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A FILTER-BASED SELF-SIMILAR TRACE SYNTHESIZER

Chien Yao*, Kai-Lung Hua, Po-Ning Chen, Jin-Yuan Chen, and Tihao Chiang

ABSTRACT

Recent empirical studies have shown that modern computer network traffic is
much more appropriately modelled by long-range dependent self-similar processes
than traditional short-range dependent processes such as Poisson.  Thus, if its self-
similar nature is not considered in the synthesis of experimental network data, incor-
rect performance assessments for network systems may result.  This raises the need of
a self-similar trace synthesizing algorithm with long-range dependence. In this paper,
we propose and examine the feasibility of a filter-based method for the synthesis of
self-similar network traces.  The proposed approach can alleviate the problems en-
countered by conventional synthesizers, such as random midpoint displacement and
Paxson’s spectrum fitting, which cannot generate self-similar traces on the fly and
may give negative numbers.  Additionally, the extended range of self-similarity of the
filtered approach can be easily managed by the filter truncation window; therefore, a
trace that faithfully matches the measured behavior of true network traffic, where the
self-similar nature only lasts beyond a certain range but disappears as the considered
aggregated window is much further extended, can be generated.

Key Words: self-similar processes, variance-time analysis, filter technique.
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I. INTRODUCTION

Stationary random processes, according to their
autocorrelation functions, can be classified as short-
range dependent random processes or long-range
dependent random processes.  The former have sum-
mable autocorrelation functions, while the latter have
non-summable autocorrelation functions.  Simulations
of short-range dependent random processes have at-
tracted attention for years, and have found many
applications, such as the traffic models of telecom-
munication systems (Bose, 2001).  However, researchers
recently found that the traffic in many modern com-
munication media, such as the world wide web (Beran
et al., 1995; Duffy et al., 1994; Leland et al., 1994;
Meier-Hellstern et al., 1991; Paxson and Floyd, 1995),

and variable-bit-rate (VBR) video transmission (Garrett
and Willinger, 1994), are significantly different from
conventional shortrange dependent traffic models, and
have the renowned self-similar nature.

In the literature, there have been several approaches
proposed for the synthesis of long-rangedependent self-
similar traffic.  They include methods based on fast
fractional Gaussian noise (Leland et al., 1994), the
M/G/∞ queue model (Krunz and Makowski, 1998),
autoregressive processes (Beran, 1994), wavelet (Arby
and Veitch, 1998), ..., etc.  These synthesizers can be
roughly divided into two categories: approaches
derived from a “time-domain” aspect and ones de-
veloped from a “frequency-domain” standpoint.  An
example for the former is the randommidpoint dis-
placement (RMD) algorithm proposed by Lau et al.
(1995), while the spectrum fitting to the fractional
Gaussian noise, as proposed by Paxon (1997), is a
typical synthesizer for the latter type.

The procedure of the RMD algorithm is to recur-
sively subdivide the present time intervals, and gener-
ate in each subdivision a new mid-point traffic data
based on the end-point  data  obtained in  the
previous subdivision.  This method can efficiently gen-
erate a well-approximated fractal Brownian motion
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(FBM) sequence. It however comes with the drawbacks
that only the FBM traffic can be synthesized, and the
desired amount of traffic has to be specified in advance.

Based on the power spectrum fitting to the frac-
tional Gaussian noise (FGN), Paxson proposed a
fast self-similar traffic generator using the inverse
discrete-time Fourier transform (IDTFT), which is usu-
ally referred as the FFT method.  By using an approxi-
mated form of the spectrum density of fractal Gaussian
noises (FGN), a random sequence is formed in the fre-
quency domain.  An inverse Fourier transformation
(IFFT) is then performed to transform the sequence
from the frequency domain to the time domain.  The
FFT algorithm improves the RMD algorithm in speed.
In particular, the FFT algorithm only takes half time
of the RMD algorithm for the same sequence length.
Again, its drawback is that the traffic sequence can-
not be generated on the fly.  In addition, the simpli-
fied form of the FGN spectrum causes the resultant
degree of self-similarity to deviate from the target degree.

In applying the aforementioned approaches to
the generation of self-similar traces, several problems
can be encountered.  First, the required length (i.e.,
amount) of traffic data must be previously determined;
hence, when a longer traffic sequence is required, one
has to drop the existing data, and re-generate a com-
pletely new trace of the required length.  Secondly,
the required traffic data must be generated in an
off-line fashion before they can be put to use.  This
somewhat restricts their usage in situations where on-
the-fly traffic synthesizers are needed.  Thirdly, these
traffic generators may produce negative numbers, which
is an undesired value for, say, packet-train arrivals.

In this work, we propose a model that can pro-
duce long-range dependent sequences with adjustable
levels of burstiness and correlation.  When compared
to the two known self-similar traffic generators—the
RMD and the Paxson FFT, our model provides the
additional advantages that the synthetic traffic can
be generated on the fly, and is always non-negative.
Although the variance-time analysis shows that the
filter length W limits the valid aggregation size of
selfsimilarity, this phenomenon turns out to match the
measured behavior of true network traffic, where the
self-similar nature only lasts beyond a practically
manageable range, but disappears as the considered
aggregated window is much further extended (Beran
et al., 1995).

This paper is organized as follows.  Section II
briefs the necessary background of secondorder self-
similar processes.  Section III introduces the proposed
filter-based self-similar trace synthesizer, and exam-
ines the degree of its self-similarity by variance-time
analysis.  The effect due to filter truncation and filter
output rounding is subsequently investigated.  Com-
parison between the use of the forward filter and that

of the reverse filter is provided in Section IV.  Sec-
tion V concludes this work.

II. PRELIMINARIES

Self-similar processes were first introduced by
Mandelbrot and his co-workers in 1968 (Mandelbrot
and Van Ness, 1968; Mandelbrot and Wallis, 1969;
Mandelbrot, 1971).  These processes thereafter found
applications in many fields, such as astronomy,
chemistry, economics, engineering, mathematics,
physics, statistics, etc.  Recently, measurement stud-
ies have shown that the actual traffic from computer
networks is long-range dependent (Meier-Hellstern
et al., 1991; Duffy et al., 1994; Leland et al., 1994;
Beran eet al., 1995; Paxson and Floyd, 1995), and
thus another new application for self-similar pro-
cesses was initiated.

Assume a second-order stationary real-valued
stochastic process Y =∆  {Yi}i ∈  I1

 with finite marginal
mean µ and marginal variance σ 2, where Ij =

∆  {j, j + 1,
j + 2, ...}.  Denoted by Y(m) =∆  {Yi

(m)}i ∈  I1
 the m-aver-

aged process of Y, where for m, i ∈  I1,

Yi
(m) =∆ 1

m Ym(i – 1) + jΣ
j = 1

m
.

Let the autocovariance and autocorrelation coefficient
function of the m-averaged process Y(m) be denoted by
Cm(k) =∆  Cov{Yi

(m), Yi + k
(m) } and ρm(k) =∆  Cm(k)/Cm(0),

respectively.  Then, several variants of self-similari-
ties can be defined as follows.

Definition 1. (Tsybakov and Georganas, 1998, Def.
A) A second-order stationary process Y is called ex-
actly second-order self-similar with parameter H = 1
– (β/2), where 0 < β < 1, if

ρ1(k) = 1
2

[|k + 1|2H – 2|k|2H + |k – 1|2H] for k ∈  I1.

Definition 2. (Tsybakov and Georganas, 1998, Def.
D) A second-order stationary process Y is called as-
ymptotically second-order self-similar with param-
eter H = 1 – (β/2), where 0 < β < 1, if

lim
m → ∞

 ρm(k) = 1
2

[|k + 1|2H – 2|k|2H + |k – 1|2H]

for k ∈  I1.

The parameter H in the above definitions is usually
referred to as the Hurst parameter.

III. FILTER-BASED ASYMPTOTIC
SELF-SIMILAR TRAFFIC SYNTHESIZER

In this section, we propose and prove that an

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 ]

 a
t 2

2:
49

 2
5 

A
pr

il 
20

14
 



C. Yao et al.: A Filter-Based Self-Similar Trace Synthesizer 381

asymptotic self-similar traffic can be theoretically
synthesized through a filter technique with simple
transfer function of infinite order.  In its feasible
realization, the filter of infinite order has to be trun-
cated to a finite impulse response (FIR) filter.  The
resultant degradation due to filter truncation in as-
ymptot ic  self-s imilar  degree is  subsequently
examined.

1. Transfer Function in Self-Similar Traffic Syn-
thesizer

Let Sy(ω) denote the power spectrum of discrete
random process Y obtained by passing the random
process X with power spectrum Sx(ω) through a filter
with transfer function H(ω) as shown in Fig. 1.  El-
ementary filtering theory immediately gives that
Sy(ω) = |H(ω)|2Sx(ω).  Accordingly, if X is i.i.d., and
|H(ω)|2 well-approximates the power spectrum of an
asymptotic self-similar traffic, then the filter output
straightforwardly become self-similar, and can be
obtained through Yn = Xn * h[n], where “*” denotes
the convolution operator.

By Definition 2, the ultimate autocorrelation
coefficient function of an asymptotic secondorder self-
similar process with parameter H equals 1

2
[|k +1|2H –

2|k|2H + |k – 1|2H] for k ∈  I1, which gives a power spectrum
sin(πH )  .  Γ (2H  +  1)  .  |1 –  e – jω|2Σ∞

k  =  –∞|ω +
2πk|–1–2H for –π ≤ ω < π, where Γ(.) is the Euler gamma

function defined as Γ(n) =∆
0

∞
tn – 1e–tdt.  Since the as-

ymptotic self-similar behavior of a process is only
sensitive to those ω values around the origin (Paxson,
1997), we can replace the above infinite sum by its
main term at k = 0, and yield sin(πH) . Γ(2H +1) .

|1 – e–jω|2 . |ω|–1 – 2H for –π ≤ ω < π.  We then observe
that |ω| can be well-approximated by |1 – e–jω| when
|ω| is small.  As a consequence, our proposed filter
output spectrum becomes Sy(ω) = |1 – e–jω|1 –2 H for –π
≤ w < π, where the coefficients, sin(πH) . Γ(2H + 1),
are removed for analytical simplicity.

One may question whether such an extensive
simplification to the target second-order selfsimilar
spectrum may already remove its self-similar nature.
However, it can be derived from Theorem 2.1(ii) in
(Beran, 1994) and from the below equation,

lim
ω ↓ 0

Sy(ω)

ω 1 – 2H = lim
ω ↓ 0

1 – e– jω 1 – 2H

ω 1 – 2H

= lim
ω ↓ 0

(2 sin(ω/2) )1 – 2H

ω 1 – 2H = 1 ,

that the autocorrelation function C1(k) of the filter
output process Y with power spectrum Sy(ω) = |1 –
e–jω|1 –2 H satisfies

lim
k → ∞

C1(k)

2Γ (2 – 2H)sin(πH – π/2)k2H – 2 = 1 .

Thus, from Tsybakov and Georganas (1998, Thm. 3
(2)), the marginal variance Cm(0) of the m-averaged
process of the filter output process satisfies

lim
m → ∞

Cm(0)
C1(0)m2H – 2 = 2Γ (2 – 2H)sin(πH – π/2)

H(2H – 1) .

This implies that for a large number of m, log[Cm(0)/
C1(0)] behaves asymptotically as (2H – 2) log(m) +
log[2Γ (2 – 2H)  s in(πH  –  π/2) /(H(2H  –  1))] .
Therefore, the filter output process is asymptotic self-
similar with parameter H from the aspect of variance-
time analysis, when the average window m is large.

A somewhat surprising result is that the designed
filter output process Y is also quite “selfsimilar” for
small m.  In other words, Y, in spite of its simple
power spectrum formula, behaves close to an exact
self-similar process from the aspect of variance-time
analysis.  This can be numerically verified as follows.

The self-similar nature of the filter output pro-
cess at small m can be established by analyzing the
marginal variance of its variance-equivalent m-aver-
aged process.  A variance-equivalent m-average process
–
Y1

(m), 
–
Y2

(m),  
–
Y3

(m), ... of a random process Y1, Y2, Y3, ... is
its output process through the filter g[n;m] =∆  (1/m) . l⁄⁄⁄⁄⁄
{0 ≤ n < m}, where l⁄⁄⁄⁄⁄{.} is the indicator function that
equals one if the event concerned is true, and zero,
otherwise (cf. Fig. 2).  It is named the variance-equiva-
lent m-averaged process because its marginal vari-
ance is equal to that of the m-average process Y(m).

The autocovariance function  
–
Cm(k) of the vari-

ance-equivalent m-averaged process can be given by:

Cm(k) = E[ Y i + k
(m) Y i

(m)]

= E[(
Y(i + k) + 1 Y(i + k) + m

m ) (
Yi + 1 Yi + m

m )]

= C1(i)Σ
i = – ∞

∞
⋅ π(k – i) ,

Fig. 1 Relation between the power spectral densities of the filter
input and filter output random processes

Fig. 2  The variance-equivalent m-averaged process
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where

π(i) =∆
m – i

m2
 l⁄⁄⁄⁄⁄{|i| ≤ m}.

Thus, the power spectrum of the variance-equivalent
m-averaged process is equal to

Sy(ω) sin2(mω/2)
m2sin2(ω/2)

and the variance of the m-averaged process of Y is
given by:

Cm(0) = 1
2π Sy(ω)

– π

π sin2(mω/2)
m2sin2(ω/2)

dω

= 22 – 2H

π
sin2(mω)

m2sin2H + 1(ω)0

π/2

dω ,

which immediately gives:

log
Cm(0)
C1(0) = log

sin2(mω)
m2sin2H + 1(ω)

dω
0

π/2

sin1 – 2H(ω)dω
0

π/2

= log

2Γ (1.5 – H) sin2(mω)
m2sin2H + 1(ω)

dω
0

π/2

Γ (1 – H) π .

Based on the above formula, we depict the relation
between log[Cm(0)/C1(0)] and log(m) in Fig. 3, and
observe a perfect self-similarity from the aspect of
variance-time analysis even for very small m.

In fact, we can analytically obtain lower and
upper bounds that hold for every m for log[Cm(0)/
C1(0)] through two inequalities

sin2(mω)
m2sin2H + 1(ω)

dω
0

π/2

≥ m2H – 2 (2/π)2H

2(1 – H)

and

sin2(mω)
m2sin2H + 1(ω)

dω
0

π/2

≤ m2H – 2(1+ 2Hπ)[2– 2H – (1 – H)]π2

8H 2(2H – 1)(1 – H)

and they again confirm the almost perfect self-simi-
larity of the filter output process (cf. Fig. 4).

After the verification of self-similarity of the fil-
ter output process, it remains to design a filter whose
output spectrum due to an i.i.d. input of unity power
spectrum equals Sy(ω), or specifically, |H(ω)|2 = |1 –
e–jω|1 –2 H.  First, we note that the z-transforms, X(z)
and Y(z), of the filter input and output can be charac-
terized by (1 – z–1)–aX(z) = Y(z), where a =∆  (2H – 1)/
2.  By Taylor’s expansion, we obtain:

(1 – z)– a = 1 + a
1! z + a(a + 1)

2! z2 +

= Γ (n + a)
Γ (n + 1)Γ (a) znΣ

n = 0

∞
.

Therefore, the outputs y[1], y[2], y[3] ... can be ob-
tained through

y[n] = Γ (k + a)
Γ (k + 1)Γ (a)Σ

k = 0

∞
x[n – k] = h[k] ⋅ x[n – k]Σ

k = 0

∞
,

0

-0.5

-1

-1.5

-2

-2.5

-3
0 0.5 1 1.5

Log10 (m)

The variance of m-averaged output

L
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 [

C
m

(0
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C
1(

0)
]

2 2.5 3

H = 0.9
H = 0.75
H = 0.6
Ideal H = 0.9
Ideal H = 0.75
Ideal H = 0.6

Fig. 3  The variance-time analysis of the filter output process
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Fig. 4  The lower and the upper bounds of log[Cm(0) = C1(0)]
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where

h[n] =∆ Γ (n + a)
Γ (n + 1)Γ (a) = Γ (n + H – 0.5)

Γ (n + 1)Γ (H – 0.5)

for k ≥ 0.

The filter impulse response h[n], as well as its fre-
quency response |H(ω)| = |1 – e–jω|–(2H – 1)/2 = (2|sin(ω/
2)|)–(2H – 1)/2, is plotted in Fig. 5.

Two problems will be encountered when one
wishes to synthesize a self-similar network packet-
arrival traffic in terms of the proposed filter system.
First, it is of infeasibly infinite length.  Secondly, the
filter outputs are in general non-integer-values even
if the filter inputs are integer-values.  Modifications
such as filter truncation to finite length and rounding
to the nearest integers are therefore necessary.  We
will numerically examine the impact on self-similar-
ity due to filter truncation and output rounding in the
later subsections.

2. Impact on Self-Similarity Due to Filter Trunca-
tion

Define h[k; W] =∆  h[k] . l⁄⁄⁄⁄⁄{0 ≤ k < W}.  Then, the
impact of the truncation window size W on the de-
gree of self-similarity of the filter output process can
be characterized through the derivation of the mar-
ginal variance Cm(0; W) of the respective m-averaged

filter output process, as illustrated in Fig. 6.  Again,
we derive Cm(0; W) through the help of the technique
of the variance-equivalent m-average process.

Let G(ω; m) be the transfer function of the filter
g[n; m], and let L(ω; W; m) =∆  H(ω; W)G(ω; m).  Then,

[n; W, m] = g[i; m]Σ
i = 0

n
× h[n – i; W]

= 1
m h[n – i]Σ

i = max{0, n – W + 1}

min{n, m – 1}

.

By letting Sy(ω; W) be the truncated counterpart of
Sy(ω), we obtain:

Cm(0; W)

= 1
2π Sy(ω; W)

– π

π
dω

= 1
2π [ [n]e– jnωΣ

n = 0

∞
] [ [n]e jnωΣ

n = 0

∞
]dω

– π

π

= [n] 2Σ
n = 0

∞

= 1
m2 { ( h[n]Σ

n = l

l + m – 1
)2Σ

l = 0

W – m

+ [( h[n]Σ
n = 0

l
)2Σ

l = 0

m – 2
+ ( h[n]Σ

m = W – 1 – l

W – 1
)2]} .

Based on the above formula, we numerically depict
log10[Cm(0; W)/C1(0; W)] versus log10(m) in Figs. 7
and 8, and observe that there are two apparently dif-
ferent self-similar behaviors for different m values.
The resultant degree of self-similarity is close to the
target one when m ≤ W, but the slope of the variance-
time curve quickly turns to a non-self-similar value,
–1, once m > W.  This result indicates that the degree
of self-similarity of the network trace synthesized
through truncated h[n] can be well controlled by ad-
justing the truncation window W.

3. Impact on Self-Similarity Due to Output Round-
ing

In this subsection, we further empirically exam-
ine the output rounding effect on self-similarity.  Table
I lists the resultant Hurst parameter of the trace syn-
thesized according to the system in Fig. 9.  It indicates
that the rounding-to-the-nearest-integer operation at the

1

0

2

1

0 21 3 54 6 87 9 1110

n

12 1413 15 1716 18 2019

h[n]

H = 0.6
H = 0.8

H = 0.6
H = 0.8

..., X3, X2, X1 ..., Y3, Y2, Y1

i.i.d. Poisson

..., Y (m), Y (m), Y (m)
3 2 1

Fig. 5 The filter impulse response h[n] and its frequency response
|H(ω)|

Fig. 6 The variance-equivalent m-averaged process of the trun-
cated filter output process
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filter output will have “unstable” impact on the degree
of self-similarity of the output trace.  Our simulations
suggest that such an unstable impact can be neglected
if the ratio of the maximal rounding error (i.e., 0.5)
against the input mean λ is made less than 5%.

IV. THE REVERSE FILTER VERSUS THE
FORWARD FILTER

It can be easily seen that the z-transforms, X(z)
and Y(z), of the filter input and output can be re-char-
acterized by (1 – z–1)aY(z) = X(z).  Again, by Taylor’s
expansion,

(1 – z– 1)a = 1 + – a
1! z– 1 + – a(1 – a)

2! z– 2 +

= 1 – a Γ (n – a)
Γ (n + 1)Γ (1 – a) z– nΣ

n = 1

∞
.

Hence, the outputs y[1], y[2], y[3] ... can be also obtained

through an infinite impulse response (IIR) filter as:

y[n] = x[n] + a Γ (k – a)
Γ (k + 1)Γ (1 – a)y[n – k]Σ

k = 1

∞

= x[n] + h′[k] ⋅ y[n – k]Σ
k = 1

∞
,

where

h′[n] =∆ a ⋅ Γ (n – a)
Γ (n + 1)Γ (1 – a) = (H – 0.5) ⋅ Γ (n – H + 0.5)

Γ (1.5 – H)Γ (n + 1)

for k ≥ 1.

We refer h[.] as the forward filter and h′ [.] as
the reverse filter, since the latter has a feedback or
reverse path.  Both h[.] system and h′[.] system can
generate a true self-similar process in response to,
say, an i.i.d. Poisson input; however, unlike the for-
ward filter, the reverse filter gives an infinite impulse
response filter (IIR) even if a finite truncation on
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Fig. 7 Variance-time analysis for the truncated-filter output with truncation window W = 102.  The slope of the solid line is equal to 2H –
2 for m ≤ W, and –1 for m > W.  The label of the horizontal axis for each subfigure is log10(m)
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h′[.] is applied.  This may give a false impression that
the reverse system equipped with an infinite impulse
response (IIR) filter of finite number of coefficients
can synthesize a more self-similar trace than the for-
ward system with truncated forward filter of the same
computational complexity (or more specifically, the
same truncation window).  Our simulations, however,

0

-2

-4

-6

-8
0 2 4

H = 0.60   Window size = 1000

H = 0.50   Window size = 1000

6 8

L
og

10
 (

V
ar

ia
nc

e)

Ideal
Truncated

0

-2

-4

-6

-8
0 2 4

H = 0.80   Window size = 1000

6 8

L
og

10
 (

V
ar

ia
nc

e)

Ideal
Truncated

0

-2

-4

-6
0 2 4 6 8

L
og

10
 (

V
ar

ia
nc

e)

Ideal
Truncated

0

-2

-4

-6

-8
0 2 4

H = 0.70   Window size = 1000

H = 0.55   Window size = 1000

6 8

L
og

10
 (

V
ar

ia
nc

e)
Ideal
Truncated

0

-2

-4

-6
0 2 4

H = 0.90   Window size = 1000

6 8

L
og

10
 (

V
ar

ia
nc

e)

Ideal
Truncated

0

-2

-4

-6
0 2 4 6 8

L
og

10
 (

V
ar

ia
nc

e)

Ideal
Truncated

Fig. 8 Variance-time analysis for the truncated-filter output with truncation window W = 103.  The slope of the solid line is equal to 2H –
2 for m ≤ W, and –1 for m > W.  The label of the horizontal axis for each subfigure if log10(m)

Table 1 Comparison between the resultant hurst parameters of the traces synthesized by the filter-based
algorithm and the targeted ideal hurst parameters

Window size= 10000

Ideal H V-T (λ  = 1) V-T (λ  = 10)

0.5001 0.4898783 0.5064982
0.55 0.5504289 0.5344366
0.6 0.6413529 0.5641452
0.7 0.4775099 0.7013537
0.8 0.5399816 0.7799114
0.9 0.5958403 0.8716414

indicate that the effective ranges of both filters are
actually similar (cf. Fig. 10).

V. CONCLUDING REMARKS

In this paper, a new model is proposed for the
synthesis of self-similar traffic based on the filter
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technique.  The synthesized trace can be made long-
range dependent with adjustable levels of burstiness
and correlation.  Only three parameters need to be speci-
fied in our model: H is the targeted self-similar param-
eter that controls the burstiness and correlation of the
synthetic traffic, λ defines the mean of the synthesized
traffic, and W determines not only the length of the
filter (which in turns determines the algorithmic
complexity) but also the valid aggregation size of self-
similar nature from the aspect of variance-time analysis.

When being compared to the two known self-simi-
lar traffic synthesizers—random midpoint displacement
and Paxson’s spectrum fitting, our model provides the
advantages that the synthetic traffic can be generated
on the fly, and is always non-negative.  The algorith-
mic complexity of Paxon’s spectrum fitting was shown

to be less than the random midpoint displacement, and
is given by (n/2) log2(n + 2), where n is the length of
the synthetic trace.  The complexity of our model,
however, is also dependent on W, and is equal to n ×
W.  Hence, when the valid aggregation size of self-
similar nature is specified, the complexity of our model
only grows linearly with the trace size.

NOMENCLATURE

Cm(k) autocovariance function of
Y(m)

Cm(k; W) autocovariance function of
Y(m) due to truncated filter

 
–
Cm(k) autocovariance function of

–
Y(m)

Fig. 9 The proposed asymptotic self-similar traffic synthesizer.  H(ω; W) represents a truncated version of H(ω) with truncation window
W.  The quantity  Yi + 0.5  equals the closest integer to Yi

Fig. 10  Variance-time plots (log10 scale) for the two filter-based synthetic arrivals with truncation window 104 and mean rate 1

..., X3, X2, X1

i.i.d. Poisson
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G(ω; m) transfer function of g[n; m]
g[n; m] filter for the generation of

variance-equivalent m-aver-
aged process

H self-similar or Hurst parameter
H(ω) transfer function of h[n]

h[n] impulse response of a for-
ward filter

h′[n] impulse response of a reverse
filter

h[k; W] impulse response of a filter
with truncation window W

Ij =
∆  {j, j + 1, j + 2, ...} integer set starting from j

Sx(ω) power spectrum of X
Sy(ω) power spectrum of Y
Sy(ω; W) power spectrum of output

due to truncated filter
X(z) filter input in z-transform

domain
X =∆  {Xi}i ∈  I1

second-order stationary real-
valued stochastic process

X(m) =∆  {Xi
(m)}i ∈  I1

m-averaged process X(m) of X
x[n] filter input in time domain
Y(z) filter output in z-transform

domain
Y =∆  {Yi}i ∈  I1

output process due to filter
input X

 
–
Y(m) =∆  {

–
Y1

(m)}i ∈  I1
variance-equivalent m-aver-
aged process

y[n] filter output in time domain
β =∆  2(1 – H) negative slope of variance-

time analysis
Γ (n) =∆ tn – 1e– tdt

0

∞
Euler gamma function

ρm =∆  Cm(k)/Cm(0) aucocorrelation coefficient
function of Y(m)
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