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Abstract

Describing the behaviors of stress singularities correctly is essential for obtaining accurate numerical solutions of com-
plicated problems with stress singularities. This analysis derives asymptotic solutions for functionally graded material
(FGM) thin plates with geometrically induced stress singularities. The classical thin plate theory is used to establish the
equilibrium equations for FGM thin plates. It is assumed that the Young’s modulus varies along the thickness and Pois-
son’s ratio is constant. The eigenfunction expansion method is employed to the equilibrium equations in terms of displace-
ment components for an asymptotic analysis in the vicinity of a sharp corner. The characteristic equations for determining
the stress singularity order at the corner vertex and the corresponding corner functions are explicitly given for different
combinations of boundary conditions along the radial edges forming the sharp corner. The non-homogeneous elasticity
properties are present only in the characteristic equations corresponding to boundary conditions involving simple support.
Finally, the effects of material non-homogeneity following a power law on the stress singularity orders are thoroughly
examined by showing the minimum real values of the roots of the characteristic equations varying with the material prop-
erties and vertex angle.
© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Functionally graded materials (FGMs) were first produced in Japan in the mid-1980s (Niino and Maeda,
1990). An FGM is a multi-phase material comprised of different material components, such as ceramics and
metals, that have various mixture ratios and microstructures. The gradual variation in material composition
rather than sharp interfaces, as in the case of multilayered systems (i.e., laminated composites), significantly
enhances the thermal and mechanical features of FGMs. Furthermore, FGMs can be designed to meet partic-
ular requirements, such as enhanced stiffness, toughness and resistance to corrosion, wear and high temperature,
by using materials or material systems with various properties. Consequently, in the last two decades, FGMs
have been used in numerous demanding engineering applications including military armor, thermal barrier
coating for turbine blades and internal combustion engines and machine tools.
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An FGM plate can be designed with material properties that vary gradually in the thickness direction, such
that the plate is non-homogeneous in that direction only. A plate is a widely used component in practical engi-
neering, and has various shapes. A plate with a reentrant corner or V-notch often shows stress singularities at
the corner or vertex. These stress singularities must be considered if analysis is to be of real use. Stress singu-
larity behaviors in a problem must be properly considered to obtain a convergent and accurate numerical solu-
tion (Leissa et al., 1993; Huang et al., 2005).

Studies of stress singularities resulting from various boundary conditions in angular corners of plates are
limited to homogeneous plates or bi-material plates. Williams (1952a,b) first showed the stress singularities
of a thin plate under extension or bending due to various boundary conditions. Based on plane elasticity
or classical plate theory, several studies used various approaches to investigate stress singularities at the inter-
face corner of a bi-material plate (Hein and Erdogan, 1971; Bogy, 1971; Rao, 1971; Gdoutos and Theocaris,
1975; Dempsey and Sinclair, 1981; Ting and Chou, 1981). Burton and Sinclair (1986), Huang (2002a,b, 2003,
2004), and McGee et al. (2005) investigated the stress singularities at thick plate corners using different plate
theories or various analytical solution techniques. Based on three-dimensional elasticity, Bazant and Estenss-
oro (1977), Keer and Parihar (1977), Schmitz et al. (1993), and Glushkov et al. (1999) applied different numer-
ical solution techniques to investigate geometrically induced stress singularities at a three-dimensional vertex
of a homogenous body. Somaratna and Ting (1986) and Ghahremani (1991) used a finite element approach to
study stress singularities in anisotropic materials and composites. Huang and Leissa (in press) developed
three-dimensional corner displacement functions for bodies of revolution.

Although geometrically induced stress singularities on an FGM plate have never been investigated, crack-
related problems in FGMs have been frequently studied using plane or three-dimensional elasticity theory.
Based on plane elasticity, Delale and Erdogan (1983) and Erdogan (1985) employed integral equation tech-
niques to solve crack problems with mechanical loading, whereas Noda and Jin (1993) and Jin and Noda
(1993) considered thermal loading. Furthermore, Erdogan and his co-workers (1988, 1991) investigated inter-
face crack problems in bonded FGM plates. Using three-dimensional elasticity, Gu and Asaro (1997) applied
an asymptotic solution of crack tip stress and displacement fields for homogeneous materials to examine small
crack deflection in brittle FGMs. Gu et al. (1999), Rousseau and Tippur (2002), Kim and Paulino (2002), and
Jin and Dodds (2004) applied different finite element techniques to solve various crack problems. Chen et al.
(2000) and Yue et al. (2003) utilized the mesh free Galerkin method and boundary element approach, respec-
tively, to solve various crack problems.

This work examines geometrically induced stress singularities for an FGM plate using classical thin plate
theory. The equilibrium equations in terms of displacement components on the mid-plane are developed for
an FGM thin plate. The in-plane displacement components are coupled with the out-of-plane displacement
component in the equations due to the non-homogeneity of an FGM. Asymptotic analysis of stress singular-
ities in the vicinity of a sharp corner is carried out using the eigenfunction expansion approach. By assuming
constant Poisson’s ratio along the thickness, the characteristic equations for determining orders of stress sin-
gularity at the sharp corner are established for different sets of boundary conditions along the two radial edges
forming the corner. The asymptotic solutions for the displacement functions are also explicitly presented. The
effects of elasticity modulus variation along the thickness on stress singularity orders are thoroughly examined.
These results are the first shown in the published literature.

2. Basic formulation

Consider a very thin wedge (or sector plate) (Fig. 1). The wedge is composed of FGM with material prop-
erties varying in the thickness direction (z-direction). That is, the wedge is non-homogeneous only in the thick-
ness direction. The displacement field for the wedge with cylindrical coordinates (Fig. 1), based on the classical
plate theory, is given as

u(r,0,z) = uy(r,0) — zw,, (la)
o(r,0,z) = vo(r,0) — ’Z—’w,o, (1b)
w(r, 0,z) = w(r,0), (Ic)
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Fig. 1. Coordinate system and positive displacement components for a thin wedge.

where i, v, and w are the displacement components in r-, -, and z-directions, respectively; u, vg, and w are the
corresponding displacements on the mid-plane; the subscript ,/”> denotes partial differentials with respect to
the independent variable j; —h/2 < z < h/2, where £ is the thickness of plate.

Introducing the following stress resultants:

h/2
(Nr7NUaNrU7QraQ()) = / (O-rho-()(ho-r(ho-rmg()z) dZ7 (23>
—h/2
h/2
(M,,My,M,q) = / 2(6y, 690, 019) dz, (2b)
—h/2

where o;; are stress components, and using the principle of stationary potential energy, one can obtain the
equilibrium equations without external loading (cf. Reddy, 1999)

N, +Nyuo/r+ (N, —Ng)/r =0, (3a)
Ny, 4+ Nog/r+2N,9/r =0, (3b)
0., +Qp/r+0,/r=0, (3¢)
M., +Myo/r+ (M, —My)/r— 0, =0, (3d)
Mg, + Mg /r+2M,/r — Qp = 0. (3¢)

In addition, the following boundary conditions along 6 = o should be specified:

Uug Or N,~(), Uy Or N(), W Or M(), w or V(),

where effective shear force Vy= Qg+ M,y,. Along the r-constant edge, the following conditions should be
prescribed:

uy or N,, vy or Ny, w,orM, worlVl,

where V, = 0, +1M,p.

The displacement functions used in the classical theory (Egs. (1)) result in zero transverse strain compo-
nents (¢,., &, and ¢..) and a plane strain case. Although ¢.. = 0 causes that the transverse normal stress o..
does not equal zero identically, o.. does not appear in the principle of stationary potential energy used to
derive the equilibrium equations (Egs. (3)). Consequently, the transverse stress is neglected, which implies a
plane stress case. Nevertheless, a thin plate is in a state of plane stress from practical considerations because
the thickness is very small compared to the in-plane dimension. The plane stress constitutive equations are
applied in the following. Similar arguments are also given in Reddy’s book (1999) for applying the classical
plate theory to study the behaviors of laminated composite thin plates.

Using Egs. (2), plane stress constitutive equations for an isotropic material and linear strain—displacement
relations, the stress resultants can be expressed in terms of displacement functions as
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_ D, D - D
N, = =u + Equo, + — v — _1W,r —Eyw,, — —;W,ee, (42)
r r r r
E — E, E — E
Ny = 70u0 + Douy - + *OUOAH - JWJ —Diw,r — %Wﬁ(” (40)
r r r
G Go 2G 2G
erZ—Ouoa——vo+Govor+_21W,0——1W,rva (4c)
r v r r
D — D D — D
M, = —luo + Ejug, + —IUO,(? - _ZW.,r = Eawr — _zzwv%’ (4d)
r r r r
E — E E — E
My = —luo + Dyuy, + —1170,0 - _2W,r —Dyw,, — _22Wv09’ (4e)
r r r r
G G, 2G 2G
M, 7_1u09 *_UO‘i’GlUOr —22W,6 *—ZWJ@? (4f)
r r r r
where
B W2 _ h2oop _ h2oE
G = / GZdz, E = / ——27dz, Di= / o ddz ()
s wp l=v w2 L=v

and G, E, and v are shear modulus, modulus of elasticity, and Poisson’s ratio, respectively, all of which can be
functions of z. Since the displacement field given in Egs. (1) leads to zero out-of-plane shear strains, the fol-
lowing relations between shear forces and displacement functions are obtained via equilibrium equations (Egs.
(3d, 3e)) and Eqgs. (4d, 4e),

G - uy U, Dy v Vo E
0, = —;Moﬁee +E, (uo,n- - —ng - ) + _UOr(') + G (*% + = 0) - —2100,9
r r r r r
2w 2w, — W . w W,
i G2< 00 ,200) +D, (700 _ ,200> 4 Ez( 00 + 72 W W,rrr>7 (6a)
I" 14 T T r
— (upp U\ | E D E
0y = Gl(—+ )+r—uoo+ uor0+G1( )+r_200‘00
2G, = Wo0 W0 D,
- —W,rrﬂ — L2 <—3 2 ) - _W,rr(?- (6b)
r r r r

Substituting Eqgs. (4a)—(4c) and (6a), (6b) into Egs. (3a)—(3c¢) yields the equilibrium equations for displacement
functions as

- u U, o, — (W, Wy (e
EO(__<2)+ 0, +u0,rr_¥)+El(__ 7 m—l-—)‘*‘DO(“)
r r r r r

2
= (Weo W00 = Voo  Voro  Uo,00 — (2wgo  2W,00
B ) v o (B2
+Di(—5 =5 )+ G~ 5 ) + G 3 0 (7a)
= (U v =/ Wa W — (Uo, = W
Bo(+ 20 + By (- 252 - 29 5y () + Dy (- 2)
r r r r r r
— vy Vo, U Uo. — 2W
+GO< e s °"’)+G1(— ’”>_0 (7b)
r r r r
—= (U0 + Voo Uo, + Vo, 2ug g 9o + Vo,
£ ( 0+ Voo 0 . 0r0 | Zto + g+ 0,00 : o,ooo)
r r
Wy Wr) 2w 2Woe W — (Voo | Uoy
+E2< _ 496 AW W0000 _er> +D1( 0 0,209)
¥ r r r
2w 2w, 2w,, 200,00 2o,
+D2( 00 00 00> i G1< 010 | oé 00)
I" r r
4w 4w, 4w,,
+ Gz( R 9‘*) =0 (7¢)
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Each of Egs. (7a)—(7c) involves uq, vy and w. Accordingly, the in-plane displacement components on the mid-
plane uy and vy are coupled with out-of-plane displacement w.

3. Asymptotic solutions

Using separation of variables, the homogenous solution of Egs. (7) can be assumed as
up(r,0) = Q,(NU0), wvo(r,0) = Q,(r)V(0), and w(r,0)=Q,(r)W(0). (8)

Based on the concept underlying the Frobenius method, the functions of r are expressed as a power series in r.
Hence, Eq. (8) is further expressed as

w(r.0) = 3" FUL0.2), w(r0) = 3 ,0,0), and w(r0)= S FL0,2),  (9)

n=0,1 n=0,1 n=0,1

where 4 belongs to the set of complex numbers with positive real parts to meet the regularity requirement on
displacement components at » = 0. Substituting Eq. (9) into Egs. (7) produces

ZI’/#"*Z{F()()»—F n— 1)(/1 +n+ I)U,, —I—E()Unﬁgg + ((/L"‘”)BO — E() + ()» +n— l)ao)ang

—E(A+n—1D0+n+ 1YW, + E — (h+n)(Dy +2G,))W,0} =0, (10a)
Zr””’z{(Eo +Go+ (A+n) (Do + Go))Uno+ (h+n—1)(A+n+1)GoV,

+EoVupo— (A+n+1)(Er+ (A+n)(Di +2G))W,g— EtW, 000} =0, (10b)
S A E (A n = 1) (A4 n+ DU, + (Ey + (A+ n)(Dy + 2G1)) Uy

+ (h4n—=1)(=E, + (A +n)(Dy +2G\))\Wo + E1 Voo — Ex(A+n— 1A +n+ 1YW,
=+ (—2E2 — 2(2 + I’l)z(ﬁz =+ 262)) Wn,g(; — Ez W,,}gggg} =0. (IOC)
To investigate the stress singularity features of solutions for Egs. (10) in the neighborhood of » =0, only

those solutions corresponding to the lowest order of r must be addressed. Consequently, the following equa-
tions corresponding to n =0 in Egs. (10) must be solved:

E()(/l — 1)(/1 + I)Uo —I—E()U()_’(;g + (/150 —Eo + (/L — 1)60)1/0‘9

-E(A-1)(2+ 1)2W0 + (E, — A(Dy + 261))W0,00 =0, (11a)
(Eo + Go + A(Do + Go))Ugpp + (A —1)(A+1)GoVo + EoVo 0

— (A D(E\ + ADy +2G1))Woy — ExWo g0 = 0, (11b)
Ei(2 = 1)’ (24 1)Uo + (Ey + A(Dy +2G1))Uogo + (2 — 1)(—E1 + A(Dy +2G1)) Vo + E1 Vo0

—Ey(A— 1A+ 17 Wo+ (=2E; — 22*(Ds + 2G>)) W09 — E2Wo 9000 = 0. (11c)

Egs. (11) are a set of linear differential equations with constant coefficients. As the coefficients are not spec-
ified, obtaining an analytical solution in a simple explicit form is typically impossible. Hence, a further
assumption regarding the material properties is made in the following. Since the variation range of Poisson’s
ratio is small and the stress singularity order at the interface corner in a bi-material isotropic plate is not sen-
sitive to Poisson’s ratio (Huang, 2002a), the Poisson’s ratio is assumed constant through the thickness. Then,
D;, E;, and G, defined in Eq. (5) satisfy the following relations:

(1—-0)=
5 En (12)

E[ = UF,‘ and 6,‘ =

Substituting Eq. (12) into Egs. (11) and following a typical procedure for solving a set of linear differential
equations, the general solutions for U,, V,, and W, are obtained as
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Uo(0,4) = Ay cos(A+ 1)0 4 Ay sin(A 4+ 1)0 + A3 cos(4 — 1)0 + Ay sin(4 — 1)0, (13a)
Vo(0,4) = Ay cos(A+ 1)0 — A; sin(4 + 1)0 + (k144 — 12B4) cos(4 — 1)0

+ (—K1A3 + KzB3) sin(}v - 1)9, (13b)

Wo(0,4) = Bycos(A+ 1)0 + Bysin(A+ 1)0 4+ B3 cos(A — 1)0 + By sin(4 — 1)0, (13¢)

where x; = 3£ and k, = m % Coeflicients 4; and B; (i=1,2,3,4) and / are to be determined

from boundary conditions along the radial edges. Notably, zero E; yields the uncoupling between in-plane
and out-of-plane displacement components on the mid-plane. In a brief summary, the solutions for Egs.
(7) with the assumption of constant Poisson’s ratio along the thickness are

up(r, 0) = r*{A4; cos(A + 1)0 + Ay sin(A + 1)0 + A3 cos(L — 1)0 + Az sin(L — 1)0} + O(r*™), (14a)
vo(r, 0) = r*{4scos(Z 4+ 1)0 — Ay sin(/ + 1)0 + (1,44 — 12B4) cos(A — 1)0

+ (—1ds + 1Bs) sin( — 1)0} + O(+1), (14b)
w(r,0) = r*"'{By cos(1 + 1)0 + By sin(/ + 1)0 + By cos(A — 1)0 + Bysin(A — 1)0} + O(+*2), (14c)

where O(r*"") are terms with order in r higher than (or equal to) 4 + 1. The relationship between displacement
functions and stress resultants given in Egs. (4) discloses that the singularities of the stress resultants (N,, Ny,
Ny, M., My, and M,) exist when the real part of 1 <1.

4. Boundary conditions, characteristic equations and corner functions

After solving the equilibrium equations, attention is now turned to find out 4;, B; and 4 in the solutions
from the boundary conditions along the radial edges forming a corner. A wedge with simply supported radial
edges and a vertex angle o is utilized to demonstrate a typical procedure for deriving these coefficients and A.
The boundary conditions along a simply supported radial edge are uy = vg = w = My = 0, which simulate the
mechanical support of a knife-edge along the mid-plane (see Fig. 2). By taking advantage of the problem’s
symmetry and considering —o/2 < 0 < «/2, the solutions given in Egs. (14) are separated into symmetric
and anti-symmetric parts. The symmetric solutions satisfying the boundary conditions yield

A, cos(/ + 1)%+A3cos(z _ 1)% _

— Ay sin(A+1) g + [—K143 + K2B3] sin(4 — 1)

0, (15a)

=0, (15b)

NSRS

B cos(i—?—l)%—?—&cos(i—l)%:ﬂ, (15¢)
A1(v — 1)IE, cos() + 1)%—/13(—1 + (4= Vit — Ww)E cos(/ — 1)%
— By(v — 1)A(4+ 1)Es cos(/ + 1)%+B3[K2(z ~DE, — 23+ Ao — 1) + v)Es] cos(/ — 1)% —0. (15d)

Eqgs. (15) are a set of four linear algebraic equations for 4; and B; (i =1 and 3). To have non-trivial solu-
tions for 4; and B; (i=1 and 3) yields a 4 * 4 determinant equal to zero, which leads to:

(cos(/l +1) %) (cosu - 1)%) —0, (16a)
or

sin o + 7y, sino = 0, (16b)
where 7, = M. Eqgs. (16) are the characteristic equations of A for symmetric solutions correspond-

2E2+4(~340)EoE,
ing to the simply supported boundary conditions along two radial edges.

When 4 satisfies sin Ao + 7, sin o = 0, the relations among A4; and B; (i =1 and 3) are obtained from Egs.
(15). Then, the corresponding asymptotic solutions are
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plate

(Top view)

mid-plane

N

N o]

(Side view)

Fig. 2. Sketch of a plate having an edge with mechanical support of a knife-edge along the mid-plane.

Uo :A3r)‘{<—%) cos(A+1)0 + cos(4 — 1)0}, (17a)
Uy = A3}"/1{ (%) Sin()n + 1)0 =+ (—Kl + Kf217]1 Sin(/l — 1)0}7 (17b)
w= Aar”l{m {(_ %) cos(A+ 1)0 + cos(A — 1)0} }, (17¢)

where 7§, = Kiz (— :iﬁgﬁfi;:ﬁ EZ:E;B% + ;q). These asymptotic solutions are also called corner functions corre-
sponding to the characteristic equation sin A« + 7; sino = 0. The asymptotic solutions for in-plane and out-
of-plane displacement components on the mid-plane are coupled.

Similarly, one can find the corner functions corresponding to different characteristic equations (i.e.,
cos(4—1)5=0orcos(A+1)5= 0in Eq. (16a)), which are listed in Table 1. Notably, the characteristic equa-
tion cos(4 — 1) =0 but cos(2+1)5 # 0 leads to 4; =0 and By = {4, and the solution of v, involving r
vanishes. The lowest order of r in the solution of vy will be (4 + 1), which can be observed from Egs. (9) or
(14b). This solution of vy does not produce stress singularities and is not given in Table 1. A similar situation
also happens to the asymptotic solutions of u, and v, corresponding to cos(4+ 1) = 0 but cos(4 —1)5 # 0.

Using the anti-symmetric parts of solutions in Egs. (14) and following the procedure above, the following
characteristic equations are easily established:

(sin(A + 1)a/2)(sin(4 — 1)a/2) = 0, (18a)

or
sin Ao — 7y sina = 0. (18b)

The corner functions corresponding to these characteristic equations are also given in Table 1. The character-
istic equation (sin(A + 1)o/2)(sin(2 — 1)a/2) = 0 may also result in the asymptotic solutions of uq or vy with the
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Table 1

Corner functions corresponding to different boundary conditions

2809

Boundary conditions

Corner functions

Simply supported-simply supported (S-S)
(=42 <0< of2)

Simply supported-simply supported (S-S)
(—0/2 <0< 0/2)

(1) Symmetric case

When (cos(4—1)a/2) =0 and cos(4+ 1)a/2) #0,
= Asr*{cos(A—1)0}, w=4 r’“{K— cos(4 — 1)9}

When (cos(4+ 1)a/2) =0 and (cos(4 — 1)a/2) #0,

w = B;r**!{cos(1+ 1)0}.

When (cos(4—1)a/2) =0 and (cos(Z+ 1)a/2) =0,

uy = r*{A; KfH) Ky cos(4+ 1)0 + cos(4 — 1)9}

B, KH)KZ cos(4 + 1)6} },

by — rz{(_K1A3 + kaBy) {(_M> sin(A+ 1)0 + sin(i — 1)0} }

sin(4 + 1)a/2
w = r"T{B, cos(Z + 1)0 + B; cos(/ — 1)0}.
When 7, sin o + sin Ao = 0,

= A" {( %) cos(A+l)0+c05(A,1)9}
{ Zzz j;i aﬁ) sin(A+ 10 + (=K1 + K2i) sin(2 — 1)9},

(oo
- { (S 3s) i oo o] .

wnee = |Gt ) (et o)

(2) Anti-symmetric case
When (sin(A — 1)a/2) =0 and (sin(4+ 1)a/2) #0,

uy = Agr*{sin(A — 1)0}, w=4 r”“{h sin(4 — 1)0}

When (sin(A+ 1)a/2) =0 and (sin(4 — 1)a/2) #0,

w = By {sin(2 + 1)0}.

When (sin(A — 1)a/2) =0 and (sin(4+ 1)a/2) =0,
{ [ <°° i) “/2> Ky sin(Z + 1)0 + sin(/ — 1)9}

cos(A+1

1B, [(%) K sin(4 + 1)9} }7

Vo = r*{(x1A4 — K2By) {7 (%) cos(/+ 1)0 + cos(4 — 1)0} },

w = r**"{B,sin(L + 1)0 + Bysin(i — 1)6}.
When sin Ao — 7 sina = 0,

= Ay { ( %) sin(4 + 1)0 + sin(4 — 1)0},

(2 +
vy = Aar” { ( :EE/{ — 32;) 1)60 + (151 — K2772) cos(A — 1)9},

W= A {,—z K %) sin( + 1)0 + sin( — 1)9] }
e = [(-Sve) (e ) )

(continued on next page)
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Table 1 (continued)

Boundary conditions

Corner functions

Free—free (F-F) (—¢/2 <0 <

Clamped-clamped (C-C) (—

Free—clamped (F-C) (0 < 0 <

0/2)

2/2<0<af2)

o)

(1) Symmetric case

= Bsri{fﬁ (% cos(A+1)0 + 7js cos(4 — 1)0},

= By { (%) sin(A 4 1)0 4 (=174 + 12) sin(4 — 1)()},
w = Byt {ﬁ5 <%> cos(4+1)0 4 cos(4 — 1)(9}7

s(A+1
where
. _ BHA=IH0)+oE o (A+EDE B A(=1+0) + 0]
5= C1+0E = M7 TE BT TN+
(2) Anti-symmetric case
- (sin(A—1)a/2

= Byr {113 (sm A+1)0(/2> 1)0 + iy sin(4 — 1)0}

—B/l’ M (/L+1)0+(*7 ) («71)9
vy = Bar*{ 13 Sl 1)5,2 cos KiTja — K2) cos(/ ,

_ g [ (G D32 o
w = Byr {n <sin(i+1)cx/2 sin(A + 1)0 +sin(4 — 1)0 5.

(1) Symmetric case

o cos(4 — 1)a/2 )
= Ay { <7m) cos(4 + 1)0 + cos() — 1)9}7

[ :Agr/;{ (%) Sil’l()» + 1)0+ (71(?1 -+ Kz?“) sin(i — 1)9},

w=4 r’“{1 K—%) cos(A+ 1)0 + cos(4 — 1)0} }

(2) Anti-symmetric case

i sin(4 — 1)a/2
uofA4r{< S0 1 a(/2>sm -i-lé)-i—sm(/l—l)f)}7

(
o sin(4 — 1)o/2
vy = Ay {( Sn(+1 “/2> cos(A+ 1)0 + (k1 — Kkaij2) cos(A 1)(—)}7

w = Ay {ﬁz K— M) sin(4 + 1)0 + sin(4 — 1)0} }

= Byr*{[fjs cos(/ + 1)0 + 1’16% sin(2+ 1)0
0
_ , _E
+7jgcos(A —1)0 +ij; = sin(Z — 1)0]},
0
i En o
= Bgr"{[mi— cos(Z+ 1)0 — ij3sin(4+1)0
0

E, .
(a2 (1) = Kol cos(i = )0+ (sl +2)sin( = 1],

W:B3r”l{{?]5 cos(A+1)0 + % ’_7: 0 sin(4 + 1)0 + cos(4 — 1)0 + 77 sin(4 — 1)9} }7
A

where

; (P =Dw=1) 413+ Av—1) +0v)cos2u— (3+ A(v — 1) +v) cos 2/

6: n n . " b

(v —1)(Asin 20 — sin 24x)
=34 .-v—=w+A(v—1)cos2a+ (v—1)cos 2
= (v — 1)(Asin 20 — sin 21x) '
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Table 1 (continued)

Boundary conditions

Corner functions

Simply supported—clamped (S-C)
0<0< )

Free—simply supported
(F5) (0<0<a)

uy = Byr*{ij10(—2 sin Osin 10) — 71, sin(A 4 1)0 + 712 sin(4 — 1)0},
vy = Byr*{[~71 cos(A + 1)0 — o sin(A + 1)0
+ (k1712 — Kaijg) cos(A — 1)0 + (k1710 + x2) sin(4 — 1)0]},
w = By { [~ cos(L + 1)0 + fg sin(% + 1)0 + cos(1 — 1)0 + 7o sin(1 — 1)6]},
where
—14+ 21— 2cos2u+ cos2in —1— 21+ Acos2uo+ cos2in
B Asin 2o — sin 21a B Asin 2o — sin 2o
(1 = A)E| +4IE, _ —2Kyi0 sinasin Ao + w7 sin(A — 1)a
T k=D =g M wsin(A+ Da—sin(4— Da
2 = {(A—=1)Asin(A — 3)a + A(rc; 4+ 24 — 1 4) sin(/ + 3)a
— k1 (2= 1) sin(A — D4 [=3 — A2 + 32) + 2, (Jp — 1)] sin(2 + 1)
+ 2+ K1 —x1A) sin(34+ Do+ (A — 1)sin(34 — Da} /{2E 1 (=1 + w1 (A — 1) = 2)
(—Asin 20 + sin 24a) [sin(A — 1) — & sin(4 + 1)o] }.

Ny =

g =

Mo

)

uy = Byr*{[flig cos(% + 1)0 + T sin(A + 1)0 + 719 cos(A — 1)0 + iz sin(2 — 1)0]/71a},
vo = Bsr*{[(7116/T1a) cos(A 4+ 1)0 — (fj1g/i1a) sin(A + 1)0
+ [re1 (7 /Ma) — 12i1s] cos(4 = 1)0 + [—rc1 (719 /Ta) + 2] sin(4 — 1)},
w = By {[i15 cos(A + 1)0 — jy37ys sin(A + 1)0 + cos(A — 1)0 4 75 sin(4 — 1)0]},
(=3+Av—=1)—0v)
L-D@A+1) ~
i = Eo(o — D[54 (0 —2)v — 22(0 + 1)* + 22 (v + 1)* cos 2«
—(v=3)(v+1)cos Ao [—(—2 + A(v — 1)) cos dasina + (v + 1) cos a sin A],
_ —2cosacos o+ (1 4+ A(v — 1) 4+ v) sina + sin Ao
s = (=24 A(v — 1)) cos Ausino — (v + 1) cos orsin Ao’
e = —2E {2 (2 4+ 0)(0* = 1) cos(A—3)a — [3+ 104+ 2 —22° —4(> + 1)
+ (1 + 264 23 +22))0*] cos( — Do — [-10 — 34+ 227 = 1°
+ 2+ 23 4 46+ )] cos(L + Do — 22 (v + 1) cos(2 + 3)a
— (=34 )(v* = 1) cos(1 — 37)a
+ 0+ D[-34 (=1 + 2 = )] cos(1 + 32)a},
7 = —2E {72 (v = 1)*(=1 + A+ v+ ) cos(Z — 3)a+ [-2(A+ 1)(2> = 5)
+ (A=3)BA=1)+2(A+ 1)’v* =342+ 1)"v*] cos(A — 1)
+[3+B+i(h=1) =40 =3(Z— 1) — 2+ 1)
+32(h+ 1)) cos (4 + 1o — 22(A+ o> — 1) cos(4 + 3)a
—(w=DB=v+A(v—1)(=340v+ )] cos(l —32)u
+ (A4 Do(w? — 1) cos(1 + 37)a},
s = 2E {22 (7 + Do(* — 1) sin(i — 3)a+ 22(v + 1) sin(4 + 3)
— (= 1)[=34 v+ 20+ 2+ 24— 1)) +2(22 + i+ 1)?)]sin(A — Da
4 [=2(=5 + 0?) + 2P = 1) = 222(1 4 3v*) + (1 — v?)] sin(2 + 1)
+[3+ 0@ +v— 220 = 1))]sin(1 + 32)x
+ A2+ Do(v?* — 1) sin(—1 + 32)a},
o = 2E\{=7*(v = 1)’ (=1 + A+ v+ Av)sin(4 — 3)a
— 2+ 0)(0* = 1) sin(A + 3)x
10+ A(=13 + A(=2+ 32)) — 220(1 + (A= T)A) — 2+ 3A(4 + 1)*)?
+ 202 + 24+ D)o’]sin(A — Da+ [-23 (0 = 3)(v = D+ 1).

where N3 =
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Table 2

Characteristic equations

Boundary conditions Characteristic equations

S-S Symmetry : (cos(4 + 1)a/2)(cos(A — 1)o/2) = 0"; 7 sino + sin Ao = 0;

where ?1 = :;—l, K1 = A[—ZE% + (1 + U)E[)EZL Ky = 2E% + (—3 + l))E(]Fz
2

Anti-symmetry : (sin(4 + 1)a/2)(sin(A — 1)a/2) = 0"; sin e — J; sino = 0.

F-F Symmetry : [A(—1+v)sina+ (34 v)sinle] = 0%;  (Asino + sin io) = 0%
Anti-symmetry : [~A(—1+v)sino+ (3 +v)sinde] = 0%;  (—Asina + sin la) = 07

cC Symmetry : (Asino + sin Jo) = 0%;  [A(1 4 v) sino + (=3 + v) sin Jo] = 0%
Anti-symmetry : (—Asino + sin o) = 0%;  [A(1 4 v) sin — (=3 4 v) sin 2a] = 0%

F-C 4 — J2(—1+v)*sin® &+ (3 4 v)(—1 + v) sin® Jo = 0"
— 44 22(1 4 v)*sin® @ — (=3 +v)(1 + v) sin® Az = 07

S-C — EoE>[22(1 + v)’sin*o — (=3 + v)* sin” Ag] (— 4 sin 20 + sin 240)
+ 2E3{— 7% sin® a[A(1 + v) sin 2a + (1 — 3v) sin 2]+
+ sin® Jo[—A(=5 + 3v) sin 20 + (=3 4 v) sin 24a]} = 0

— EoEy[—4+ 22(1 +v)?sin® o0 — (=3 + v)(1 + v) sin” Aol

F-S
X (=A(=1 + v)sin 20 + (3 + v) sin 24a)
+ 2E*{—Jsin 204 4+ 2% (=1 4 v?) sin® & + 3(—1 + v?) sin” 10
+ sin 24a[—4 + 22 (1 + v)(1 + 3v) sin® & + (1 + v)(1 + 3v) sin® Ja]} = 0
Note:

* Means that the equation is identical to that for a homogeneous plate under bending.
# Means that the equation is identical to that for a homogeneous plate under extension.
S, C and F denote simply supported, clamped and free boundary conditions, respectively.

order of r larger than A, which are not shown in Table 1, similar to what happens to the asymptotic solutions
corresponding to cos(4+1)5 = 0 or cos(4 — 1)5 = 0 shown above.

Characteristic equations (16a) and (18a) do not involve material properties, and are identical to the
characteristic equations for a homogeneous thin wedge with two simply supported radial edges under
bending. However, material properties are involved in the characteristic equations (16b) and (18b).

The characteristic equations for all combinations of fixed, free and simply supported boundary conditions
have been obtained and summarized in Table 2, while the corresponding corner functions are all listed in
Table 1. Notably, the results in these tables were obtained by taking advantage of the symmetry of the prob-
lem and considering —o/2 < 0 < /2 when the same boundary conditions are imposed along the two radial
edges. These results are the first shown in the published literature.

Table 2 reveals that the characteristic equations corresponding to the boundary conditions without involv-
ing simply supported conditions are identical to the combination of the characteristic equations for homoge-
neous plates under bending and extension. The non-homogeneity considered here does not influence the stress
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singularity orders at the corner of a thin plate if one of the two radial edges around the corner is not simply
supported. However, Table 1 shows that most of the asymptotic solutions for the in-plane and out-of-plane
displacement components on the mid-plane are coupled and are significantly different from those for homog-
enous plates.

5. Numerical results for 4

To demonstrate the effects of material non-homogeneity on stress singularity orders, a typical non-homo-
geneity is considered, assuming the variations of the Young’s modulus through the thickness of plate given as

E(z) = By + V(2)AE, (19)

where V(z) = (z/h + 1/2)", E}, is the value of Young’s modulus at z= —A/2 and AE is the difference between
the values of Young’s modulus at z = /2 and z = —A/2. Consequently,

_ 1 AE/E,

Eo = Esh [1 —0? * (I+m)(1— 1)2)} ’ (20a)
= e m(AE/Ey)

Fr=Eh {2(1 )@+ m) (1= 02)}’ (200)
— 1 (2+m+m*)(AE/E})

B2 = Esh {12(1 A AT mC i mGBrm— R (20c)

The roots of the characteristic equations corresponding to boundary conditions involving simple support (see
Table 2) depend on m, v and AE/E;,. The Poisson’s ratio is set equal to 0.3 for the results shown below. The
roots of the characteristic equations considered below, except for Egs. (16a) and (18a), were accurately ob-
tained by the numerical technique proposed by Miiller (1956). The roots of Egs. (16a) and (18a) were analyt-
ically determined.

Fig. 3 depicts the variation of the minimum real parts of A (Re[4]) with the material properties and the ver-
tex angle of a wedge having simply-supported radial edges. The roots of Egs. (16a), (16b), (18a), and (18b)
were obtained independently. An infinite number of roots exist for each of these equations. Only the root with
a minimum real part is important as it determines the stress singularity order at the vertex. The minimum val-
ues of Re[4] obtained from Eq. (16a), independent of material properties, are smaller than those for Eq. (16b)
for a wide range of material properties. Similarly, minimum values of Re[4] determined from Eq. (18a) are less
than those for Eq. (18b) with different material properties when minimum Re[4] is less than unity. As a result,
the singularity order of the stress resultants at a sharp corner with simply-supported edges is very likely deter-
mined by Eq. (16a) or (18a), independent of material properties.

Figs. 4-6 illustrate the effects of material non-homogeneity on the minimum Re[/] of the characteristic
equation corresponding to simply supported-clamped boundary condition. When m =0 or AE =0, which
generates homogeneous thin plates, the characteristic equation for simply supported-clamped boundary con-
dition given in Table 2 yields

Z(14v)sin® o — (=3 +v)*sin® Ja = 0, (21a)
or — /sin2o + sin2o = 0. (21b)

Eq. (21a) is identical to the characteristic equation obtained by Williams (1952a) for a homogeneous wedge
with fixed radial edges under extension, whereas Eq. (21b) is the same as that given by Williams (1952b)
for a homogeneous wedge with simply supported and clamped radial edges under bending.

Fig. 4 shows that the minimum Re[4] of Eq. (21b) is smaller than that of Eq. (21a), indicating that bending
produces more severe stress singularities than does extension at the vertex of a homogeneous wedge. Material
non-homogeneity causes the minimum Re[A] of the characteristic equation to be somewhat different from that
of Eq. (21b). The stress singularities at the vertex are not present when the vertex angle is less than roughly
120°.

In order to further investigate the effects of material non-homogeneity on stress singularities, Fig. 5 displays
the effects of m on the minimum Re[/], where AE/E;, = 10; and Fig. 6 shows the effects of AE/E;, on the min-
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Fig. 3. Minimum Re[4] of characteristic equations corresponding to simply supported—simply supported boundary condition: (a)
symmetric solution, (b) anti-symmetric solution.

imum Re[A], where m = 2. These two figures show the differences relative to the results for m =0 and AE/
E, =0, respectively. The negative relative reference indicates that the non-homogeneity causes the minimum
Re[1] to be smaller than that for a homogeneous plate. It is interesting to note that the minimum values of
Re[/] for the vertex angle equal to 180°, 270° and 360° are not affected by material non-homogeneity. When
the vertex angle is between around 120° and 180° or between 270° and 360°, the material non-homogeneity
yields the minimum Re[1] smaller than that for a homogeneous plate. The opposite trend is observed when
the vertex angle is between 180° and 270°. Increasing the value of m does not necessarily decrease the relative
differences; however, increasing the value of AE/E, enlarges the relative differences.
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Fig. 5. The effects of m on minimum Re[/] of the characteristic equation corresponding to simply supported—clamped boundary condition.

Figs. 7-9 present the effects of material non-homogeneity on the minimum Re[A] of the characteristic equa-
tion corresponding to simply supported-free boundary condition. When m = 0 or AE = 0, the following char-
acteristic equations are obtained:

— 4+ 22(14v)sin*a— (=3 +)(1 +v)sin® Jo = 0 (22a)
or —A(—=1+v)sin20+ (34 v)sin2l0 = 0. (22b)
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Fig. 6. The effects of AE/E, on minimum Re[A] of the characteristic equation corresponding to simply supported—clamped boundary
condition.
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Fig. 7. Minimum Re[/] of characteristic equations corresponding to simply supported—free boundary condition.

Eq. (22a) is identical to the characteristic equation for a homogeneous wedge with fixed-free boundary con-
dition under extension (Williams, 1952a). Eq. (22b) is the same as the characteristic equation for a homoge-
neous wedge with simply supported and free radial edges under bending (Williams, 1952b). Fig. 7 presents the
minimum Re[A] for Egs. (22a) and (22b). The differences relative to the results for m =0 and AE/E, = 0 are
shown in Figs. 8 and 9, respectively. The value of AE/E, is 10 in Fig. 8, and m = 2 in Fig. 9.
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Fig. 8. The effects of m on minimum Re[4] of the characteristic equation corresponding to simply supported—free boundary condition.
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Fig. 9. The effects of AE/E;, on minimum Re[A] of the characteristic equation corresponding to simply supported—free boundary condition.

Figs. 7-9 reveal several facts. Depending on the vertex angle, the minimum Re[4] of Eq. (22a) can be larger
or smaller than that of Eq. (22b). When the vertex angle is smaller than 126.4°, the stress singularities caused
by extension are more severe than those produced by bending. Changing m or AE/E,, does not affect the min-
imum Re[/] when the vertex angle is 180°, 270°, or 360°. When the vertex angle is between around 61° and
180°0r between 270° and 360°, the material non-homogeneity yields a minimum Re[/] larger than that for
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a homogeneous plate. Increasing m or AE/E;, does not always enlarge the difference between the minimum
Re[A] for an FGM plate and that for a homogenous plate.

6. Concluding remarks

This study has developed the equilibrium equations in terms of displacement functions for an FGM thin
plate based on the classical plate theory and established the asymptotic displacement field to describe the sin-
gular behaviors of stress resultants in the vicinity of a sharp corner. The asymptotic solutions were obtained
using the eigenfunction expansion method and assuming non-homogeneous Young’s modulus and constant
Poisson ratio along plate thickness. This work has also established the characteristic equations for determining
stress singularity orders at the vertex of the corner with different boundary condition combinations. These
asymptotic solutions and characteristic equations are the first given in the literature. Only the characteristic
equations corresponding to boundary conditions involving simple support depend on material non-homoge-
neity. Nevertheless, regardless of the boundary conditions considered, the asymptotic solutions of in-plane
and out-of-plane displacement components on the mid-plane are usually coupled when E; # 0, as defined
in Eq. (5).

In examining how material non-homogeneity affects stress singularity orders, this work considered the
non-homogeneous Young’s modulus following a power law. The dominant stress singularities due to a simply
supported-simply supported boundary condition are very likely independent of the material non-homogeneity.
When the simply supported-clamped boundary condition around a corner is considered, the material non-
homogeneity increases the stress singularity strength when the vertex angle is between approximately 120°
and 180° or between 270° and 360°; and an opposite trend is observed when the vertex angle is between
180° and 270°. When a simply supported-free boundary condition is considered, the material non-homogeneity
decreases the stress singularity strength when the vertex angle is between approximately 61° and 180° or
between 270° and 360°.

The corner functions shown here will be utilized in future FGM plate studies involving geometrically
induced stress singularities to determine accurate free vibration frequencies and mode shapes of thin plates
having such boundary discontinuities. Because other corner functions have been used advantageously for
vibration studies of homogeneous plates (Huang et al., 2005), the present corner functions are definitely
appropriate for FGM thin plate vibration problems. These corner functions can also be used for static stress
and deformation analysis, especially for determining the stress intensity factors for a V-notch or a crack.
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