE CHARACTERISTIC OF PIE CORE 
Property Result 
Technology 0.38 μm 1P4M CMOS 
Area 247500  μm2 
Total gate count 2560 
Latency 6.32 ns 
Max. working freq. 158 MHz 
Image size 256×256 
Pin count 90 

 
TABLE III 

PERFORMANCE COMPARISON 
 EZT [13] EZW [14] PIE 

Image size 352×288 720×480 256×256 
Latency N/A 16.53 ns 6.32 ns 
Gate count 5000 3889 2560 

 
While considering memory usage, as illustrating in Table 

IV, both SPIHT [4] and intra-band partitioning [15] need 
more than one hundred K bytes memory. The proposed 
TSIHT coding only occupies about 18 K bytes, which is less 
than other coding algorithms. 

 
TABLE IV 

MEMORY USAGE 
 SPIHT [4] Karam’s [15] TSIHT 

Image size 256×256 256×256 256×256 
Memory 250 K bytes 312.5 K bytes 18 K bytes 

 

VII. CONCLUSION 
Although, SPIHT [4] coding is approved that it is the most 

efficient algorithm to implement EZW coding, the problem of 
large amount memory occupied may restrict its applications. 
In this work, proposed TSIHT coding using tag flags can 
effectively reduce amount of memory usage. For a typical 
256×256 gray-scale image, TSIHT only needs 18 K bytes, 
while SPIHT needs 250 K bytes memory, which is almost 
13.9 times the proposed TSIHT coding. The VLSI 
implementation, PIE core, also provides a lower gate count 
(about 2560), smaller area (247500 μm2) and higher speed 
(158 MHz at Max.) circuit, which is convenient to be 
integrated into other image compression systems. 
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