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Abstract—A near-regular texture (NRT) is a geometric and photometric deformation from its regular origin—a congruent wallpaper

pattern formed by 2D translations of a single tile. A dynamic NRT is an NRT under motion. Although NRTs are pervasive in man-made

and natural environments, effective computational algorithms for NRTs are few. This paper addresses specific computational challenges

in modeling and tracking dynamic NRTs, including ambiguous correspondences, occlusions, and drastic illumination and appearance

variations. We propose a lattice-based Markov-Random-Field (MRF) model for dynamic NRTs in a 3D spatiotemporal space. Our model

consists of a global lattice structure that characterizes the topological constraint among multiple textons and an image observation model

that handles local geometry and appearance variations. Based on the proposed MRF model, we develop a tracking algorithm that utilizes

belief propagation and particle filtering to effectively handle the special challenges of the dynamic NRT tracking without any assumption

on the motion types or lighting conditions. We provide quantitative evaluations of the proposed method against existing tracking

algorithms and demonstrate its applications in video editing.

Index Terms—Near-regular texture, visual tracking, dynamic near-regular texture tracking, model-based tracking, texture

replacement, video editing.

Ç

1 INTRODUCTION

A near-regular texture (NRT) is a geometric and photo-
metric deformation from its regular origin—a congru-

ent wallpaper pattern formed by 2D translations of a single
tile [26]. Dynamic near-regular textures are NRTs under
motion. Correspondingly, we define the basic unit of a
dynamic NRT texton, as a geometrically and photometrically
deformed tile, moving through a 3D spatiotemporal space.
Fig. 1 shows several sample snapshots of dynamic NRTs: a
piece of moving fabric, a wallpaper pattern seen through
disturbed water, or even a crowd in motion.

Dynamic NRTs can be viewed as an extension to the
conventional dynamic textures, which refer to a sequence of
image textures that exhibit certain statistical stationary
properties in time [9], [33], [44], such as smoke, fire, or moving
water. Different from the conventional dynamic textures,
dynamic NRTs possess spatial topological invariance in time,
but their motion along the time axis may not exhibit any
statistical stationarity. The spatial regularity, including
geometry, topology, and appearance brings both new
challenges and useful cues for handling dynamic NRTs.
While most existing work on dynamic textures addresses
analysis, synthesis, or classification problems [2], [3], [5], [9],
[22], [38], [44], [46], [49], dynamicNRT modeling, andtracking
pose new problems that have not been addressed before.

The fundamental observation of dynamic NRTs is that,
when an NRT is going through motion, its topological
structure remains invariant. Therefore, a dynamic NRT can
be modeled by a novel Markov-Random-Field (MRF) with a
wallpaper-group-based lattice structure. Conventionally,
dynamic texture analysis deals with stochastic textures [2],
[3], [9], [22], [46], [49]. The problem of tracking the motion of
individual textons of a general dynamic texture is ill-defined
since there is no consensus on what a texton of a stochastic
texture is [53]. In existing work, e.g., [5], [9], [47], a dynamic
texture is usually treated as a statistical phenomenon and a
statistical model is used to describe the texture’s collective
motion in the analysis and synthesis process. The texton of a
dynamic NRT, on the other hand, is well-defined and
characterized precisely based on their topological regularity.
Thus, dynamic NRT analysis can be carried out through a
computationally feasible process of tracking the motion of
individual textons, leading to a complete understanding of
the regularity and randomness of a dynamic NRT.

Tracking a dynamic NRT, however, poses new computa-
tional challenges: The similar appearance of the textons of an
NRT introduces severe ambiguous correspondences (Fig. 1a).
Furthermore, the tracking becomes very difficult when the
textons of a dynamic NRT move rapidly or occlude each other
on a folded surface. Due to these difficulties, tracking a
dynamic NRT remained an unsolved problem.

The main contributions of this paper are: 1) proposing a
novel and general lattice-based MRF model for dynamic
NRTs, 2) developing a tracking algorithm that can effectively
handle real-world dynamic NRTs with occlusions, and
3) demonstrating several video editing applications as a
result of dynamic NRT tracking, e.g., real-world dynamic
NRT replacement and video superimposition.

This paper is organized as follows: We first review related
work on dynamic texture analysis and visual tracking
(Section 2). We then define the scope of dynamic near-regular
textures and discuss the challenges of dynamic NRT tracking
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(Section 3). We propose a lattice-based MRF model for
representing dynamic NRTs (Section 4) and develop a
dynamic NRT tracking algorithm based on our MRF model
(Section 5). Finally, we demonstrate the effectiveness of our
tracking algorithm and its application in video editing
(Section 6).

2 RELATED WORK

Dynamic NRT tracking is related to dynamic texture
analysis with similar goals: to model and analyze a time-
varying texture. Methodology-wise, dynamic NRT tracking
is closely related to visual tracking.

2.1 Dynamic Textures Analysis

A dynamic texture or temporal texture [32] is a sequence of
texture images in a 3D spatiotemporal volume. Most work in
dynamic texture analysis has mainly focused on dynamic
stochastic textures [2], [3], [9], [22], [44], [49]. These
algorithms assume that the motion is local and statistically
stationary in time. Both Szummer and Picard [44] and Doretto
et al. [9] used an autoregressive model to model the motion
in videos. While the former directly operates on image pixels,
the latter represents the input image sequence as a time series
of filter response and constructs the model based on this time
series. Recently, there have also been research efforts on
modeling dynamic textures with structural patterns. Wang
and Zhu [48] proposed a generative model to represent
complex motion patterns. Their model consists of the
geometric, photometric, dynamic, and topological compo-
nents. MRF is used to model the interactions among image
patches in their dynamic model. A difference between Wang
and Zhu’s model and ours is that they explicitly model the
topology changes of a dynamic texture while we utilize the
topology invariance property of dynamic NRTs in our MRF
model. Doretto [8] extends Active Appearance Models
(AAM) to the temporal domain to represent dynamic scenes,

which are considered as deviations from a nominal state (a
mean warp and a mean template). Doretto’s view on
modeling dynamic scenes is similar to ours while his
approach, variational formulation, differs. A recent survey
on dynamic texture analysis can be found in [5].

2.2 Visual Tracking

Our work is related to three types of tracking problems:
deformable object tracking, cloth motion capture, and
multitarget tracking. Image alignment is used in many
deformable object tracking algorithms where different mod-
els are applied to confine the deformation space, such as PCA
[7], [29], finite element mesh [41], or subdivision surface [16].
These models are not appropriate for tracking textons on a
folded surface with occlusion because they assume the
surface to be tracked is smooth and nonfolded. Recently,
Pilet et al. [35] proposed a real-time nonrigid surface detection
algorithm which tracks a nonrigid surface by repeatedly
detecting and matching features in an image sequence.
Features are detected using a classifier trained on a modal
image. Feature matching between the input image and modal
image are performed through an optimization process which
minimizes the correspondence error and nonsmoothness.
They do not handle NRT tracking where repeated patterns
cause a serious feature correspondence problem (Section 3).

The goal of cloth motion capture is to capture the
3D motion of cloth. Special calibrated multicamera systems
[17], [36], [39], [40], color-coded patterns [17], [40], or
controlled lighting [40] are required. The special require-
ments on hardware and input patterns are used to reduce the
tracking difficulties due to ambiguous feature correspon-
dences or occlusion problems. Scholz and Magnor [39]
combine optical flow with geometric constraints (distance,
curvature, and contour) to track a synthetic motion of
textured cloth under a calibrated multicamera setting.
Guskov [15] developed an algorithm that can detect and
track a black-white square pattern on cloth. His algorithm
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Fig. 1. Examples of dynamic near-regular textures. These images illustrate challenges of dynamic NRT tracking: ambiguous correspondences

(a) and (b), occlusions (a), (b) and (c), and appearance and illumination variations (d). The texture in (d) is a pattern seen through disturbed water.

The texture in (e) is a dynamic NRT formed by a crowd motion.



does not work on general NRT since only the image features of
black-white square pattern are used in the detection and
image alignment process. Our tracking algorithm can serve as
the front end of a cloth motion capture system where no
special purpose color-coded cloth pattern or lighting and
camera calibration are required.

Tracking textons of a dynamic NRT can also be considered
as a special case of multitarget tracking with varying degrees
of spatial constraints among different targets. The main
difference is that the topology among targets remains
invariant in dynamic NRT tracking but not so in general
multitarget tracking. Modeling the spatial relation among
tracked targets using an MRF has been applied to ant tracking
[21], sports player tracking [52], and hand tracking [43]. In
Section 6.5.4, we compare our algorithm with one of the
multitarget tracking algorithms (Fig. 17).

Existing algorithms for deformable object tracking, cloth
motion capture, or multitarget tracking succeed in their
respective domains, but none of them deals with the general
NRT tracking problem under various types of motion,
viewed through different media (water, air, ...) and occlusion
conditions as treated in this paper. By adopting MRF and
image alignment into a specially designed, unified frame-
work, our approach can effectively track various types of
dynamic NRTs under different motion conditions.

3 DYNAMIC NEAR-REGULAR TEXTURES

Despite various forms of dynamic NRTs (Fig. 1), they have
the following common properties:

. Statistical appearance regularity. Even though the
geometry and the appearance of individual textons
in a dynamic NRT may vary, they bear strong
similarity among themselves that can be considered
as statistical deformations from the same texton.

. Topological structural invariance. The topological
structure of a dynamic NRT remains invariant during
motion, even though its geometry and appearance
vary from frame to frame.

According to the spatial connectivity between textons, we can
categorize dynamic NRTs into two types. We call a dynamic
NRT tightly coupled if no gaps exist among neighboring
textons of the dynamic NRT. On the other hand, we call a
dynamic NRT loosely coupled if the neighboring textons of the
dynamic NRT are allowed to move with a connected elastic
constraint so that there may be a gap or overlap between two
neighboring textons. Examples of dynamic NRT with loosely
coupled textons include underwater pattern, or crowd
motions, such as people in a crowd, a marching band or a
parade (Fig. 1). Fig. 2 illustrates the lattice and textons of two
types of the dynamic NRTs.

3.1 Challenges of Dynamic NRT Tracking

Tracking dynamic NRTs present new computational chal-
lenges, including highly ambiguous texton correspondences
(Fig. 1a), drastic temporal variations (Fig. 1d), and occlu-
sions (Figs. 1a, 1b, and 1c).

The ambiguous correspondence problem in NRT tracking
is caused by the strong appearance and geometry resem-
blance of NRT textons. Although textons of an NRT may have
different appearance or geometry across a textured region
due to variation of the surface geometry and lighting, the

appearance of textons within a local region are similar (Fig. 1).
This causes a tracking algorithm to mistake one texton for
another easily and lose the temporal correspondence of
individual textons during tracking process. Spatial aliasing
can also introduce ambiguous temporal correspondences.
This occurs on a rapidly moving dynamic NRT where the
movement of a texton between two frames is larger than the
size of a texton (Fig. 1d). The ambiguous correspondence
problem of dynamic NRT tracking is challenging because
neither motion continuity nor appearance difference can be
used as cues to distinguish neighboring textons.

The appearance and geometry of a dynamic NRT may
vary dramatically during the course of a motion. For
example, if a texton is on a 3D surface, its image intensities
and shape change because the lighting condition varies as
the surface geometry deforms, such as shading variations or
shadowing effects. An extreme case of geometry and
appearance variations happens in the dynamic underwater
texture, where textons are seen through disturbed water
(Fig. 1d). Surface refraction/reflection and motion blur
cause the shape and appearance of a texton vary drastically.

There are two types of occlusions in dynamic NRT
tracking: self and external occlusion. Fig. 1c illustrates an
example of these two problems. External occlusion happens
when a texture is occluded by another object. It is easier to
overcome the external occlusion problem if the appearance
of an external object is substantially different from that of
the NRT textons. The most difficult case occurs when an
NRT has a self-occlusion. Simply relying on the appearance
difference cannot resolve the foreground/background
separation because the occluding and occluded textons
have similar appearance. We need additional information,
such as global structure, local geometric relation, and
tracking history to resolve the confusion.

4 MATHEMATICAL MODEL OF DYNAMIC NRTS

The unique properties of NRT create new computational
challenges for dynamic NRT tracking. Meanwhile, they
provide important and helpful tracking cues. An effective
computational model that respects and exploits the
properties of the NRT is the key to solve the dynamic
NRT tracking problem. We propose a lattice-based MRF
model that integrates a high-level topological structure
model and a low-level registration-based texton geometry
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Fig. 2. This figure shows the lattices (red lines) and textons (yellow

quadrilaterals) of two types of NRTs: tightly and loosely coupled textons.

We model the lattice of an NRT as a 2D MRF where each node

represents a texton.



and appearance model. Topology invariance and geome-
try regularity are exploited in the lattice structure model
to resolve ambiguous correspondences and occlusion
problems. Geometry and appearance regularity are used
to detect textons and deal with temporal variations. The
proposed model characterizes the lattice topology, geo-
metry, and appearance of individual textons of a
dynamic NRT.

Based on wallpaper group and lattice theory, the topology
and geometry of an NRT can be described by a quadrilateral
lattice L [14], [25]. L is a graph of degree 4 connecting all
textons of an NRT. The degree-4 graph lattice topology comes
from crystallographic group theory that all wallpaper
patterns have a quadrilateral lattice characterizing its funda-
mental generating region. Therefore, a pair of linearly
independent vectors t1 and t2 is sufficient to represent the
quadrilateral lattice of a regular texture.

4.1 Texton Geometry Model

The texton geometry model defines the local appearance of an
NRT. Specifically, the geometry of a quadrilateral texton is
represented by two nonindependent affine transformations1

(Fig. 3). These two affine transformations map image pixels
from a rectangular domain ½1; w� � ½1; h�, an aligned texton, to
the quadrilateral region of a texton in an image. Each of the
two transformations is parameterized by the positions of
three vertices of half of a quadrilateral. These affine
parameters (i.e., vertex positions) are determined through
image alignment processes ((6) and (7)). For loosely coupled
textons, affine transformations of each texton are computed
independently. For tightly coupled textons, a connected
constraint between neighboring textons is enforced via a
piecewise affine model, where a shared texton vertex is used
to parameterize multiple texton affine transformations (Sec-
tion 4.2.2). That is, all affine transformations are computed
together in a single image alignment process. Fig. 3 illustrates
the geometric model of loosely and tightly coupled textons.

In the image alignment process, each texton is registered
to a texton template which is composed of aligned textons
obtained from the tracking initialization process (Section 5.1).
Fig. 4b shows an example of aligned textons in the first frame
of a video. Each aligned texton in Fig. 4b serves as a texton
template for the corresponding texton in the video.

4.2 Lattice-Based MRF Model

The lattice L of a dynamic NRT functions as the topological
skeleton of a texture. When an NRT moves, its lattice deforms
accordingly, but its topology remains invariant. This resem-
bles the behavior of a network of springs in which each spring
controls the mutual distance between two textons locally. The
network combines the forces from individual springs to
maintain a global spatiotemporal structure. Our observation
of the similarity between a lattice structure and a spring
network is inspired by the physics-based cloth motion
simulation [37], where a spring-damper network is used to
model the dynamics of cloth motion. The specific topology of
our network, however, is soundly and conveniently based on
the mathematical theory of wallpaper groups [11], [14], [25].

We can also view the lattice structure and the relation (or
interaction) between textons from a statistical viewpoint; the
probabilities of the states of textons are locally dependent.
The lattice structure provides a well-defined neighborhood
structure. The probability of the position of a texton is
influenced more by neighboring textons than by distant
textons. The shape of a texton has similar properties to its
neighbors. These Markov properties make the MRF model a
natural candidate to embed the global lattice structure of a
dynamic NRT under a statistical framework.

An MRF is an undirected graph ðV; EÞ, where V and E
denote the set of vertexes and edges in the graph, respec-
tively. Each vertex in the graph corresponds to a random
variable. The joint probability of all random variables is
factored as a product of local potential functions at each node
and the interactions between nodes are defined on neighbor-
hood cliques represented by the connected edges in the
graph. The most common form of MRF is a pairwise MRF in
which each clique is a pair of connected nodes in the
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Fig. 3. Texton geometry model. Red lines form the quadrilateral lattice
structure of a dynamic NRT. ci1; ci2; ci3; ci4 denote image coordinates of
the four vertices of texton i. A texton is divided into two triangles (shaded
blue and yellow, respectively) and the vertex coordinates of each
triangle parameterize an affine transformation. (a) Loosely coupled
textons: The vertex positions of a texton are determined independently.
(b) Tightly coupled textons: The vertex positions of a texton are jointly
determined by its neighboring textons (e.g., ci4 is involved in four textons
and six affine transformations).

Fig. 4. (a) The first frame of an dynamic NRT where each yellow
quadrilateral represents a texton. A lattice is formed by connecting the
centers of textons (red lines). (b) Aligned textons from textons in (a).
These aligned textons serve as initial texton templates and are updated
in successive frames.

1. The reason for choosing two affine transformation over one
homograph to represent the geometry of a quadrilateral texton is that an
affine transformation needs fewer parameters to specify. This is important
since, when a texton is partially occluded, we can still use the top or bottom
triangular region to compute the parameters of the affine transformation.



undirected graph. Representing each texton as a node and the
probabilistic dependency among textons as edges in the
graph, we can model the probability of a lattice configuration
of an NRT as follows:

pðx1; x2; . . . ; xN; z1; z2; . . . ; zNÞ /
Y
ði;jÞ2E

’ðxi; xjÞ
YN
i¼1

�ðxi; ziÞ;

ð1Þ

where xi and zi are random variables representing the state
and image observation of texton i, respectively.N is the total
number of the textons in the NRT. The state of a texton is
defined as xi ¼ ðci1x; ci1y; ci2x; ci2y; ci3x; ci3y; ci4x; ci4y; viÞ. The
pair ðcikx; cikyÞ denotes the image coordinates of the kth
(k ¼ 1; 2; 3; 4) vertex of the texton and vi 2 ½0; 1� represents the
visibility score of texton i. The potential function ’ðxi; xjÞ is
defined as a measurement of the spring energy between two
connected textons i and j. If the function value is large, the
state probabilities of textons xi and xj are highly dependent.
The image likelihood function �ðxi; ziÞ associates the
probabilistic relation between the state of a texton xi and its
image observation zi.

The MRF defined in (1) is also called the Markov network
[13].Equation(1)canberepresentedasaposteriorprobability:

pðXjZÞ / pðX;ZÞ /
Y
ði;jÞ2E

’ðxi; xjÞ
YN
i¼1

�ðxi; ziÞ; ð2Þ

where X ¼ ðx1; x2; . . . ; xNÞ and Z ¼ ðz1; z2; . . . ; zNÞ are the
state of lattice configuration and the image observations of all
textons, respectively.

Q
’ðxi; xjÞ is a lattice structure model

and
Q
�ðxi; ziÞ is an image observation model. The lattice

structure model captures the global structure of a lattice and
resolves ambiguous correspondences using the topological
relation between neighboring textons. The image observation
model integrates a texton geometry model (Section 4.1) which
aligns textons by minimizing image differences to handle
local deformation of individual textons.

Although the MRF model has been applied to texture
analysis and texture synthesis in the past, they are usually
used for low-level processing, such as modeling the prob-
abilities of pixel intensities [23]. The effective combination of a
global lattice structure with MRF in this work enables us to

capture the innate property of a dynamic NRT: globally and

topologically regular while locally and appearance-wise

(geometric and photometric) random.

4.2.1 Lattice Structure Model

The potential function in our MRF is defined as follows:

’ðxi; xjÞ ¼ e���dgðxi;xjÞ; ð3Þ

dgðxi; xjÞ ¼ ðkcim � cjmk � lijÞ
2 � vivj; ð4Þ

where � is a global weighting scalar that is applied to all
springs.�weights the influence of the lattice model versus the
observation model in the Markov network (� ¼ 2 is used in
our experiments). dg is a function that measures the geometric
deformation (spring energy function). cim 2 IR2�1 is the mean
position of four vertices of the texton i. This potential function
acts like a spring that adjusts the position of textons based on
their mutual distance. The rest length lij of the spring is
spatially dependent. To handle occlusion, vi and vj in (4) are
used to weigh the influence of a node by their visibility status.

The topology of the graph ðV; EÞ defines how textons are
related to each other in the lattice structure model. To model
the global constraints and local variations of the probabilities
of the states of textons properly, we use an analogy between
an MRF and a network of springs. If graph ðV; EÞ is a complete
graph, each texton is connected with all other textons. Thus,
the motion of a texton would be directly affected by all textons
leading to an overly constrained lattice model. On the other
hand, if there are no edges in the graph, the global structure
among textons reduces to isolated unconstraint textons.

We adopt a lattice structure topology similar to the spring
connection configuration used in [6], [37] (Fig. 5a). It has been
shown in cloth simulation that the 12-neighbor configuration
provides a good balance between structural constraint and
local deformations. We can convert this spring configuration
into the topology of a graph. According to this graph, we can
therefore define the neighborhood configuration of the MRF
where the state of a node depends on the states of its
12 neighbors. Fig. 5b shows the neighborhood configuration
of our MRF. Additional experiments validate that the
12-neighbor configuration is appropriate for our application
(Section 6.5.1).
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Fig. 5. (a) The cloth spring configurations in [37]. The circles and lines represent mass particles and springs, respectively. There are 1) structural

springs (red lines) connecting nearest-neighbor particle along vertical and horizontal lines, 2) shear springs (black lines) connecting a particle’s

nearest-neighbor particles along diagonals, and 3) flexion springs (purple lines) connecting a particle with its second neighbor along vertical and

horizontal lines. (b) Neighborhood configuration of our MRF model: A node is connected to 12 neighbors.



4.2.2 Image Observation Model

We define the image likelihood as follows:

�ðxi; ziÞ / e�
1
vi
daðxi;zi;T iÞ; ð5Þ

where the appearance difference function da is weighted by

the visibility score vi of a texton so that visible textons

contribute more in the likelihood function. da ¼
P2

r¼1P
p kzirðpÞ � T iðpÞk

2 is the sum of squared differences

(SSD) between the observed texton and a texton template

T i. r denotes top or bottom triangle of a quadrilateral

texton. zir ¼ IðWðp; ~airÞÞ is an aligned texton obtained

from the affine warp W. p denotes a pixel location in the

coordinate frame of the template. The parameters of the

affine warp ~air are computed using the Lucas-Kanade

algorithm. In this image alignment process, each quad-

rilateral texton is represented as the combination of two

triangles and the vertex coordinates of each triangle

are used to parameterize ai1 and ai2, respectively. For

example, in Fig. 3, ai1 ¼ ðci1x; ci1y; ci2x; ci2y; ci3x; ci3yÞ and

ai2 ¼ ðci2x; ci2y; ci3x; ci3y; ci4xci4yÞ.
For loosely coupled textons, the affine parameters for

each texton are computed independently. This allows the

observation model to handle more flexible motion, such as

underwater texture or people in a crowd. The optimized

vertex coordinate ~air is obtained from:

eai ¼ argminX
p

vi � ½T iðpÞ � IðWðp; ai1ÞÞ�2

þ
X

p

vi � ½T iðpÞ � IðWðp; ai2ÞÞ�2;
ð6Þ

where ai ¼ ai1 [ ai2.
For tightly coupled textons, the textured region is

modeled as a piecewise affine warp and the position of

each texton vertex is affected by at most four neighboring

textons. ~air is computed as follows:

eA ¼ argminX
i

X
p

vi � ½T iðpÞ � IðWðp; ai1ÞÞ�2

þ
X
i

X
p

vi � ½T iðpÞ � IðWðp; ai2ÞÞ�2;
ð7Þ

where A ¼ ðci1x; ci1y; � � � ; cikx; ciky; � � � ; ciNx; ciNyÞ contains all

texton vertex coordinates and eA denotes optimized vertex

coordinates. ai1 and ai2 follow the same definition in (6).

Note that the coordinates of a vertex ðcikx; cikyÞ are usually

determined by the image alignment of neighboring con-

nected textons (at most four). This enforces the hard

connected constraints among textons when computing ~air.

For details about this image alignment process, please see

the appendix in [24].

4.2.3 Visibility Computation

The visibility of a texton is determined by constraints and

measurements related to the geometry and appearance of a

texton. The constraints, which include topology, side

length, and area difference with its neighboring textons,

are used to decide whether a texton is visible and can be

included in the tracking process. The visibility score vi of a

valid texton i is defined as

vi ¼ 1

1þ �
si

s�
þ �

4

X4

k¼1

1� jb
i
k � b�kj
b�k

���� ����
 !

: ð8Þ

Note that 0 � vi � 1 and � is a constant to weigh the influence
of area and side length variations. si and s� are the area of
texton i and the initial texton (see Fig. 8a and Section 5.1). bik
and b�k are the kth side length of texton i and the initial texton.
A visibility map V is constructed based on the visibility
scores of all textons:

V ¼ froundðviÞ; i ¼ 1; . . . ; Ng: ð9Þ

4.2.4 Temporal Lattice-Based MRF Model

So far, the lattice-based MRF model provides the probabil-
ities of lattice configurations at a single time instance. To
incorporate the temporal variations of the MRF model for
dynamic NRTs, we formulate the temporal lattice-based
MRF model of a dynamic NRT at frame t as:

pðXtjZtÞ /
Y
ði;jÞ2E

’ðxit; x
j
tÞ
YN
i¼1

�ðxit; zitÞ: ð10Þ

The potential function ’ðxit; x
j
tÞ and image likelihood

function �ðxit; zitÞ in (10) are defined, respectively, as

’ðxit; x
j
tÞ ¼ e���dgðx

i
t;x

j
tÞ; ð11Þ

dgðxit; x
j
tÞ ¼ ðkcim � cjmk � l

ij
t Þ

2 � vitv
j
t ; ð12Þ

�ðxit; zitÞ / e
� 1

vi
t

daðxit;zit;T it Þ
; ð13Þ

where all notations follow the same definitions given in (2)-
(5) but with an additional time index. Fig. 6 illustrates our
temporal lattice-based MRF model.

To handle the temporal variation of the lattice structure,
the rest length lijt of the spring becomes not only spatially
dependent (on the vertex indexes) but also temporally
adaptive (time-variant spring rest length). We use an
exponentially decaying function to model the temporal
variation of the rest length of springs

lijt ¼
P1

f¼1 l
ij
t�fe

��fP1
f¼1 e

��f ; ð14Þ

where f is a frame index for previous frames involved in
the weighted average. � > 0 is a parameter that controls
how fast the exponential function decays, i.e., � determines
the weights of the spring length of previous frames in the
weighted average. � ¼ 0:2 is used in our experiments.

5 DYNAMIC NRT TRACKING ALGORITHM

Our dynamic NRT tracking algorithm consists of four
components:

1. texton detection,
2. spatial inference,
3. temporal tracking, and
4. template update.

Fig. 7 shows an overview of our algorithm. In the initializa-
tion stage, the texton detection algorithm finds all textons in
the first frame based on a single texton. All detected textons
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are then geometrically aligned. We call these aligned textons
from the first frame texton templates. A quadrilateral lattice is
constructed by connecting the centers of detected textons. In
the tracking stage, texton detection is performed at each
frame to include any additional texton entering the scene and
removing the ones leaving the scene. We handle the texton
tracking problem through a statistical inference process
consisting of spatial inference and temporal tracking. The
states of a texton (position, shape, and visibility) are sampled
and its distribution is modeled by a particle filter in the
tracking process. In each frame, a set of sampled states is
drawn andadynamicmodel generates the predicted states for
the next frame. Belief propagation (BP) [13], [34], [51] is then
applied to these predicted states to find the most likely lattice
configuration based on the lattice structure model and image
data. BP also provides the probability of each texton state,
which is used to refine the approximation of the distribution
of texton states through particle filtering. The above process
iterates until the whole image sequence is tracked. In addition,
the texton template set is updated to handle the variation of
texton image intensities during tracking.

5.1 Tracking Initialization and Texton Detection

The appearance and geometry regularity of an NRT can be
used for automatic texton detection. We consider an NRT as
being formed by translating a texton on a plane where the
shape and image intensities of the texton may vary. The

process of texton detection can thus be viewed as a tracking
problem on this plane, more precisely, a spatial tracking
problem. That is, each texton can be treated as a target to be
tracked and the trajectories of all texton centers form a lattice.
We “grow” the lattice from regions where textons are more
regular and reliable by propagating the lattice spatially
outward to regions where textons are distorted or occluded.

In the initialization stage, the user identifies a single
texton in the first image frame by specifying two vectors t1

and t2 (three points) that form a parallelogram (Fig. 8a). A
texton template T is constructed by transforming the
parallelogram region in the image to a rectangular region
½1; w� � ½1; h�, where w ¼ lengthðt1Þ, h ¼ lengthðt2Þ, and the
affine transformation matrix A1 is parameterized by the
image coordinates of texton vertices ðc1x; c1yÞ, ðc2x; c2yÞ,
ðc3x; c3yÞ, ðc4x; c4yÞ,

A1 ¼
c1x c3x c2xþc4x

2

c1y c3y c2yþc4y

2
1 1 1

24 35 1 1 w
1 h hþ1

2
1 1 1

24 35�1

: ð15Þ

Once the first texton is identified, the second, third, and
fourth texton, are obtained by translating the first texton by
t1, �t1, and t2. Using the first four textons as the basis for
the initial lattice, the lattice grows by repeating the spatial
prediction and the validation steps below.

In the spatial prediction step, the vertices of a texton are
estimated from existing textons. The varying geometry
regularity of an NRT is utilized to predict the shape and
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Fig. 6. Illustration of our temporal lattice-based MRF model. Our model consists of 1) a global lattice structure that characterizes the topological

constraint among multiple textons and 2) an image observation model that handles local geometry and appearance variations.

Fig. 7. An overview of our dynamic NRT tracking algorithm.

Fig. 8. (a) Initial texton (yellow parallelogram formed by t1 and t2) and

lattice (red lines). The neighboring textons are estimated by translating

the first texton by t1, �t1, and t2. (b) Spatial prediction of the position of

a new texton.



position of a new texton. Assuming the geometric variations
of textons are smooth locally, the shape and position of a new
texton can be estimated by linearly extrapolating from the
affine parameters of the neighboring textons. Let Ai be the
affine transformation matrix that maps pixels of the texton
template T i to the texton i in the image. If textons i� 1, i, and
iþ 1 are on the same lattice row or column and Ai�1 and Ai

are known, Aiþ1 is predicted by Aiþ1 ¼ ðAi �A�1
i�1Þ �Ai [24].

In the validation step, we verify if the predicted texton is
valid by checking its associative topology constraints and its
area and side length difference with the neighboring textons.
Additionally, the vertex positions of all valid textons are
refined through an image alignment process where a global
optimization that involves the whole lattice is performed ((6)
and (7)). The texton geometry model (Section 4.1) is used to
confine the transformation space in the image alignment
process by computing the affine parameters of all detected
textons simultaneously. This makes the image alignment
process more robust since it is a global adjustment.

The spatial prediction and validation steps are re-
peated until no new texton is detected. A texton template
set T 1 ¼ fT i1g

N
i¼1 is constructed by collecting all valid

texton template T it , where T t denotes the template set at
frame t. The initial configuration of lattice is obtained by
connecting all the centers of textons.

5.2 Spatial Inference

The temporal lattice-based MRF model (10) describes the
posterior probabilities of the lattice configuration of a
dynamic NRT given an image observation of the NRT at
frame t. Solving (10) can be considered as a spatial inference
problem where the most likely configuration of the lattice is
inferred from the image observation of an NRT and the lattice
structure model. We can apply the belief propagation
algorithm (BP) [13], [34], [51] to solve this inference problem.

BP is an iterative algorithm for computing marginal
distributions of random variables on a graphical model, such
as MRF, Bayesian network, and factor graph. The BP
algorithm introduces variables such as mijðxjtÞ to propagate
the marginal distribution among nodes.mijðxjtÞ is a vector of
the same dimensionality as xjt . Intuitively, mijðxjtÞ can be
interpreted as a message passing from hidden node i to hidden
node j about what state node j should be. Messages are
computed iteratively using the following update rule:

mijðxjtÞ  
X
xit

�ðxit; zitÞ’ðxit; x
j
tÞ

Y
k2NðiÞnj

mkiðxitÞ; ð16Þ

where NðiÞ denotes the neighbors of nodes i.
The marginal distribution of xit, which is called the belief

at node i, is proportional to the product of the local
evidence at that node (�ðxit; zitÞ), and all messages coming
into node i. By iteratively computing (16), the marginal
distribution at each node can be obtained using

pðxitÞ ¼
1

Q
�ðxit; zitÞ

Y
j2NðiÞnj

mjiðxitÞ; ð17Þ

where Q is a constant for normalization. It has been shown
that BP converges to an exact inference solution if the graph
is a tree structure [34] and an approximated inference
solution if the graph contains loops [50]. For more details
about belief propagation, please see [51].

Since the conventional BP algorithm works on discrete
variables while the configuration of a lattice is described by
continuous variables, we need to either discretize the state
variables or apply continuous BP algorithms [18], [42], i.e.,
the message function in (16) becomes

mijðxjtÞ  
Z
�ðxit; zitÞ’ðxit; x

j
tÞ

Y
k2NðiÞnj

mkiðxitÞdxit: ð18Þ

The integral in (18) is computationally expensive. For
computational efficiency, we choose to use the discrete BP
and adopt the sample-based statistics to represent the
continuous state variables for each texton. Particle filtering
[10], [19] is applied to update the particle set for each texton
in the temporal tracking process.

5.3 Temporal Tracking

The spatial inference results provide the probabilities of
lattice configurations at a single time instance. To track a
lattice, these probabilities need to be propagated temporally.
This poses the temporal tracking problem as a sequential
inference problem. A general approach to handling non-
Gaussian and nonlinear probability distributions in sequen-
tial inference is particle filters [10]. Particle filtering is flexible
in that it does not require any assumptions about the
probability distributions of the data. It approximates the
posteriori distribution by a set of particles where each particle
is weighted by an observation likelihood and is propagated
according to a dynamic model. We therefore apply particle
filtering to solve the temporal tracking problem.

The distribution of the lattice configurations in
3D spatiotemporal space are represented and maintained
by particle filtering in temporal tracking. The belief
distribution computed by the BP is used in importance
sampling to draw new samples. The dynamic model is
then applied to predict a set of states for each texton and
the discrete BP is applied to infer the most likely
configuration based on these predicted states.

We use a second-order dynamic model, i.e., the current
state of the lattice depends on the previous two states:

pðXtjXt�1; Xt�2Þ /
Y

pðxitjxit�1; x
i
t�2Þ; ð19Þ

where a constant velocity model with Gaussian noise is
used for the dynamic model for each texton:

pðxitjxit�1; x
i
t�2Þ ¼ N ðxit � 2xit�1 þ xit�2; 0;�iÞ: ð20Þ

�i is a diagonal matrix whose diagonal terms correspond to
the variance of the state at different dimensions. Although
we assume that the movement of each texton is indepen-
dent in our dynamic model, it does not imply that there is
no constraint among textons. Instead, the constraint for
maintaining the topological structure of a dynamic NRT is
already enforced through the piecewise affine alignment
process (7). For more details about particle filtering, please
see [10], [19] and our technical report [24].

Our approach of combining BP and particle filter is similar
to PAMPAS [18] in spirit; however, PAMPAS incorporates
particle filter in the message propagation process while we
use particle filter to carry the texton states between image
frames. Specifically, PAMPAS adopts particle filter to
compute (18) for message propagation but we use (16) for
message propagation in a discrete BP. Guskov et al. [17] also
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used the Markov network to associate color-coded quad-
rilaterals in an image with the quadrilaterals of the surface
model. They did not use the Markov network to infer the
position and the shape of the textons.

5.4 Template Update

Since the appearance of textons vary during tracking
process, it is necessary to update the texton template set.
We adopt the template updating algorithm in [30], where
the basic idea is to correct the drift in each frame by
additionally aligning the current image with the template at
the first frame using the Lucas-Kanade algorithm. Let Tt
and It be the texton template and the image at the current
frame t, respectively.2 The warping parameter at computed
from the first alignment process is

at ¼ argmina¼at�1

X
p

½TtðpÞ � ItðWðp; aÞÞ�2: ð21Þ

After aligning the current image with the previous frame, the
computed warping parameters are used as the initial values
in the additional alignment process to correct any drift:

eat ¼ argmina¼at

X
p

½T1ðpÞ � ItðWðp; aÞÞ�2: ð22Þ

If the difference of the warpingparameters jeat � atj is less than
a threshold, the template is updated, Ttþ1 ¼ ItðWðp; eatÞÞ;
otherwise, the template remains unchanged. This updating
strategy prevents our tracking algorithm from being dis-
tracted by outliers while maintaining the flexibility to handle
the appearance variations of textons during tracking.

6 EXPERIMENTAL RESULTS

6.1 Texton Detection

Our texton detection algorithm (Section 5.1) can be used to
initialize tracking as well as to extract the lattice of a static
NRT [26] with minimal user input. Fig. 9 shows four texton
detection results. In the dress example, there are large
deformations on the left and right boundaries. These results
show that our detection algorithm can detect textons on flat
or deformed surfaces with perspective distortions.

6.2 Tracking Dynamic NRTs without Occlusion

We test our tracking algorithm on several dynamic NRTs (Fig.
10)underdifferent typesofmotionsandcompareitagainst the
robust optical flow algorithm [4] and the Lucas-Kanade
algorithm [1], [28]. These two algorithms are chosen as
baseline comparisons because they are popular general
purpose tracking algorithms. We try different values of the
regularization term in the robust optical flow algorithm
and find that the value of 2.5 achieves the best tracking
performancefor theexamples inFig.10.For theLucas-Kanade
algorithm, 2D affine transformation is used in the tracking
process. Due to the ambiguous correspondence challenge of
NRT textons (discussed in Section 3), both the robust optical
flow algorithm and the Lucas-Kanade algorithm are dis-
tracted by neighboring textons. The patterns viewed through
disturbed water (Figs. 10d, 10e, 10f, 10g, 10h, and 10i) vary
rapidly because of the water surface refraction and motion
blur. Despite these difficulties, our algorithm is able to track
these highly dynamic and varied textons successfully. These

experiments demonstrate that, even without occlusion,
dynamic NRT tracking can be challenging to the robust
optical flow algorithm and the Lucas-Kanade algorithm.

The textons of the underwater texture are modeled as a
loosely coupled MRF allowing flexible motion of textons.
Figs. 10j, 10k, and 10l shows another example of tracking
loosely coupled textons. In this example, a texton is defined
as a local patch around the head region of a person. The
marching motion presents a relatively large global motion
with small local deformation of individual textons com-
pared to the motion of tightly coupled textons. Also, the
appearance of textons varies drastically due to shadows.
The underwater texture and crowd marching examples
show that our algorithm is able to handle large illumination
changes, rapid geometric deformation, and intensity varia-
tions in the tracking process.

6.3 Tracking Dynamic NRTs with Occlusion

Occlusion is one of the major challenges in dynamic texture
tracking. Textons may leave/enter the scene or be occluded
by other objects or other textons on a folded surface. We test
our tracking algorithm on different cloth motion under
different degrees of occlusions.

For a checkerboard pattern on a T-shirt, our tracking
algorithm achieves similar performance as by Guskov’s
algorithm [15]; however, Guskov’s algorithm is specially
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Fig. 9. Texton detection results by spatial tracking. (a) Initial textons.

(b) Final result. For videos, please see http://www.cs.cmu.edu/~wclin/

dnrtPAMI/dnrt.html.

2. The superscript i is omitted for illustration simplicity.



designed for real-time tracking of black-white checker-

board patterns, while our algorithm can handle general

dynamic NRTs. The root mean square error of Guskov’s

result and ours against hand-labeled ground truth are

2.94 and 2.57 pixels, respectively. The videos of

Guskov’s and our tracking results can be seen in

http://www.cs.cmu.edu/~wclin/dnrtPAMI/dnrt.html.
Fig. 11a shows our tracking result on a fabric pattern

under self-occlusion and textons leaving/entering the scene

during tracking. The lattice, visible textons, and occluded

textons are shown in red, yellow, and cyan colors, respec-

tively. Fig. 11b shows the straightened-out visibility map of

textons where blackened regions correspond to detected

occluded textons and all visible textons.
Fig. 12 shows another tracking result where a fabric

pattern is being folded. There are a few textons totally

occluded in the middle and two occluded by a finger in the

bottom-right region (Fig. 12b). Despite self and external

occlusions in the video, our algorithm can successfully track

this folding fabric pattern. When the texton is at the boundary

of a lattice, the BP inference result for the texton is less reliable

since it receives messages from fewer neighboring nodes.

This is the reason why there are some tracking errors in the

cyan lattice at the boundary, e.g, top-middle in Fig. 12c.
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Fig. 10. Tracking results of different algorithms on dynamic NRTs without occlusion. Left column: robust optical flow. Middle column: Lucas-Kanade.
Right column: Our results. For videos, please see http://www.cs.cmu.edu/~wclin/dnrtPAMI/dnrt.html. (a), (b), and (c) Slowly waving cloth (frame 86).
(d), (e), and (f) An underwater texture seen through disturbed water (frame 91). (g), (h), and (i) Another underwater texture (frame 70). (j), (k), and (l)
Crowd motion (frame 210). One can observe that the tracking error accumulates quickly in the optical flow and Lucas-Kanade results. Note that there
are serious motion blurs and large lighting variations due to reflection highlights in underwater textures ((d), (e), (f), (g), (h), and (i)).



6.4 Computational Speed

Table 1 summarizes the processing time per frame for all
tracking experiments. Depending on the number of textons to
be tracked in the scene, the number of particles used in
particle filtering, and the type of a dynamic NRT, the
computational time for processing a frame ranges from
10 seconds to 639 seconds on a 2.2 GHz PC with nonopti-
mized MATLAB code.

6.5 Validation and Comparison

We conduct several experiments to validate our MRF model
and compare our tracking algorithm with mesh-based
tracking and multitarget tracking algorithms. We first
verify if the 12-neighbor configuration is the best setting
for dynamic NRTs by testing our tracking algorithm with 8
and 16-neighbor configuration on underwater texture
motion. We also test our tracking algorithm with multiple
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Fig. 11. Tracking results of a fabric pattern under occlusion. (a) Tracked lattice. (b) Visibility map. The visible lattice, occluded lattice, visible
textons, and occluded textons are shown in red, cyan, yellow, and cyan color. The visibility map shows visible aligned textons. For videos, please
see http://www.cs.cmu.edu/~wclin/dnrtPAMI/dnrt.html.

Fig. 12. (a) Frame 25. (b) Frame 50. (c) Frame 100. Top row: tracking results of a folding fabric pattern. There are a few textons totally
occluded in the middle and two textons are occluded by a finger in the lower-right region. Bottom row: visibility map. For videos, please see
http://www.cs.cmu.edu/~wclin/dnrtPAMI/dnrt.html.



texton templates and single texton template settings and
texton detection algorithm initialized at different positions.
Finally, we compare the performance of our tracking
algorithm with deformable object tracking and multitarget
tracking algorithms.

6.5.1 Validation of 12-Neighbor Configuration

The 12-neighbor configuration in our MRF model is adopted
from the spring configuration in physics-based cloth
simulation. Our tracking results show that this 12-neighbor
configuration works well for different types of dynamic
NRTs, from highly dynamic underwater textures to slowly
varying fabric textures. To further validate that the
12-neighbor MRF model is appropriate for dynamic NRTs,
we test our tracking algorithm with different neighborhood
configurations. Fig. 13 shows several static frames of
tracking results with different number of neighbors used in
the MRF model. From this experiment, we find that an
8-neighbor configuration cannot provide sufficient con-
straints to maintain the lattice structure, while a 16-neighbor

configuration introduces too strong structural constraints.
This makes the tracking algorithm less adaptive to highly
dynamic motion. Once the algorithm loses track of a texton,
the algorithm cannot catch the texton again (Fig. 13).

6.5.2 Multiple Texton Templates versus Single Texton

Template

We explore if PCA can be used to represent multiple texton
templates, allowing a more compact representation of texton
templates. Fig. 14 plots the number of PCA bases (95 percent
energy) used during tracking (see Fig. 15). At the first frame,
only one basis is needed since a single texton is used. As the
tracking proceeds, the number of PCA bases increases and
reaches its maximum of 34 at frame 127. If no PCA is applied,
70 texton templates are used during tracking process. Fig. 15
compares the tracking results of multiple and single texton
templates at several frames. The tracking results show that
using a single texton template, although providing more
compact representation, has a slightly larger tracking error
than using multiple texton templates.

6.5.3 Comparison of Texton Detection with Different

Initial Positions

We investigate how the position of the initial texton (the first

texton specified by the user) affects texton detection result.

We start the texton detection algorithm (Section 5.1) at

different initial positions. The texton detection results of
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TABLE 1
Processing Time in Different Experiments

Fig. 13. Tracking results of an underwater texture using different
number of neighbors at frame 100. (a) Eight neighbors.
(b) Twelve neighbors. (c) Sixteen neighbors. For videos, please
see http://www.cs.cmu.edu/~wclin/dnrtPAMI/dnrt.html.

Fig. 14. Plot of the number of PCA bases (95 percent energy) used to
represent texton templates in the tracking process (see Fig. 15 for tracking
results). At the first frame, only one basis is used since a single texton
template is used. As tracking proceeds, the number of bases increases.

Fig. 15. Comparison of tracking results using multiple texton templates and a single texton template at frames 16 (a) and (b) and 68 (c) and (d).
(a) and (c) Multiple templates. (b) and (d) Single template. One can observe that the tracking results for multiple texton templates are more accurate.
For instance, there are tracking errors in the middle of (b) where several lattice nodes are not located at the centers of textons. In (d), there are visible
textons misjudged as occluded, and a texton on the top row is not tracked correctly.



fabric textures on a towel and a dress can be seen in http://
www.cs.cmu.edu/~wclin/dnrtPAMI/dnrt.html. In one of
the detection results of the towel example (initialized at the
bottom-right corner), two textons at the top-left corner are not
detected successfully because the image intensities of these
textons are much darker than those of the initial texton. The
towel and dress examples show that the spatial detection
algorithm is not sensitive to different initial positions.

6.5.4 Comparison with Deformable Object Tracking and

Multitarget Tracking

Dynamic NRTs exhibit wide range of motion characteristics,
from slowly periodic motion to rapidly moving motion, and
from surface deformation to loosely coupled crowd motion. If
we arrange different dynamic NRTs based on structural

constraints among individual textons, these dynamic NRTs
form a spectrum along the structural regularity axis. It
appears that, on one end of the spectrum, dynamic NRTs may
be considered as a deformable object tracking problem, while,
on the other end, dynamic NRTs can be treated as a
multitarget tracking problem.

Among deformable object tracking algorithms, we choose
theActiveAppearanceModel (AAM)[7] forcomparisonsince
most deformable object tracking algorithms are developed
based on AAM or a similar concept [29]. These algorithms use
ameshto represent the shape of adeformable object andapply
animage alignmentalgorithm to fit the appearanceof an input
image sequence with a modal image or an appearance model
constructed bya set of training images. Fig. 16 showsthe AAM
tracking result of a slowly varying dynamic NRT using the
AAM code implemented by Matthews and Baker [29]. In this
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Fig. 16. Top: A short image sequence showing the drifting of lattice in the AAM tracking result. (a) frame 41, (b) frame 47, (c) frame 53,
and (d) frame 56. Bottom: Our tracking result. (e) frame 41, (f) frame 47, (g) frame 53, and (h) frame 56. The lattice drifts because the
AAM is not able to represent local nonlinear deformation and tracking cannot be recovered once the lattice drifts to other texton locations.
For videos, please see http://www.cs.cmu.edu/~wclin/dnrtPAMI/dnrt.html.

Fig. 17. (a) Comparison of our tracking result and (b) Yu and Wu’s result [52] at frame 210. (c) Comparison of root mean square error
against the hand-labeled ground truth. The red dash line shows the RMSE curve of Yu and Wu’s tracking result and the blue solid line is
the RMSE curve of our tracking result. The total RMSE of Yu and Wu’s results and ours are 25.9 and 20.2 pixels, respectively. For videos,
please see http://www.cs.cmu.edu/~wclin/dnrtPAMI/dnrt.html.



experiment, weselect10frames (uniformlysampled) from the
input image sequence to construct an AAM model. The
2D meshes used for constructing the AAM model are
manually labeled. The lattice drifts due to ambiguous
correspondences, although the lattice structure is maintained
in the AAM tracking result. Fig. 16 shows image frames where
drifting occurs in the AAM tracking result.

There are two important differences between AAM-based
approaches and our tracking algorithm. First, our MRF model
integrates a spring-network-like statistical lattice structure
model and a registration-based image observation model.
The role of the image observation model is similar to the
image alignment algorithm in AAM-based approaches;
however, our lattice structure model makes a crucial
difference. It allows local nonlinear deformation while
AAM only models global linear deformation. If a surface
deformation cannot be represented by an AAM, AAM may
lose tracking of textons and the whole lattice is attracted by
neighboring textons with similar appearance (Fig. 16).
Second, we use a linear dynamic model (20) to predict the
position of lattice in the next frame. The predicted lattice
position provides a better initial condition for the image
alignment algorithm such that the image alignment process is
more likely to converge to the correct solution.

We also compare the performance of our tracking
algorithm against multitarget tracking algorithms. In parti-
cular, we choose Yu and Wu’s tracking algorithm [52] as
they also use an MRF to represent the spatial constraints

between targets. Each target is tracked by a tracker and
these trackers collaborate with each other under an MRF
model to resolve ambiguous correspondences among multi-
ple identical targets.

Fig. 17 shows the comparison of our tracking results and
Yu and Wu’s on the crowd motion. This comparison shows
that our tracking algorithm can keep tracking all targets
steadily through the entire sequence, while Yu and Wu’s
algorithm may lose tracking of targets from time to time. To
quantitatively compare their results and ours, we manually
track the lattice every five frames in the video. The total root
mean square errors (RMSE) of Yu and Wu’s results and
ours are 25.9 and 20.2 pixels, respectively. Fig. 17c is an
RMSE plot of tracking results. The reason that our
algorithm is more robust than Yu and Wu’s is because we
explicitly model the 4-degree topological structure of the
textons, which remains invariant despite all kinds of
motions a dynamic NRT may undergo.

The comparison with deformable object tracking and
multitarget tracking algorithms demonstrate the effective-
ness of our lattice-based MRF model on dynamic NRT
tracking. The comparison also shows that our tracking
algorithm not only provides a unified framework for
tracking dynamic NRT under a wide range of motion but
also outperforms algorithms that are specialized at certain
type of motion-deformable objects and multitargets. We
should mention that our method is not real-time, but the
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Fig. 18. Top: Dynamic NRT replacement of a fabric texture. Bottom: Video superimposition of letters “USA.” (a) An input frame. (b) Tracked lattice.
(c) Extracted lighting. (d) Replacement result. (e) An input frame. (f) Tracked lattice. (g) Extracted lighting. (h) Superimposed text. For videos, please
see http://www.cs.cmu.edu/~wclin/dnrtPAMI/dnrt.html.



AAM approach and Yu and Wu’s approach that we are
comparing with are.

6.6 Video Editing Applications

Our tracking algorithm can benefit many applications besides

texture tracking, e.g., video editing, cloth motion capture, and
fashion design preview. Fig. 18 demonstrate two applications
in dynamic texture replacement and video superimposition.

Texture replacement in photos changes an NRT in an image
without knowing the scene geometry while preserving the
geometric deformations, and photometric realism, such as

shading and shadows. Although existing algorithms [12],
[26], [27], [45] can replace a texture in still images, including an
attempt in the early 1970s [20], texture replacement in videos

under occlusion and rapid movements has not been done. The
major challenge is to achieve realistic replacement and
maintain temporal coherence simultaneously.

The temporal coherence problem can be solved by
combining an effective texture tracking algorithm and a
spatiotemporal smoothing algorithm. We first apply our
tracking algorithm to track lattices of a dynamic texture. With
the tracked lattices that capture the temporal information of
the texture, we use an algorithm proposed by Liu et al. [26] to
compute geometric and lighting deformation fields (DFs)
separately, which are essentially pixel-wise mappings that
define the geometric and photometric variations of the NRT.
Temporal coherence is further addressed by smoothing the
geometric and lighting DFs spatiotemporally. The smoothed
geometric and lighting DFs can then be applied to any texture
to achieve realistic and coherent video texture replacement.
Note that spatiotemporal stitching is applied when there are
more than one NRT patches in an image frame, e.g., the left
and right trousers in Fig. 18b are represented by two patches.
For more video editing examples, please see http://
www.cs.cmu.edu/~wclin/dnrtPAMI/dnrt.html.

7 CONCLUSION

We propose a lattice-based MRF model for dynamic NRTs.
Textons of a dynamic NRT are treated as separate moving
objects connected by a topological constraint, while allowing

individual textons to vary flexibly in geometry and appear-
ance. Our lattice-based MRF model consists of a lattice
structure model that characterizes the topological constraint

of a dynamic NRT and a registration-based image observa-
tion model that handles the geometry and appearance
variations of individual textons. We treat dynamic NRT

tracking as a spatiotemporal inference problem using the
belief propagation and the particle filtering algorithms. We
demonstrate the effectiveness of our algorithm on tracking

dynamic NRTs under rapid movements, motion blurring,
folding, occlusion, and illumination changes through differ-
ent mediums. In future study, we will allow the lattice

topology to adapt during a dynamic NRT tracking process
and evaluate its pros and cons. A possible direction is to adopt
a dynamic Bayesian network [31] to model a varying

topology. We would also like to extend our MRF to model
the folding topology and to combine a shape-from-texture
algorithm to capture 3D surface geometry, which will further

expand the applications of various types of dynamic NRTs.
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