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Due-Date Assignment for Wafer Fabrication Under
Demand Variate Environment

W. L. Pearn, S. H. Chung, and C. M. Lai

Abstract—In the semiconductor industry, dynamic changes in
demand force companies to change the product mix frequently and
periodically. Assigning tight but attainable due dates is a great
challenge under the circumstances that the product mix changes
periodically. In this paper, we consider the due-date assignment
problem for wafer fabrication and present a due-date assignment
model to set manufacturing due dates satisfying the target on-time-
delivery rate. The contamination model is applied to tackle the ef-
fect of that product mix varies periodically. We demonstrate the
effectiveness and accuracy of the proposed model by solving a real-
world example taken from a wafer fabrication shop floor in an IC
manufacturing factory.

Index Terms—Contamination model, due-date assignment, flow
time, product mix, wafer fabrication.

1. INTRODUCTION

EMICONDUCTOR companies must maintain high-level
S customer service to gain their competitive edge. In order to
quickly respond to customers’ fluctuating demand, companies
often make changes on the product mix frequently and period-
ically. Under the circumstances that the product mix changes
periodically, assigning tight but attainable due dates to achieve
the target on-time-delivery rate would be a great challenge. In
this paper, we consider the due-date assignment problem for
wafer fabrication, an extension of the problem considered by
Chung et al. [1], which has many real-world applications, par-
ticularly, in the integrated circuit (IC) manufacturing industry.

Due-date assignment has always been an important research
topic in production planning and control systems, which has
attracted abundant research interest. Surveys on recent results
of specific aspects of due-date assignment problems, such as
Cheng and Gupta [2] and Gordon et al. [3], [4], confirm this
continued interest. The methods of due-date assignment used in
the related literature can be classified into two categories: an-
alytical approaches and simulation approaches. The analytical
approach offers an exact way that determines mean and vari-
ance of flow-time estimates and further sets due dates. Seidmann
and Smith [5] studied the constant due-date assignment policy
with the objective of minimizing the expected aggregate cost
per job subject to restrictive assumptions on the priority disci-
pline and the penalty functions. Cheng [6] proposed a method
to assign optimal total work content (TWK) due dates. Enns
[7] used dynamic flow-time forecasting to set due dates with
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the objective of minimizing related costs of job shop sched-
uling. Li and Cheng [8] analyzed the single machine due-date
determination and the resequencing problem with the objective
of minimizing the maximum weighted tardiness and the cost
of due-date assignment. Hopp and Roofsturgis [9] developed a
due-date quoting method to achieve a target service level by de-
termining lead times as a function of work in process and using a
control chart method for adjusting the parameters in the function
overtime. Ooijen and Bertrand [10] proposed a method to set the
optimal due dates by considering work load, lead time-related,
and tardiness-related costs. The other trend in the analytical ap-
proach is to set due dates by determining flow-time prediction
errors and distribution functions [11]-[13].

For the simulation approaches, researchers examined the
relative performance of various due-date assignment rules,
dispatching rules, or sequencing procedures [14]-[16]. Other
studies of simulation approaches are to develop effective flow-
time estimation and due-date assignment policies based on the
simulation studies. Weeks [17] proposed a method to assign the
due date based on the expected job flow time and shop conges-
tion information and concluded that such due dates were more
attainable. Vig and Dooley [18] proposed two new flow-time
estimation methods. They also evaluated relationships between
several shop factors and effects on the due-date performance
via a simulation study. Vig and Dooley [19] further incor-
porated the steady-state with dynamic flow-time estimates to
develop flow-time estimation and provided a regression-based
approach for setting job-shop due dates. Raghu and Rajendran
[20] developed a due-date setting policy for a real-life job shop
by incorporating the best performing dispatching rule which
is selected by simulation. Roman and del Valle [21] presented
a rule for the due-date assignment problem of reducing the
tardiness and percentage of delayed jobs through a combination
of the dispatching rule and assignation of due dates. Chang
[22] showed that statistical analysis of a simulation model
could give valuable insights into the flow-time behavior of jobs
through workstations and proposed an approach to provide
real-time estimates of the queueing time for the remaining
operations of the jobs. For the due-date setting in queueing
networks, Glassey and Seshadri [23] proposed approximations
for univariate and multivariate distributions of nonnegative
random variables, which can be applicable in a more general
environment. Riano et al. [24] integrated an advanced planning
model with a discrete event simulation model for the systems
whose lead times are random variable distributions.

Due to the complexity of the wafer manufacturing process,
the due-date assignment problem in semiconductor companies
is more difficult to solve than the classical due-date assign-
ment problem. A product mix that varies periodically is an even
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Fig. 1. Formation of flow time for lots.

more complicated problem compared to other manufacturing
industries. Chung et al. [1] presented a due-date assignment
model by using the simulation method and queueing theory.
They also proposed a methodology of determining related pa-
rameters for flow-time control. Chung and Huang [25] devel-
oped a production flow-time estimation formulation, the block-
based cycle time (BBCT) estimation algorithm. The BBCT al-
gorithm has distinguishable performance in estimating mean
flow time where the product mix is fixed during all the time pe-
riods. Unfortunately, their models do not consider the product
mix periodically changes and thus might not reflect the real sit-
uation accurately.

In this paper, we consider a more general version of a due-
date assignment problem for wafer fabrication. We present a
due-date assignment model that is consistent with the target
on-time-delivery rate where product mix changes periodically.
Flow times are first analyzed for each product type under single
product mix. The contamination model is applied to tackle the
effect of product mix changes in a periodical fashion. A due-date
assignment model is then presented for wafer fabrication where
product mix changes periodically. To illustrate the effectiveness
and accuracy of the proposed model, we consider a real-world
example taken from a wafer fabrication shop floor in an IC man-
ufacturing factory located in the science-based Industrial Park in
Hsinchu, Taiwan, and solve the problem on assigning due dates
for orders.

This paper is organized as follows. Section II describes
production system environment and system input. Section III
describes the data distribution where the product mix is fixed
throughout the time periods. Section IV applies contamination
model to the due-date assignment model where the product
mix changes periodically. Section V presents case studies and
shows the effectiveness and accuracy of the proposed system.
Some concluding remarks are made in the last section.

II. PRODUCTION SYSTEM ENVIRONMENT AND SYSTEM INPUT

Wafer fabrication is a highly complex and time-consuming
process. Typically, the production process has several unique
characteristics. First, the process comprises several hundred
steps on a single wafer. In addition, the manufacturing flow of
different products may differ significantly, and the processing
time required of the machines for one product may be twice
as much as that required for the other products [26]. Second,
some of the machines may be used for the same operation

more than once as successive circuit layers are added in the
production process, and this is termed re-entrant flow property.
One problem caused by this property is that different layers of
a wafer have to go through the same machines and to compete
with other wafers for the same resources. Finally, based on the
number of lots being processed simultaneously, machines are
usually categorized into serial or batch types. Batch operations
would cause wafer lots additional waiting time due to batch size
transformation. As a result, these interrelated characteristics
complicated flow-time analysis and due-date assignment for
the semiconductor fabs.

Furthermore, a product mix that varies periodically makes
the system more complicated. In a semiconductor fab, machines
are shared by plenty of different products, resulting in a heavy
loading on the precious resource. The product mix has consider-
able impact on production throughput, flow time, and the capa-
bility of meeting due dates. Production throughput, flow time,
machine utilization, and work-in-process (WIP) inventory are
highly interrelated [26], [27]. Under different product mixes, the
overall performance of the manufacturing system would be dif-
ferent. Thus, the effect of product mix changes should be taken
into consideration when assigning manufacturing due dates.

Flow time for a wafer lot flowing through the entire produc-
tion process includes raw process time (PT) and waiting time
(WT) [25]. PT consists of the pure processing time, loading,
and unloading times. WT includes the following two parts.

1) Load factor waiting time (LFWT): The LFWT represents
the time for a lot waiting for an available workstation. The
load on a workstation reflects the utilization rate and influ-
ences the average waiting time of a candidate batch lot.

2) Batch factor waiting time (BFWT): The BFWT represents
the time for a release batch flowing through the whole
process without considering PT and LFWT. BFWT com-
prises the following two parts.

a) Batch forming waiting time: The waiting time is
caused by gathering lots to form a batch.

b) Batch size transformation waiting time: The waiting
time is caused from transferring lots from an upstream
batch workstation to a downstream workstation when
the downstream workstation processes a smaller batch
size. A temporary peak load thus occurs at the down-
stream workstation.

The formation of the flow time for lots is depicted in Fig. 1.
PT is a known constant, while WT is the variable that needs to
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be estimated. Due to the complexity of WT, a simulation-based
WT distribution is used to estimate WT in this study.

A modern fab requires a very high capital investment, usually
a billion dollars or more [28]. Generally, the wafer stepper ma-
chines are the most expensive machines in wafer fabrications
and are treated as the bottleneck. The tremendous amount of
investment makes the manufacturers put emphasis on fully uti-
lizing the bottleneck machine. On the other hand, if the utiliza-
tion rate of bottleneck machine is set too high, the system may
be unstable because of unforeseen disruptions. Therefore, the
strategy is to keep the utilization rate of bottleneck in a given
range with the consideration of maximizing the utilization of
bottleneck while keeping the production system stable.

The batch size of wafer release is set to be six lots. Such a
setting could raise the throughput rate of many workstations,
which have a maximum batch size of six lots.

Wafer lots are released under a CONWIP (CONstant Work In
Process) release policy [29]. By adopting the CONWIP policy,
the WIP is kept reasonably constant. As such, the flow-time
distribution should also be reasonably stationary. Based on
CONWIP release policy, wafer lots are released into the plant
only when WIP level is lower than the planned WIP level
L. Once the WIP level is lower than L, six lots (the release
batch size) of a product type which has the largest accumulated
unreleased quantity is released into the plant. The calculation
of “accumulated unreleased quantity” is based on the planned
daily release amount. When the product is assigned to release,
six lots are deducted from the corresponding unreleased quan-
tity. On the other hand, if there are remaining quantities not
released to the plant, the unreleased quantities will be accumu-
lated to the next day.

III. DUE-DATE ASSIGNMENT FOR SINGLE PRODUCT MIX

We begin by considering the due-date assignment problem for
product mix that is fixed throughout the time periods. Waiting
time (WT) of each product type is first modeled by gamma dis-
tribution. Due dates can then be set based on release date, PT,
and WT fitted distribution.

A. WT Distribution Fitting for Single Product Mix

The gamma distribution is a nonnegative domain and right-
skewed probability distribution. The gamma distribution is fre-
quently used as the probability model for waiting times. For in-
stance, in life testing, the waiting time until “death” is a random
variable which is frequently modeled by a gamma distribution.
In addition, the gamma distribution is also a good model for
many nonnegative random variables of the continuous type, be-
cause the two parameters « and 3 provide a great deal of flexi-
bility [30].

A random variable X is said to have a gamma distribution
with parameters « > 0 and § > 0. The probability density
function of X is

mcx—lﬁ—w/ﬂ
@)

ox (o, B) = {0

0<r < (1

otherwise

where I'(«) is known as the gamma function, defined by I'(«) =
> te=le=tdt. In this gamma distribution, 4 = E(X) = af

and 0?2 = V(X) = af>.

In the wafer fabrication process, WT of each product type
is always nonnegative and skews to the right and can be mod-
eled satisfactorily by the gamma distribution. The method of
moments estimators is used for unknown parameters « and f3.
The first two moments of the gamma distribution with parame-
ters « and (3 are

py=p=ap )
py =0+ = aff® + o’ 3)

Equate these quantities to their corresponding sample mo-
ments. Thus

py=af=m) =1 “

1 n
=1

From (4) and (5), we can obtain & = z2/52 and § = $2/z,
where the sample average Z = >, x;/n and the sample vari-
ance 5? = Y1 | (z; — Z)?/n are the estimators of x and o2,
respectively.

B. Due-Date Setting

Like firms in other industries, semiconductor companies must
meet customers’ fluctuating demands in order to survive. Failure
to deliver products on time, even with the right quality and
quantity, can result in profit penalties or loss of customers. The
on-time-delivery rate is an important determinant to measure
customer service. The target on-time-delivery rate is therefore
chosen as our due-date performance measure. The advantage of
this policy is that it combines the competitive advantage of short
lead times with the requirement that target numbers of due-date
promises can be met [12].

The due date of an order is assigned to the date that equals
the release time of the order plus raw process time (PT) and
the d-percentile waiting time, where ¢ is the target fraction of
on-time-delivery orders. The §-percentile waiting time can be
obtained by taking the inverse of the cumulative function of the
fitted gamma distribution. The due date of order d can then be
assigned as

Dy =rq+ PTy+ FG;*(5) (6)

where D, is the due date of order d, r4 is the release date of
the latest batch of order d, PT} is PT of order d, and FG(;1 (6)
is the inverse of the cumulative function of the fitted gamma
distribution of order d. Fig. 2 illustrates the due-date assignment
based on the target on-time-delivery rate. We note that, in many
cases, it is true that PT is less than WT. However, in some other
cases, PT is greater than WT due to different machine utilization
rate. In our case, because utilization rates of some machines are
relatively small, we thus have PT greater than WT.

Consider the following due-date assignment examples with
two product types (L and M) being produced in the plant. PT of
these two product types are known as: 120 h for product L and
145 h for product M. Table I displays the estimated parameters
for WT fitted distributions under product mix L : M =4 : 6
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Fig. 2. Due-date determination based on target on-time-delivery rate.

TABLE I
ESTIMATED PARAMETERS FOR WT DISTRIBUTIONS

Product mix Product L Product M
(L:M) & B & B
Mix(4:6) 25.0 2.0 26.0 23
Mix(6:4) 22.0 1.6 28.0 2.7
TABLE 11
ORDER INFORMATION
Order Product | Order size I;I:IEQ:S
No. type (o) date
1 L 6 3
2 M 6 2

and L : M = 6 : 4, respectively. The target on-time-delivery
rate is set to 95%.

In the situation where the product mix is L. : M = 4 : 6
throughout the planning horizon, due dates need to be assigned
to these two orders. Table II displays the information of the or-
ders. Since the 95-percentile of gamma(25.0, 2.0) is 67.5 and
the 95-percentile of gamma(26.0, 2.3) is 80.31, based on (6),
the due dates of order 1 and order 2 (in days) can be obtained as

Dy =3+ 120/24 4 67.5/24 = 10.8 )
Dy =2+ 145/24 + 80.31/24 = 11.39. (8)

We note that the solution will be different when the product
mix is L : M = 6 : 4 throughout the planning horizon. The
95-percentile of gamma(22.0, 1.6) is 48.38. The 95-percentile
of gamma(28.0, 2.7) is 100.53. The due dates of order 1 and
order 2 (in days) become 10.02 and 12.23, respectively.

IV. DUE-DATE ASSIGNMENT FOR PERIODICAL
PrRODUCT MIX CHANGES

To tackle the effect of periodic changes on product mix, a con-
tamination model is built for estimating waiting time (WT) of
each product type. A due-date assignment model is then devel-
oped, by which the probability of a job being delivered on-time
can be controlled.

WT distribution
Probability of
tardy orders
(1-5)
=l & -percentile .
o waiting time time
E'@) o

A. Contamination Model

The contamination model, a mixture of distributions, pro-
vides a rich class of distributions that can be used in modeling
data from a population that is composed of several homo-
geneous subpopulations. The contamination model is useful,
particularly for cases with multiple manufacturing processes
where the equipment or workmanship are not identical, or
for cases where there are variable lead-time demands in the
inventory management function. Such situations often result
in production with inconsistent precision in production per-
formance, and the contamination model should be used to
characterize the population.

Let the observations x1, ..., x, be a random sample from a
contamination model with density function

F@) =" preex () ©)
k=1

where ¢x(0y) is the density of X in the kth subpopulation
distribution having parameter 6y, and py is the probability of
belonging to the kth subpopulation. Thus, 0 < p;r < 1 and
ko1 =1

Consider the contamination model of three gamma pop-
ulations, with probability p; for population I distributed as
gamma(a; = 1,8; = 1), probability p, for population I
distributed as gamma(ay = 2,32 = 1), and probability ps
for population III distributed as gamma(az = 3,83 = 1).
The probability density function of the contamination gamma
distributions may be expressed as

f(@) =p1[px(aa, Br)] + p2 [px (a2, B2)] + p3 [px (a3, £3)]
(10)

where 0 <p; <1,0<p2 <1,0<p3 <1, p1+p2+p3=1,
and

2%k —Le—2/Bk
L= >0,k=1,2,3
dx(an, B) =4 Bty T 70 . A
0, otherwise
In this contamination model, if p; = 1, then the contamina-

tion gamma model reduces to the distribution gamma(«, 31).
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Fig. 3. Example of contamination model of three gamma distributions with different combinations of py, p>, and p3. (@) p1 = 1,p> = 0,p3 = 0. (b) p1 = 0,

pP2=1,p3=0.0p1=0,p2=0,p3=1.d)p1 =1/3,p2=1/3,p3 =

If po = 1, then the contamination model reduces to the distribu-
tion gamma(as, B2). On the other hand, if p; = 1, then the con-
tamination model reduces to the distribution gamma(as, 33).
Fig. 3 displays various distributions modeled by the contami-
nation of three gamma distributions gamma(1,1), gamma(2,1),
and gamma(3,1) with six different combinations of p;, p2, and
ps. We note that the shape of the density differs for the different
combinations of py, po, and p3.

B. Contamination Model for Periodic Product Mix Changes

In wafer fabrication, the job release time and job completion
time may not belong to the same time period due to the long flow
time. Flow time of each job thus may be affected by the product
mix settings in successive periods. When estimating the flow
time of each job, the number of time periods for a job being
processed in the plant should be taken into account for deter-
mining the number of components in a contamination model.
The number of weeks required for determining the number of
components in a contamination model is depending on the type
of applications. In the fab we study, the simulation output turns
out to be three weeks. Thus, the model of the contamination of
three distributions is appropriate for this application. The prob-
ability p; can be set to 1 divided by numbers of distributions. In
the case of releasing job any day during week, the model can be
refined by considering each single day.

The contamination model for WT of each product type may
be expressed as

N
F@)=>"pilox(on B)] (12)

t=1

1/3.(e)p1=1/2,po=1/4,ps =1/4. O p, =1/4,po =1/2,p3 = 1/4.

where ¢ is index of time period, N is the number of components
. . . v
in a contamination model, 0 < p; < 1, Zi\zl p; = 1, and

pot—le—2/Bt

bx (o, Br) = { B >0 . (13)

0, otherwise

C. Due-Date Setting

For periodic product mix changes, the §-percentile waiting
time is determined by the fitted contamination model in order to
incorporate the effect of product mix changes. The due date of
order d can be assigned as

Dy =rq+ PT;+ FC;'(5) (14)

where Dy is the due date of order d, r4 is the release date of the
latest batch of order d, PT); is PT of order d,and FC;* (&) is the
inverse of the cumulative function of the fitted contamination
distribution of order d. We note that when the product mix is
fixed throughout the time periods, the results obtained by (6)
and (14) are identical.

Consider the due-date assignment example described in
Section III-B with two products L and M. In the situation that
the product mixis L: M =4 :6inweek land L : M =6:4
in week 2, the probability density function of the WT contami-
nation model for order 1 can be expressed as

22— 1p—2/1.6

1.622I(22)

1 x25—le—.7:/2 1
filz) ==X ————+—+ 3

T 27 225T(25) (1%
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TABLE III
SIMULATION INPUTS FOR EACH PRODUCT MIX
Product mix Weekly Mean flow time estimated by BBCT algorithm (hour)
throughput WIP level
(A:B:C:D:E)
target (10t) | product A | ProductB | ProductC | ProductD | ProductE (lot)

Mix(8:3:3:3:3) 167 278.19 302.18 282.50 322.23 316.29 293

Mix(6:6:2:5:1) 163 280.80 305.73 282.63 32240 316.43 292

Mix(6:6:2:2:4) 164 281.02 306.01 282.71 322.32 316.44 292

Mix(5:6:4:4:1) 165 279.47 303.98 282.61 322.25 316.33 292

Mix(5:5:5:3:2) 166 277.79 301.71 282.47 322.08 316.17 293

Mix(5:5:5:1:4) 167 277.91 301.86 282.53 322.04 316.18 293

Mix(3:6:5:2:4) 165 276.58 300.29 282.13 321.74 315.83 292

TABLE IV
AVERAGE AND VARIANCE OF WT COLLECTED FROM SIMULATION
Product mix Product A Product B Product C Product D Product E
(ABCDE) * s? x s? * s? x s? x s?

Mix(8:3:3:3:3) 92.08 | 304.88 | 107.61 | 677.82 86.66 | 298.90 | 106.22 | 40296 | 101.29 | 390.75
Mix(6:6:2:5:1) 9531 | 333.81 | 102.15 | 350.29 86.49 | 329.24 | 104.58 | 332.60 98.91 | 201.26
Mix(6:6:2:2:4) 9549 | 383.99 | 101.66 | 312.21 87.55 | 339.96 | 103.32 | 491.26 99.03 | 291.70
Mix(5:6:4:4:1) 97.26 | 409.32 | 100.85 | 327.00 89.98 | 451.71 | 103.31 | 370.68 97.51 | 217.46
Mix(5:5:5:3:2) 9515 | 344.06 | 103.18 | 400.89 87.00 | 24498 | 106.11 | 414.07 | 102.25 | 533.36
Mix(5:5:5:1:4) 95.80 | 404.42 | 10235 | 411.94 88.23 | 307.18 | 100.91 | 184.76 | 100.74 | 339.70
Mix(3:6:5:2:4) 102.27 | 984.04 99.84 | 390.44 87.12 | 302.58 | 105.82 | 581.61 99.55 | 369.08

The probability density function of the WT contamination
model for order 2 can be expressed as

p26-1,-2/2.3

1 1
Ja(@) = 5 % S gmrae) T3

p28-1p—a/2.7

e
2.7287°(28) (16)
The 95-percentile of WT distribution of orders can be ob-
tained by taking the inverse of the cumulative fitted contamina-
tion function. Based on (15), the 95-percentile of WT of order
1 is 63.23. Based on (16), the 95-percentile of WT of order 2 is
94.83. According to (14), the due dates of order 1 and order 2
(in days) can be solved as 10.63 and 11.99, respectively.

V. SIMULATION VERIFICATIONS

To demonstrate the applicability of the due-date assignment
model in real situations, we consider the example taken from a
wafer fabrication factory located in the Science-based Industrial
Park, Hsinchu, Taiwan.

A. Simulation Environment

The fab consists of 83 workstations (wl to w83) and each
workstation consists of a given number of identical machines
operated in parallel. W46, a stepper in the photolithography
area, is the bottleneck. The planned utilization rate of bottleneck
machine is set to 90% in this study. The distribution of mean
time between failures (MTBF), mean time to repair (MTTR),
mean time between preventive maintenance (MTBPM), and

mean time to preventive maintenance (MTTPM) for each
workstation are known.

Five types of products are produced. A and B are the con-
sumer logic products, while C, D, and E are the low-density
SRAM products. Each product contains the numbers of circuit
layers in a range of 17 to 20. All product types have different
process routes and each process route contains process steps in
a range of 276 to 338. PT for each product is as follows: 186.8
h for product A, 201.8 h for product B, 187.12 h for product C,
216.23 h for product D, and 211.78 h for product E.

Based on CONWIP release policy, for each specific product
mix, the planned WIP level, L is set by using Little’s law [31],
L = X\ x W, where ) is the average releasing rate and W is the
mean flow time. In this system, the average releasing rate A is
equal to the throughput rate because CONWIP is adopted and
mean flow time of each product is estimated by the block-based
cycle time estimation algorithm (BBCT) [25].

Based on the system capacity limitation and market demand,
seven product mixes are selected. For each product mix, sim-
ulation is run to collect PT and WT. The simulation program
used in this paper is eM-Plant [32]. Based on the pilot runs, for
getting a steady-state result, the simulation length is set to 448
days, in which the first 224 days are the warm-up period. In
order to eliminate simulation errors, ten replications with dif-
ferent random seeds are run to get adequate statistical results
under each product mix. The input data for each product mix is
shown in Table III and the average (%) and variance (S?) of the
collected WT of each product type from running simulation for
each product mix are shown in Table IV.
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TABLE V
ESTIMATED PARAMETERS FOR FITTED GAMMA DISTRIBUTIONS FOR WT
. Product A Product B Product C Product D Product E
Product mix - — - = - = - — - =
(AB:C:D:E) o B o B a B @ B a B
Mix(8:3:3:3:3) 27.81 3.31 17.08 6.30 25.13 345 28.00 3.79 26.26 3.86
Mix(6:6:2:5:1) 27.21 3.50 29.79 343 22.72 3.81 32.89 3.18 48.61 2.03
Mix(6:6:2:2:4) 23.74 4.02 33.10 3.07 22.55 3.88 21.73 4.76 33.62 2.95
Mix(5:6:4:4:1) 23.11 4.21 31.10 3.24 17.92 5.02 28.79 3.59 43.73 2.23
Mix(5:5:5:3:2) 26.31 3.61 26.56 3.89 30.89 2.82 27.19 3.90 19.60 5.22
Mix(5:5:5:1:4) 22.69 4.22 25.43 4.03 25.34 348 55.16 1.83 29.88 3.37
Mix(3:6:5:2:4) 10.63 9.62 25.53 3.91 25.08 3.47 19.25 5.50 26.85 3.71
TABLE VI
COMPARISON OF FITTED GAMMA DISTRIBUTION AND COLLECTED DATA
. Product A Product B Product C Product D Product E
Product mix
(ABCDE) | Tosu"™ | %™ Tosy, % Tosv, % Toses % Tosv, %
Mix(8:3:3:3:3) 122.52 96.52 | 153.70 9412 | 116.97 9523 | 141.12 95.79 | 135.94 96.82
Mix(6:6:2:5:1) 127.22 96.28 | 134.75 9517 | 118.34 96.38 | 136.28 96.62 | 123.34 96.15
Mix(6:6:2:2:4) 129.84 96.65 | 132.36 96.02 | 119.92 9543 | 142.27 9551 | 128.69 95.16
Mix(5:6:4:4:1) 132.75 9596 | 132.32 96.75 | 127.55 96.07 | 136.88 96.04 | 12297 95.07
Mix(5:5:5:3:2) 127.57 9538 | 138.17 96.21 | 114.24 96.47 | 141.65 95.55 | 142.97 96.39
Mix(5:5:5:1:4) 131.10 95.56 | 137.86 95.64 | 118.90 96.99 | 124.26 9598 | 132.85 95.55
Mix(3:6:5:2:4) 158.73 9418 | 13441 9698 | 116.76 95.68 | 148.36 95.09 | 133.11 95.82
* Ty5%: theoretical 95-percentile WT of the fitted gamma distribution.
** %: percentage of number of collected data < Ty59.
TABLE VII TABLE VIII
PRODUCT MIx COMPOSITION FOR FIVE PRODUCT TYPES OF EACH EXPERIMENT PERFORMANCE SUMMARY FOR EXPERIMENTS
Experiment Week 1 Week 2 Week 3 Experiment Product type 95-percentile flow time On-time-delivery
Experiment1 | Mix(5:5:5:3:2) | Mix(5:5:5:1:4) | Mix(6:6:2:5:1) (hours) rate
Experiment2 | Mix(5:6:4:4:1) | Mix(6:6:2:2:4) | Mix(3:6:5:2:4) Product A 81545 %6.75%
Experiment3 | Mix(5:5:5:1:4) | Mix(8:3:3:3:3) | Mix(3:6:5:2:4) Product B 338.76 %6.83%
Experiment 1 Product C 304.33 94.79%
Product D 352.02 95.25%
Product E 345.63 95.42%
B. Data Distribution Fitting Product A 328.53 97.12%
o - 90 ) Product B 334.81 96.56%
By using & = 7°/S” and 3 = 5%/, we estimate the param- | g, eriment2 Product C 30904 97.37%
eters for gamma distributions fitted to WT of each product type Product D 358.97 94.41%
under each product mix. The estimated parameters are listed in Product B 34040 96.71%
Table V. The theoretical 95-percentile WT of each fitted gamma Product A 326.69 97.39%
distribution and the corresponding percentage of collected data , Product B 34485 9470%
) Experiment 3 Product C 304.89 96.78%
are s.hovs./n in Table VI. We see from Table VI. that thc.e gamma Product D 355.90 o
distribution appears to fit the collected WT satisfactorily. Product E 345.79 96.68%

C. Periodical Product Mix Changes

In this section, three experiments are used to demonstrate the
effectiveness and accuracy of the due-date assignment model for
the environment where the product mix changes periodically.
For the experiments, product mix compositions for five product
types are listed in Table VII.

Using the input data as displayed in Tables III and VII, the
simulation model is run to collect WT of each product type for
each piece of experiment.

For each experiment, the contamination model for each
product type can be derived from (12) and (13). The fitted
contamination model and collected data distributions for
experiments 1-3 are plotted in Figs. 4-6, respectively. The
contamination model appears to fit the collected data well.

In this paper, the target on-time-delivery rate is set to 95%.
After deriving the contamination model, we can obtain the
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Fig. 4. Fitted contamination model versus histogram of collected data for experiment 1.

contamination model. Table VIII displays the 95-percentile

95-percentile flow time by summing up PT and 95-percentile

flow times and the on-time-delivery rate from the simulation

WT by taking the reverse of the cumulative function of the
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Fig. 5. Fitted contamination model versus histogram of collected data for experiment 2.

mix changes periodically. As a result, the due-date assignment

model provides quite a good solution.

data. As shown in Table VIII, the due-date assignment model
by using contamination model performs well where the product
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Fig. 6. Fitted contamination model versus histogram of collected data for experiment 3.

problem considered by Chung et al. [1], which has many

VI. CONCLUSION
In this paper, we considered the due-date assignment problem

for wafer fabrication, an extension of the due-date assignment

real-world applications. We modeled the due-date assignment
problem for wafer fabrication under two environments. For one
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with a single product mix, the waiting time of each product type
is modeled by gamma distribution and the due dates are set to
be consistent with the target on-time-delivery rate. The other is
where the product mix changes periodically, the contamination
model is applied to tackle the effects of product mix changes
and the due dates can then be set. We also provided a real-world
example taken from a wafer fabrication factory to demonstrate
the effectiveness and accuracy of the proposed model. The
results show that the due-date assignment model provides a
quite good solution.
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