
ARTICLE IN PRESS
Mechanical Systems
and

Signal Processing
0888-3270/$ - se

doi:10.1016/j.ym

�Correspond
E-mail addr
Mechanical Systems and Signal Processing 21 (2007) 1642–1664

www.elsevier.com/locate/jnlabr/ymssp
Identification of modal parameters of a time invariant linear
system by continuous wavelet transformation

C.S. Huang�, W.C. Su

Department of Civil Engineering, National Chiao Tung University, 1001 Ta-Hsueh Road, Hsinchu 30050, Taiwan

Received 9 January 2006; received in revised form 17 July 2006; accepted 17 July 2006

Available online 22 September 2006
Abstract

The applications of wavelet transforms have received significant attentions in many fields. This work proposes a

procedure for identifying modal parameters of a linear system using the continuous wavelet transform. The merits of the

proposed procedure over the exiting schemes of applying the wavelet transform to system identification for a linear system

are in use of the time invariance property and filtering ability of the transform to enhance the efficiency of identifying the

modal parameters of a structure from its earthquake responses or free vibration responses. The effectiveness and accuracy

of the proposed procedure are validated via numerical simulations. The effects of noise and wavelet function on identifying

the modal parameters of the structure are also explored in processing the numerically simulated acceleration responses of a

six-story shear building subjected to base excitation. The dynamic characteristics of close modes are accurately determined.

Finally, the proposed procedure is adopted to obtain the modal parameters of a three-story non-symmetric steel frame

from its measured acceleration responses in a shaking table test. A total of nine modes are identified, including modes with

high frequencies and very small amplitude.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Health monitoring of a system is an important and interesting issue in both academia and industry.
Structural health monitoring aims at determining the durability and safety of structures. A structural system
may sustain damage when subjected to severe loading such as a strong earthquake, or when its material
deteriorates. The dynamic characteristics of a system are often identified from its dynamic responses in a
health monitoring program of the system for the following reasons. Damage to the system reduces its natural
frequencies, raises its modal damping and alters its mode shapes. The identified dynamic features can be
employed to ensure the accuracy of the numerical model of the system in the design stage, and to correct the
model if necessary. The corrected numerical model can then be applied to future damage assessment of the
system.
e front matter r 2006 Elsevier Ltd. All rights reserved.
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The dynamic characteristics of a system are often identified either in the frequency domain or the time
domain. Identification techniques in the frequency domain (i.e. spectrum analysis [1]) are widely recognised as
simple, but do not accurately estimate the spectra of measured responses, leading to the loss of accuracy of
identified modal parameters, particularly for highly damped systems and systems with severe modal
interference. Conversely, methods in the time domain (e.g. time series methods [2], the subspace approach
[3,4], and the ANN approach [5]) frequently provide accurate results if the measured responses are not severely
contaminated by noise. However, filtering noise from the measured responses in the time domain is not so
convenient as that in the frequency domain.

A time-frequency analysis method, called wavelet transform, has been fully developed in the theoretical
aspect over the past two decades, having been successfully applied in many fields. Various techniques for
identifying modal parameters of a linear system have been developed based on discrete wavelet transform or
continuous wavelet transform. Two approaches using the discrete wavelet transform have been proposed.
Robertson et al. [6,7] proposed a procedure for extracting impulse response characteristics of a system from its
forced responses by expanding the impulse response function and input force in the Duhamel integral
equation in terms of wavelet basis functions. Robertson et al. utilised Daubechies wavelets [8] in their study.
Then, an eigensystem realisation algorithm was adopted to identify the dynamic characteristics of the system
from the estimated impulse response functions. Huang et al. [9] applied the discrete wavelet transform to the
discrete equations of motion and determined the natural frequencies, modal damping ratios and mode shapes
using either free decay responses or earthquake responses. They examined three different mother wavelet
functions called ‘‘sym1’’, ‘‘sym4’’, and ‘‘sym10’’ [8] in their numerical studies.

Some works have been published on identifying the dynamic characteristics of a linear system according to
the continuous wavelet transform. Schoenwald [10] applied the continuous wavelet transform to the equation
of motion of a single-degree-freedom system and identified the parameters in the equation of motion. Ruzzene
et al. [11], Gouttebroze and Lardies [12], Lardies and Gouttebroze [13], and Le and Argoul [14] applied the
continuous wavelet transform to the free decay responses of a system using various wavelet functions and
proposed different procedures for determining the natural frequencies, modal damping ratios, or mode shapes
of the system from the modulus or the phase of the wavelet transform. These procedures are valid for systems
with weak damping. Furthermore, the success of these techniques depends on the ability of the frequency
localisation of the wavelet transform to decompose the responses of multiple modes accurately into the
responses of the single mode of interest. Mode decomposition is typically difficult for close modes with severe
modal interference.

Previous works have some disadvantages. The schemes using the discrete wavelet transform cannot employ
the time invariance property of continuous wavelet transform, which gives a simple relationship between the
wavelet transform of f(t) and f(t�tn), where tn is a constant. Consequently, these schemes consume much
computation time in evaluating the discrete transforms of functions with different time shifts involved in their
formulations. Moreover, since the scale parameters in the discrete wavelet transform are often defined in
powers of two, an efficient frequency filter cannot be achieved from the discrete wavelet transform. These
drawbacks do not occur in the continuous wavelet transform. However, existing algorithms based on the
continuous wavelet transform can only process the free decay responses of systems with weak damping. This
study develops a novel scheme free from these shortcomings.

The proposed approach applies the continuous wavelet transform to the measured dynamic responses of a
linear structure. The discrete linear equations of motion among the measured degrees of freedom are then
established in the wavelet domain. A fixed value or several fixed values of the scale parameter in the
transformation can be adopted to filter out the uninteresting responses. The coefficients in the discrete
equations of motion, which determine the dynamic characteristics of the system, are found in the wavelet
domain through the least squares approach. The modal parameters are then computed directly from these
coefficients by solving an eigenvalue problem. The numerically simulated earthquake responses of a six-story
shear building are first processed to verify the effectiveness and accuracy of the proposed approach. Numerical
experiments are then undertaken to determine the effects of noise, wavelet function and scale parameter
selection, and other factors, on the accuracy of determining dynamic characteristics. Several wavelet functions
such as the Shannon, Meyer, Morlet and Haar functions are studied. The feasibility of the proposed approach
to elucidate real structures is demonstrated by processing the measured responses of a three-story steel frame
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in shaking table tests. The frame is a non-symmetric structure, and its horizontal and torsional responses of
floor are coupled.

2. The continuous wavelet transform

The wavelet transform of a function of time, f(t), belonging to L2 space, which means
R1
�1

f 2
ðtÞdt finite, is

defined as

Wcf ða; bÞ ¼ f ðtÞ; ca;bðtÞ
� �

¼
1ffiffiffi
a
p

Z 1
�1

f ðtÞc�
t� b

a

� �
dt, (1)

where /,S and the superscript * denote inner product and the complex conjugate, respectively; a is a dilation
or scale parameter, which is typically a positive real and plays the role of the inverse of frequency; b is a
translation parameter, which indicates the locality of the transformation; ca;bðtÞ ¼ ð

ffiffiffi
a
p
Þ
�1cððt� bÞ=aÞ, and

c(t) is a mother wavelet function. A mother wavelet function must satisfy the admissibility condition,

Cc ¼

Z 1
�1

ĉðoÞ
��� ���2

oj j
doo1, (2)

where ‘‘||’’ represents the magnitude, and ĉðoÞ is the Fourier transform of c(t) [15]. The inverse of the wavelet
transform is given by

f ðtÞ ¼
1

Cc

Z 1
�1

Z 1
�1

Wcf ða; bÞca;bðtÞ
1

a2
dadb. (3)

The wavelet transform is a linear transform with the following time invariance property [16]:

Let gðtÞ ¼ f ðt� tÞ,

then

Wcgða; bÞ ¼Wcf ða; b� tÞ. (4)

This property , which is very important in this work, can be easily proved by using the definition given in Eq.
(1). This relationship given by Eq. (4) cannot usually be employed in the discrete wavelet transform because, in
the discrete wavelet transform, a and b are often chosen as a ¼ am

0 and b ¼ nb0am
0 , where m and n belong to Z.

The wavelet transform decomposes an arbitrary function f(t) into the functions ca;bðtÞ with different a and b.
Hence, the wavelet transform alters the frequency contents of f(t) if the scale parameter is fixed, meaning that
the transformation has a filtering effect. Applying Fourier transformation to Eq. (1) with a fixed value of the
scale parameter a yields

jŴcf ða;oÞj ¼
ffiffiffi
a
p
jĉðaoÞj jf̂ ðoÞj, (5)

where Ŵcf ða;oÞ and f̂ ðoÞ are the Fourier transforms of Wcf ða; bÞ with respect to b and f(t), respectively.
The wavelet transform gives the localised information of the spectrum of f(t) with a frequency window [15],

o�

a
�

Dĉ

a
;
o�

a
þ

Dĉ

a

� 	
, (6)

where o�=a and 2Dĉ=a are the center and width of the window; respectively, and o* and Dĉ are defined as

o� ¼
1

ĉðoÞ



 


2

Z 1
�1

o ĉðoÞ
��� ���2 do and Dĉ ¼

1

ĉðoÞ



 




Z 1
�1

ðo� o�Þ2 ĉðoÞ
��� ���2 do� �1=2

, (7)

where

ĉðoÞ



 


2 ¼ Z 1

�1

ĉðoÞ
��� ���2 do.
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3. Methodology

3.1. Background

The equations of motion of a time invariant linear system with multiple degrees of freedom are

½M �f €xg þ ½C �f _xg þ ½K �fxg ¼ ff g, (8)

where [M], [C], and [K] are the mass, damping and stiffness matrices of the structure system, respectively; f €xg,
f _xg, and {x} are the acceleration, velocity and displacement response vectors of the system; and {f} is the input
force vector. Eq. (8) is not restricted to the proportional damping system and can be accurately discretised by
the impulse invariant transformation or the method of mapping of differential [17] and expressed as [18–20]

xðtÞ
 �

¼
X2
i¼1

½Ū�i xðt� iDtÞ
 �

þ H̄
� �

1
f ðt� DtÞ
 �

, (9a)

_xðtÞ
 �

¼
X2
i¼1

½Ū�i _xðt� iDtÞ
 �

þ
X1
j¼0

Ĥ
h i

j
f ðt� j DtÞ
 �

, (9b)

or

€xðtÞ
 �

¼
X2
i¼1

½Ū�i €xðt� iDtÞ
 �

þ
X2
j¼0

~H
� �

j
f ðt� j DtÞ
 �

, (9c)

where ½Ū�i, ½H̄�1, ½Ĥ�j, and ½
~H�j are coefficient matrices related to [M], [C], [K], and Dt that represents the time

increment.
Real applications in structural health monitoring often only measure acceleration or velocity responses at

some (not all) degrees of freedom due to economic concern. The discrete equations of motion corresponding
to the measured degrees of freedom are [18,20]

yðtÞ
 �

¼
XI

i¼1;2

½U�i yðt� iÞ
 �

þ
XJ

j¼0;1

½H�j f ðt� jÞ
 �

, (10)

where {y(t�i)} and {f(t�i)}are the measured responses, in terms of acceleration or velocity, and the forces at
time t�iDt, respectively; I and J denote the lags of output and input, respectively; ½U�i and ½H�j are coefficient
matrices. Notably, Eq. (10) closely resembles the time series model ARX with multiple variables. The problem of
identifying a linear dynamic system is converted to a linear time series problem with one-step-ahead prediction.
When all ½H�j (j ¼ 0,1,2,y, J) vanish, Eq. (10) describes free decayed vibration responses of the dynamic system.

The values of I and J in Eq. (10) can theoretically be determined in advance from the measured degrees of
freedom and the true total degrees of freedom of the system under consideration if no noise is present [18,20].
However, the measured responses in reality always contain noise, and the total number degrees of freedom of
the system are unknown because the system is generally continuous. Different values of I and J are often used
in establishing Eq. (10). The identified modal parameters of a dynamic system usually converge to accurate
results as I and J increase.

3.2. Solution in the wavelet domain

Treating {y(t�i)} and {f(t�i)} as vector functions, and applying the continuous wavelet transform to Eq.
(10) yields

Wcyða; b̄Þ ¼
XI

i¼1

½U�iWcyða; b̄� iÞ þ
XJ

j¼0

½H�jWcf ða; b̄� jÞ, (11)

where the translation parameter b is set to b̄Dt, and b̄ is an integer because b must be a discrete number when
the transformation is applied to discrete responses. Eq. (11) is derived using the time invariance property given
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in Eq. (4), so the continuous wavelet transform on {y(t)} and {f(t)} needs to be performed only once. If the
discrete wavelet transform is applied to Eq. (10) as in Huang et al. [9], then the wavelet transform has to be
applied to all {y(t�i)} and {f(t�i)} for different i, which is time-consuming.

Constructing Eq. (11) for different b̄ and rearranging the resulting equations produces

½Y ð0Þ� ¼ ½Ĉ �
½Y�

½F�

" #
, (12)

where

½Ĉ � ¼ ½U�1 ½U�2 . . . ½U�I ½H�0 ½H�1 . . . ½H�J
h i

, (13a)

½Y � ¼ ½Y ð1Þ�T ½Y ð2Þ�T . . . ½Y ðIÞ�T
h iT

, (13b)

½F� ¼ ½F ð0Þ�T ½Fð1Þ�T . . . ½F ðJÞ�T
h iT

, (13c)

½Y ðiÞ� ¼ Wcyða;max�iÞ Wcyða;max�i þ 1Þ . . . Wcyða;max�i þmÞ
� �

, (13d)

½F ðiÞ� ¼ Wcf ða;max�iÞ Wcf ða;max�i þ 1Þ . . . Wcf ða;max�i þmÞ
� �

(13e)

and max is the larger value of I and J, so that b̄ does not become negative in Eq. (11). In Eqs. (13d) and (13e),
m is a number sufficiently large to make Eq. (12) be an overdeterminate system of linear algebraic equations
for unknown coefficients in ½Ĉ �. In the following analysis, m is set to the data number of responses under
consideration.

If only one value of a utilised in building Eq. (12), then the responses and input forces in a certain
range of frequency are considered. The frequency range is determined by the mother wavelet function
and the chosen scale parameter a. To employ a wide frequency range in responses and input forces,
several values of a can be adopted in establishing Eq. (12). In this case, the expressions of ½Y ðiÞ� and ½F ðiÞ� are
modified as

½Y ðiÞ� ¼ Y i
1 Y i

2 . . . Y i
N

h i
and ½F ðiÞ� ¼ F i

1 F i
2 . . . F i

N

h i
, (14)

where

Y i
j ¼

Wcyðaj ;max�iÞ Wcyðaj ;max�i þ 1Þ . . . Wcyðaj ;max�i þmÞ
h i

, (15a)

F i
j ¼

Wcf ðaj ;max�iÞ Wcf aj ;max�i þ 1Þ . . . Wcf ðaj ;max�i þmÞ
h i

. (15b)

The coefficient matrix ½Ĉ � in the overdeterminate system of Eq. (12) is calculated by the least squares or the
generalised inverse approaches. Hence,

½Ĉ � ¼ ½Y ð0Þ�
½Y�

½F�

" #þ
, (16)

where the superscript ‘‘+’’ denotes the generalised inverse operation.
3.3. Estimation of the dynamic characteristics of structures

Apparently, Eq. (10) without the force terms describes free decay responses, explaining why the dynamic
characteristics of the structure are determined from the coefficient matrices ½U�i. By adopting the concept
behind the Ibrahim time domain system identification technique, Huang [21] and Yang et al. [22] proved that if
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one constructs a matrix from these coefficient matrices as follows:

G½ � ¼

0 I 0 0 . . . 0

0 0 I 0 . . . 0

..

.

½UI � ½UI�1� ½U1�

2
66664

3
77775, (17)

where I is an l*l unit matrix, and l is the dimension of {y(t)}, then the dynamic characteristics of the system
under consideration can be computed from the eigenvalues and eigenvectors of [G].

In Eq. (17), [G] is an N̄ � N̄ matrix, where N̄ ¼ I � l. Let lk and {fk} represent the kth eigenvalue and
eigenvector of [G], respectively. The eigenvalue lk is normally a complex number, and is set to ~ak þ i ~bk. The
frequency and damping ratio of the system are computed by

~bk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2k þ b2k

q
; xk ¼ �ak= ~bk, (18)

where

bk ¼
1

Dt
tan�1

~bk

~ak

 !
; ak ¼

1

2Dt
ln ð ~a2

k þ
~b
2

kÞ. (19)

In these equations, ~bk is the pseudo-undamped circular natural frequency, and xk is the modal damping
ratio.

The eigenvector {fk} can be written as ffkg
T
1 ffkg

T
2 . . . ffkg

T
I

� �T
with each ffkgi having l components.

Since

½G � fk

 �
¼ lk fk

 �
, (20)

substituting Eq. (17) into Eq. (20) results in

ffkgi ¼ lkffkgi�1 ði ¼ 2; 3; . . . ; IÞ. (21)

The relation given in Eq. (21) yields

ffkg ¼ ffkg
T
1 ; lkffkg

T
1 ; l

2
kffkg

T
1 ; . . . ; l

n�1
k ffkg

T
1

� �T
, (22)

where ffkg1 corresponds to a mode shape of the measured degrees of freedom of the structural system.
Notably, spurious modes other than real structural modes occur when N̄42n where n is the number of

degrees of freedom of the structural system under consideration and is usually unknown. The real structural
modes consistently arise as N̄ increases and when no spurious mode occurs with strong interference with the
structural modes. The modal parameters of a structure can be determined from the corresponding stabilisation
diagrams, which display the variations of the identified modal parameters with the values of I and J in Eq.
(10). Sometimes, good engineering judgment based on the knowledge on the structural system must be
exercised to confirm the structural modes.

4. Numerical verification

Numerically simulated acceleration responses of a six-story shear building subjected to base excitation
were processed to demonstrate the accuracy and effectiveness of the proposed approach for identifying
modal parameters. The theoretical natural frequencies of the system were 0.679, 2.18, 3.48, 6.00, 6.20 and
7.08Hz, and the modal damping ratios were set to 5%. The numerical solutions were obtained by
applying the Laplace transform to the equations of motion. Fig. 1 displays the input and response
time histories of the second, fourth, and top floors and their corresponding Fourier spectra. The
Fourier spectra reveal that the amplitude of the sixth mode is smaller than that of the first mode
by two orders. The close modes, the 4th and 5th modes, are not easily separated in these spectra. The
input base excitation and acceleration responses of the six degrees of freedom with t ¼ 0–60 s (see Fig. 1)
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Fig. 1. Simulated responses with no noise and the corresponding Fourier spectra.
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with a sampling rate of 250Hz were used to estimate the corresponding wavelet transforms Wcyða; b̄Þ and
Wcf ða; b̄Þ where b̄ ¼ 1; 2; . . . ; 15; 000. Wcyða; b̄Þ and Wcf ða; b̄Þ with b̄ ¼ 200024000 were used in constructing
Eq. (12), to avoid the border problems (or edge effects) in the wavelet transforms [23].
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The modal assurance criterion (MAC) [24] was applied to verify the agreement between the identified and
theoretical mode shapes. The modal assurance criterion is defined as

MAC fjiI g; fjiAg
� �

¼
fjiI g

T fjiAg
�� ��2

fjiI g
TfjiI gfjiAg

TfjiAg
, (23)

where fjiI g is the identified ith mode shape, and fjiAg is the corresponding analytical mode shape. The value
of MAC is between zero and unity. MAC is close to one when two mode shapes are similar, and is zero when
two mode shapes are orthogonal to each other.

The following analysis considers the identified results as ‘‘accurate’’ when the identified frequencies and
modal damping ratios are within 2% and 20% of the theoretical ones, respectively, and the MAC values
exceed 0.9 as well. The identified natural frequencies are typically much more accurate than the identified
modal damping ratios, and therefore smaller errors are required for the identified natural frequencies than for
identified modal damping ratios when defining accurate results.

4.1. Shannon wavelet function

The mother wavelet function was not specified in Section 3. Eq. (5) indicates that the wavelet transform
exhibits a frequency filtering effect. The wavelet transform should not significantly alter the frequency
characteristics (the locations of the peaks) of the original responses in the frequency range of interest when Eq.
(11) or (12) is constructed. The Shannon wavelet function [16,25], an ideal band-pass filter, seems to be a
favorable choice.

The Shannon wavelet and its Fourier transform are, respectively (see Fig. 2)

cSðtÞ ¼ sinð2ptÞ � sinðptÞð Þ=pt (24a)

and

ĉSðoÞ ¼
1 for po oj jo2p;

0 otherwise:

�
(24b)

The Fourier transform of the Shannon wavelet is compactly supported, and the wavelet decays slowly in
time. Theoretically, WcS

f ða; bÞ, the wavelet transform of f(t) obtained using the Shannon wavelet, completely
preserves the characteristics of f(t) in the frequency interval ½1=2a; 1=a� (in terms of Hz) when only positive
frequencies are considered. The frequency interval ½1=2a; 1=a� is defined as the preserved frequency range,
corresponding to the Shannon wavelet with a fixed scale parameter a.

4.2. Effects of noise

The measured data always contain some level of corrupted noise. To simulate the noise effect, 10% or 20%
variance of the noise-to-signal ratio (NSR) was randomly added to the computed responses and input. Table 1
lists the identified modal parameters obtained from the acceleration responses of all six degrees of freedom and
the base excitation input with various noise levels, using different pairs of (I, J) in Eq. (10). For simplicity and
based on Eq. (9c), J is set equal to I in all the numerical results. The aim of this experiment was to identify the
higher modes, that is, modes 4–6, so that a ¼ 0.092 was used for the results in Table 1.

When no noise is present, the results demonstrate that I ¼ J ¼ 2 yielded very accurate modal parameters.
Raising I and J still yielded the results with very high accuracy. However, the processing of noisy responses
reveals different observations. When NSR ¼ 10%, I ¼ JX10 yielded accurate results, while NSR ¼ 20%
needed I ¼ JX15. Noise always causes discrepancies between the identified modal parameters and the
analytical ones. Notably, spurious modes other than real structural modes occur when I42. The real
structural modes are consistently identified as I increases.

Fig. 3 illustrates the stabilisation diagrams of the results obtained using different values of a in processing
the responses with NSR ¼ 20%. The values of a were 1.0 and 0.25 for identifying mode 1 and modes 2–3,
respectively. As before, the results of the 4th–6th modes were obtained using a ¼ 0.092. Using I ¼ JX10
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yielded accurate results for the first to third modes. Modes 4–6 were more difficult to identify accurately than
modes 1–3 and needed larger values of I and J. Fig. 3 presents that the structural modes are stably identified
by increasing I and J. Notably, the 6th mode shape obtained from I ¼ J ¼ 13 was worse than those obtained
from different values of I and J because a spurious mode occurred at a frequency close to that of the 6th mode
and interferes significantly with that mode.
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Table 1

The effects of noise and mother wavelet functions on identifying the 4th–6th modes

Wavelet function Data condition I & J Natural frequency (Hz) Damping ratio (%) MAC

4 5 6 4 5 6 4 5 6

Shannon No noise 2 6.00 6.20 7.08 5.00 5.00 5.00 1.00 1.00 1.00

5 6.00 6.20 7.08 5.00 5.00 5.00 1.00 1.00 1.00

10 6.00 6.20 7.08 5.00 5.00 5.00 1.00 1.00 1.00

15 6.00 6.20 7.08 5.00 5.00 5.00 1.00 1.00 1.00

10% noise 5 6.07 6.17 7.08 4.97 6.61 5.62 0.95 0.94 1.00

10 5.99 6.20 7.06 4.85 5.11 4.62 1.00 0.99 1.00

15 5.97 6.22 7.10 4.76 4.89 4.54 0.99 0.98 0.99

20 5.98 6.22 7.11 4.63 4.97 4.51 0.99 0.97 0.99

20% noise 10 5.99 6.22 7.18 4.32 4.96 4.27 0.98 0.96 0.97

15 6.03 6.26 7.19 4.93 5.12 3.90 0.96 0.97 0.97

20 6.04 6.22 7.12 5.01 5.78 4.75 0.99 0.98 0.97

25 6.03 6.18 7.09 4.87 5.38 4.56 0.99 1.00 0.98

Meyer 10% noise 5 6.06 6.27 7.16 4.99 5.63 4.43 0.97 0.94 0.99

10 6.06 6.27 7.21 4.76 6.03 5.06 0.99 0.93 1.00

15 6.00 6.22 7.12 4.91 5.12 4.92 0.99 1.00 0.99

20 6.01 6.21 7.13 5.01 5.06 4.62 1.00 0.99 1.00

20% noise 10 6.11 6.48 7.44 5.03 8.11 6.05 0.91 0.89 0.94

15 6.02 6.26 7.14 4.70 5.60 5.11 0.98 0.99 0.96

20 6.02 6.25 7.17 4.69 5.24 4.52 0.98 1.00 0.97

25 6.02 6.23 7.19 5.04 5.41 4.13 0.99 0.95 0.95

Morlet 10% noise 5 6.00 6.23 7.12 4.31 5.22 4.63 0.99 0.96 0.97

10 6.00 6.24 7.12 4.87 5.02 4.54 0.98 1.00 1.00

15 6.02 6.23 7.13 4.93 5.20 4.38 0.99 0.99 1.00

20 6.01 6.19 7.11 5.04 5.33 4.55 0.99 0.99 0.99

20% noise 10 6.06 6.22 7.16 4.82 5.32 3.75 0.99 0.97 0.98

15 6.04 6.22 7.17 4.72 5.44 4.34 1.00 1.00 0.98

20 6.02 6.19 7.11 4.78 5.56 5.27 0.99 1.00 0.97

25 5.98 6.22 7.09 4.32 4.78 5.71 0.99 0.95 0.96

Haar 10% noise 5 6.09 5.57 0.92

10 6.09 6.28 7.31 5.39 7.53 6.08 0.96 0.69 0.99

15 6.04 6.21 7.12 5.02 5.62 5.14 1.00 0.98 1.00

20 6.02 6.21 7.11 4.88 5.26 4.63 1.00 1.00 1.00

20% noise 10 6.11 5.24 0.60

15 6.08 6.25 7.21 5.23 7.34 6.57 0.98 0.86 0.99

20 6.07 6.21 7.18 5.11 6.16 5.13 0.99 0.92 0.98

25 6.00 6.21 7.13 4.81 5.44 5.90 1.00 0.99 0.96

Note: ‘‘/’’ denotes no identified results close to the natural frequencies.
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4.3. Effects of scale parameter selection

Selecting an appropriate value of the scale parameter a seems to be important. It is well known that the scale
parameter affects the time-frequency resolution in wavelet transformation of responses. However, the time-
frequency resolution affected by the scale parameter does not need to be specially considered in the present
approach, which can be observed from the results shown in this section.

Table 2 presents the results for the 2nd and 3rd modes obtained using various values of a and different pairs
of (I, J). The responses with NSR ¼ 20% were processed. The values of a in Table 2 yield the preserved
frequency range ½1=2a; 1=a�, covering the natural frequencies of the 2nd and 3rd modes. The lower bound of
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Fig. 3. Stabilisation diagrams of identified modal parameters obtained using the Shannon function.
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the frequency interval corresponding to a ¼ 0.23 only slightly exceeds the second natural frequency. Notably,
when a ¼ 0.23, the modal parameters of the 3rd mode identified using I ¼ J ¼ 20 are not so good as those
obtained using other I ¼ J larger than 10 because a spurious mode arose with strong interference with the 3rd
mode.

Table 2 reveals that although different values of a may yield markedly different results with small I and J

(I ¼ J ¼ 7, 8, or 9), all of the identified results are accurate when I and J are larger. Accordingly, as long as the
natural frequencies are covered by the preserved frequency interval corresponding to the chosen a, these
modes can always be accurately identified by increasing I and J.
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Table 2

The effects of scale parameter selection on identifying 2nd and 3rd modes

I ¼ J Natural frequency (Hz) Damping ratio (%) MAC

0.23 0.25 0.27 0.23 0.25 0.27 0.23 0.25 0.27

7 3.47 2.17 3.49 2.17 3.50 9.00 7.86 7.51 6.93 8.92 0.99 1.00 1.00 1.00 0.99

8 2.09 3.49 2.18 3.50 2.17 3.48 7.61 6.64 6.56 6.59 6.51 7.92 1.00 1.00 1.00 1.00 1.00 0.99

9 2.15 3.49 2.17 3.49 2.17 3.48 5.40 5.54 6.18 5.58 5.37 6.30 1.00 1.00 1.00 1.00 1.00 1.00

10 2.18 3.49 2.16 3.49 2.18 3.49 4.62 5.55 5.35 5.32 4.85 5.59 1.00 1.00 1.00 0.99 1.00 1.00

15 2.19 3.49 2.17 3.48 2.18 3.49 5.26 5.15 4.65 5.06 4.86 5.14 0.99 0.98 0.99 0.99 1.00 0.99

20 2.19 3.44 2.18 3.48 2.18 3.49 4.95 5.74 4.65 4.92 4.87 5.10 0.99 0.92 1.00 0.98 1.00 1.00

25 2.19 3.49 2.18 3.48 2.18 3.48 4.63 5.04 4.65 4.85 4.82 5.03 1.00 0.97 1.00 0.98 1.00 0.99

30 2.18 3.50 2.19 3.50 2.18 3.48 4.82 5.50 4.86 5.14 4.83 4.86 1.00 0.99 1.00 0.96 1.00 0.98
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As mentioned in Section 3.2, numerous values of a can be simultaneously employed to establish Eq. (12), so
a wide range of frequencies can be covered and many modes can be identified at the same time. Fig. 4 displays
the stabilisation diagrams of the results obtained using a ¼ 1.0, 0.25, and 0.092 to process the responses with
NSR ¼ 20%. Accurate results for all six modes were obtained with I ¼ J440 that is much larger than the
minimum value of I and J needed for accurate results in Fig. 3.

4.4. Effects of wavelet function

The Meyer, Morlet, and Haar wavelet functions are applied to process the simulated responses with
NSR ¼ 10% or 20% to explore the effects of using different mother wavelet functions on identifying the
modal parameters.

The Meyer wavelet is defined in the frequency domain as [8]

ĉMe oð Þ ¼

ð2pÞ�1=2eio=2 sin p
2

v 3
2p oj j � 1
� �� �

2p
3
p oj jp 4p

3
;

ð2pÞ�1=2eio=2 cos p
2

v 3
4p oj j � 1
� �� �

4p
3
p oj jp 8p

3
;

0 oj je 2p
3
; 8p
3

� �
;

8>><
>>: (25)

where vðsÞ ¼ s4ð35� 84sþ 70s2 � 20s3Þ and s 2 ½0; 1�. No explicit analytical expression exists for the Meyer
wavelet in the time domain. The Meyer wavelet and its Fourier transform modulus are also depicted in Fig. 2.
Apparently, the Meyer function is compactly supported in the frequency domain and smoothes out the
discontinuity of the Shannon wavelet function. The Meyer wavelet is not compactly supported in the time
domain and decays faster than the Shannon wavelet, as time goes to infinity.

The Morlet wavelet and its Fourier transform are, respectively, [14]

cMoðtÞ ¼ e�t2=ð2d2Þþib̄t (26a)

and

ĉMoðoÞ ¼ d
ffiffiffiffiffiffi
2p
p

e�ðo�b̄Þ
2d2=2, (26b)

where d and b̄ are constants. The Morlet wavelet does not have compact support in the time and frequency
domains, but decays more quickly than the Shannon and Meyer wavelets as time approaches infinity. Since
ĉMoð0Þa0, the Morlet wavelet does not fulfill the admissibility condition given in Eq. (2). However, the
Morlet wavelet is numerically admissible when db̄ is large enough.

A db̄ value of larger than 5 is adopted in practice. In the literature on applying the continuous wavelet
transform to system identification [10–14], d ¼ 1 was commonly used to provide a high frequency resolution.

However, d ¼ 1 also causes a very sharp peak of ĉMoðoÞ
��� ��� at o ¼ b̄, which may yield the wavelet transform

significantly altering the frequency characteristics (locations of the peaks) of a function in the frequency range
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of interest. In the following analysis, d ¼ 1=
ffiffiffi
2
p

and b̄ ¼ 2:26p were used, and the corresponding Morlet
wavelet and its Fourier transform modulus are also shown in Fig. 2.

The Haar wavelet function is the simplest available wavelet function. The Haar function and its Fourier
transform are, respectively,

cH ðtÞ ¼

1 0ptp1
2
;

�1 1
2
ptp1;

0 other

8><
>: (27a)
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and

ĉH ðoÞ ¼
1

io
ð1þ e�io � 2e�io=2Þ. (27b)

The Haar wavelet and its Fourier transform modulus are also given in Fig. 2. The Haar wavelet has the
shortest support in time among all orthogonal wavelets.

The Meyer, Morlet, and Haar wavelets are not ideal band-pass filters. In particular, jĉH ðoÞj has numerous
side lobes, so that the Haar wavelet function is far away from an ideal band-pass filter. The preserved
frequency range for these wavelets is defined simply as the frequency interval in which the Fourier transform
modulus of the wavelet exceeds 80% of its maximum value. Consequently, the preserved frequency ranges for
the Meyer, Morlet, and Haar wavelets are [0.5348/a, 0.9311/a], [0.9875/a, 1.275/a], and [0.4313/a, 1.0807/a],
respectively.

The values of a were set to 0.1, 0.12, and 0.08 for the Meyer, Morlet, and Haar wavelets, respectively, to
identify the modal parameters of the 4th–6th modes from the responses with NSR ¼ 10% and 20%. The
results obtained with different pairs of I and J are also given in Table 1. Table 1 reveals that the used wavelet
mother function considerably affects the accuracy of identified modal parameters obtained using small I and J

(smaller than 10). Nevertheless, using sufficiently high values of I and J yields accurate results, regardless of
which wavelet function is employed.

Figs. 5–7 illustrate the stabilisation diagrams of the identified results obtained using different wavelet
functions in processing the responses with NSR ¼ 20%. To identify the modal parameters of mode one, a was
set equal to 1.0 and 0.9 for the Meyer and Haar wavelets, respectively, while a was set equal to 0.26 and 0.22
for modes 2 and 3. When the Morlet wavelet function was used, a was set to 1.5, 0.50, and 0.32 for identifying
modes 1–3, respectively, because a suitable value of a was not found to make the corresponding preserved
frequency range cover the natural frequencies of modes 2 and 3 simultaneously. Notably, the occurrence of
spurious modes near mode 6 worsens the accuracy of the identified modal damping of mode 6 obtained using
I ¼ J ¼ 24 and 25 when the Meyer wavelet was used (see Fig. 5). These results of Figs. 5–7 further confirm
that using sufficiently high values of I and J yields accurate results, regardless of which wavelet function is
employed.

Figs. 3 and 5–7 and Table 1 indicate that the Haar function is not as efficient as the Shannon, Meyer or
Morlet function in identifying the modal parameters because the Haar function needs larger I and J to give
accurate results. Using larger I and J increases computational time. Comparing the results obtained using the
Shannon, Meyer, and Morlet functions reveals that the Morlet function can be utilised with smaller I and J

values to yield accurate results. Notably, without showing results here, these four wavelet functions exhibited
the same efficiency in processing the data without noise, and the modal parameters were identified precisely
using I ¼ J ¼ 2.

Finally, the preserved frequency range is the frequency interval in which most of the frequency contents of
f(t), representing a series of signals, are preserved after the wavelet transformation. Although the value of 80%
chosen in defining the preserved frequency range may be somewhat empirical, the definition is simple, and
such preserved frequency range is very easy to be determined and works well for identifying modal parameters.
The value of 80% used is not crucial in identifying the modal parameters. Different values can be adopted to
define the preserved frequency range if jŴc f ða;oÞj and jf̂ ðoÞj have peaks at the possible natural frequencies in
the preserved frequency range. Then, the preserved frequency ranges defined by different percentages of the
maximum Fourier transform modulus of the wavelet may yield different values of the scale parameter for
identifying the modal parameters of certain modes. The effects of using different values of a on the accuracy of
the identified results were studied in the preceding section.

5. Application

The measured responses of a three-story non-symmetric steel frame in shaking table tests (see Fig. 8) were
processed to demonstrate the applicability of the present approach to real measured data. Shaking table tests
are often carried out in a laboratory to examine the behavior of structures in earthquakes. The three-story
steel frame under consideration was 3m long, 2m wide, and 9m high. Lead blocks were piled on each floor,
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Fig. 5. Stabilisation diagrams of the identified results obtained using the Meyer wavelet.
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such that the mass of each floor was approximately 3500 kg. The frame was subjected to base excitation of the
El Centro earthquake with a reduced level. Twelve accelerometers were installed on the floors, as indicated in
Fig. 9 (i.e. Y3b, Y2b, X3a, X2a, etc.), to measure the acceleration responses of the frame at different locations
and directions. The accelerometers were placed near the corners of floors. The data sampling rate was 200Hz.

As shown in Fig. 8, the asymmetry of the frame was mainly due to the incorporation of three stiffening
braces into each floor. The asymmetry led to the coupling between the responses in long axis and short axis
directions, called the X and Y directions, respectively. The responses measured by the 12 accelerometers,
representing 12 degrees of freedom, were used in the following analysis.

Fig. 10 depicts the base excitation input in the X direction and some of the responses at different degrees of
freedom, as well as the corresponding Fourier spectra. Since the base excitation was in the X direction, the
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responses in the X direction were larger than those in the Y direction. The Fourier spectra of the responses
reveal peaks in the frequency ranges of 3–5, 10–14, 15–18, 21–23, 29–31 and 35–38Hz, based on which
appropriate values of a were chosen for identifying the modal parameters of the frame.

The responses at t ¼ 0–40 s (see Fig. 10) were used in the wavelet transform with the Morlet wavelet
function, and only Wcyða; b̄Þ and Wcf ða; b̄Þ with b̄ ¼ 100022000 were used in constructing Eq. (12). Different
values of a were adopted to identify different modes. The values of a were set to 0.35, 0.25, 0.095, 0.064, 0.05,
and 0.033 to identify the natural frequencies in [2.82,3.64], [3.95,5.10], [10.4,13.4], [15.4,19.9], [19.8,25.5], and
[29.9,38.6]Hz, respectively. Fig. 11 depicts the stabilisation diagrams of the identified natural frequencies and
modal damping ratios. The modal parameters were stably identified by using large values of I and J.
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Accurately identifying the parameters for higher modes (5th–9th modes) needs I and J values larger than those
for identifying the lower modes.

Table 3 lists the identified natural frequencies and modal damping ratios, which are the averages of the
results obtained using the largest five I and J values for each mode shown in Fig. 11, while the mode shapes are
depicted in Fig. 12. The floor was assumed to be rigid when plotting these mode shapes. Nine modes were
identified in total. In Fig. 12, the black dotted, black solid, gray solid and gray dotted lines are corresponding
to columns 1, 2, 3 and 4 in Fig. 9, respectively. Fig. 12 shows that the first and second modes were mainly
transverse modes in the X and Y directions, respectively, while the third mode was a torsional mode. The
coupling of the responses in different directions was very severe in the higher modes.
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Fig. 8. Photo of a three-story non-symmetric steel frame.
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Fig. 9. Measuring setup in the shaking table tests.
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6. Concluding remarks

This work presented an approach based on the continuous wavelet transform for identifying modal
parameters of a linear system from its seismic responses or free vibration responses. The continuous wavelet
transform is applied to the discrete equations of motion among the measured degrees of freedom. The
transforms of the functions in the equations are calculated from the measured responses and using the time
invariance property of the continuous wavelet transform. By choosing appropriate scale parameters in the
transformation, data filtering is also carried out in the transformation to enhance the efficiency of identifying
the modal parameters (natural frequencies, modal damping ratios, and mode shapes), which are estimated
directly from the coefficients of the discrete equations of motion.

The main theoretical advantage of the proposed approach over other existing approaches based on the
continuous wavelet transform is that its measured responses processed are not limited to free decay responses.
Unlike the existing approaches based on the discrete wavelet transform, the proposed approach employs the
time invariance property and filtering ability of the continuous wavelet transform to improve data processing
efficiency.

The proposed approach was validated first by successfully processing the numerically simulated acceleration
responses of a six-story shear building subjected to base excitation. The modal parameters of all the degrees of



ARTICLE IN PRESS

Fig. 10. Responses from a shaking table test and the corresponding Fourier spectra.
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Table 3

Identified frequencies and modal damping ratios

Natural frequency (Hz) Damping ratio (%)

3.04 4.01

4.23 5.57

10.50 3.31

12.97 0.61

17.38 0.89

21.97 0.61

30.35 1.42

31.84 1.33

37.28 1.25
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freedom were easily and accurately identified even when the responses and input included noise with
NSR ¼ 20%. The Shannon, Meyer, Morlet, and Haar wavelet functions were applied to process these
responses. The wavelet function and the chosen scale parameter can significantly affect the accuracy of the
identified modal parameters obtained using small values of I and J in Eq. (10). Nevertheless, using large values
of I and J always yields accurate results, regardless of which wavelet function and the scale parameter are
employed if the corresponding preserved frequency range covers the frequencies of interest.
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Fig. 12. Identified mode shapes.
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The measured responses of a three-story non-symmetric steel frame with 3m long, 2m wide, and 9m high
from shaking table tests were analysed to demonstrate the applicability of the present approach in processing
real measured data. A total of nine coupling modes were identified.

Although this work only demonstrates the feasibility of the proposed approach in processing the responses
of a linear system subjected to base excitation, the proposed approach is certainly suitable for dealing with free
decay responses or the responses due to different types of force input if the input forces are measured.
Applying the proposed approach to determine the modal parameters of a system from its ambient
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measurements requires a technique such as the random decrement technique to convert the random responses
into free decay responses.
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