
578 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 17, NO. 5, MAY 2007

A Fast Algorithm and Its VLSI Architecture for
Fractional Motion Estimation for H.264/MPEG-4

AVC Video Coding
Yu-Jen Wang, Chao-Chung Cheng, and Tian-Sheuan Chang, Member, IEEE

Abstract—This paper presents a fast algorithm and its VLSI ar-
chitecture for H.264 fractional motion estimation. Motivated by
the high correlation of cost between neighboring fractional pel po-
sition, the proposed algorithm efficiently explores the neighbor-
hood position around the minimum one and thus skips other un-
likely ones. Thus, the proposed search pattern and early termina-
tion under constant quantization parameter can reduce about 50%
of computation complexity compared to that in reference software
but only with 0.1–0.2 dB peak signal-to-noise ratio degradation and
less than 2% of bit rate increase. The VLSI architecture of the pro-
posed algorithm thus can save 40% of area cost due to only half of
the processing elements and save 14% of searching time when com-
pared with the previous design.

Index Terms—H.264/AVC, motion estimation, video coding.

I. INTRODUCTION

I N RECENT years, multimedia application has become more
flexible and powerful with the development of semiconduc-

tors, digital signal processing, and communication technology,
in which the latest video standard [1], known as H.264 and also
MPEG-4 Part 10 Advanced Video Coding, is regarded as the
next generation video compression standard. Among its coding
tools, motion estimation (ME) is the most important part in ex-
ploiting the temporal redundancy between successive frames
and is also the most time consuming part in the coding frame-
work. ME is conducted in two parts: the integer-pel ME and
the fractional pel ME with quarter-pel precision around the best
integer-pel ME position. ME occupies 60%–90% of computa-
tional time of the whole encoder from the simplest configuration
to the complex configuration, respectively, in which the frac-
tional pel ME occupies significant amount of the computation
time of the whole ME process. Thus, the fast implementation is
important for real time video applications.

Many fast integer ME algorithms such as the three-step search
[2], and new diamond search [3] are proposed to reduce the
complexity of integer ME, but few discuss the fractional ME
[4]–[10]. However, the fractional ME has a strong impact on the

Manuscript received November 16, 2005; revised June 20, 2006 and
September 15, 2006. This workwas supported in part by the National Science
Council, Taiwan, R.O.C., under Grant NSC-93-2200-E-009-028. This paper
was recommended by Associate Editor O. C. Au.

Y.-J. Wang is with M-Star, Inc., Hsinchu 302, Taiwan, R.O.C.
C.-C. Cheng is with the Graduate Institute of Electronics Engineering, Na-

tional Taiwan University, Taipei 10617, Taiwan, R.O.C.
T.-S. Chang is with the Department of Electronics Engineering, National

Chiao Tung University, Hsinchu 300, Taiwan, R.O.C. (e-mail: tschang@twins.
ee.nctu.edu.tw).

Digital Object Identifier 10.1109/TCSVT.2007.894050

Fig. 1. Search algorithm in reference software.

peak signal-to-noise ratio (PSNR) quality, about 2-3 dB signifi-
cant improvement, and also has measurable high computational
complexity compared to the integer ME due to complex sub-pels
interpolation process. Thus, this paper proposes a fast algorithm
and its architecture to speed up the H.264/AVC fractional ME.
The proposed algorithm only needs eight or nine search points
instead of 49 search points in the full search method and 17
search points in the algorithm of reference software. The pro-
posed algorithm is also suitable for hardware design that has
smaller area cost and shorter refinement time compared with the
previous design.

The rest of the paper is organized as follows. In Section II,
we first review the past approaches. In Section III, we analyze
the statistics of the final fractional pel position. Then, in Sec-
tion IV, we propose the fast fractional ME algorithm. The VLSI
architecture and implementation result are listed in Section VI
and VII. Finally, conclusions are made in Section VIII.

II. PREVIOUS APPROACHES

Fig. 1 shows the search method applied in the reference soft-
ware [9]. It first recalculates the cost of integer pixel position
and half-pel positions (the rectangular points) and further refine
the motion vector with the quarter-pel precision (the triangular
points). Thus, total 17 search points are needed for fractional
ME. Note that the recalculation of best integer-pel position is re-
quired due to different matching criteria in fractional ME [sum
of absolute transformed difference (SATD) instead of sum of
absolute difference (SAD)]. In [4], a gradient-based search al-
gorithm is brought that uses the distribution features of ME error
surface. In [7], the number of the search points can be reduced

1051-8215/$25.00 © 2007 IEEE

WANG et al.: FAST ALGORITHM AND ITS VLSI ARCHITECTURE 579

Fig. 2. Statistics from [10]. Error surface of (a) integer-pel ME (search range: 32) and (b) fractional pel ME (1/8-pel case).

Fig. 3. Distribution of the fractional ME. (a) Foreman. (b) Stefan.

by predictor which is incorporating the motion vector informa-
tion of the adjacent blocks. Our design also explores the fea-
tures of the error surface but in a different way to predict the
fluctuation. In [10], it uses a three-step approach by using the
diamond search in the first and third step. To compensate the
quality loss, they add a second step by searching another one to
four half-pels. Thus, the total search points will be from 9 to 13
instead of 8 to 9 in our algorithm. However, from the hardware
viewpoint, each step will take the similar cycles to complete re-
gardless of the number of search points due to hardware paral-
lelism. Thus, the three-step nature will result in a extra one-half
of computation cycles than our two-step approach. If forcing
the algorithm into a two-step design by combining the first two
steps, the required hardware will be nine processing elements
(PEs) as in [6], which needs an extra 40% of area cost.

III. ANALYSIS OF FRACTIONAL PEL MOTION VECTOR

It is generally believed that the fast ME algorithm works best
if the error surface inside the search window is unimodal. As
shown in Fig. 2, the error surface of the integer-pel ME is not

unimodal due to the large search window and complexity of
video content. So the ME search would easily be trapped into
a local minimum. On the other hand, since the sub-pels are gen-
erated from the interpolation of integer-pels, the correlation in-
side a fractional pel search window is much higher than that of
the integer-pel search window. Thus, the unimodal error surface
will be valid in most cases of the fractional pels. So the matching
error decreases monotonically as the search point moves closer
to the global minimum.

In the full search method, every fractional pel around the orig-
inal integer-pel is treated equal. However, with the valid uni-
modal error surface assumption, a fast algorithm can work well
if every candidate of the sub-pel refinement has different occur-
ring probabilities. Fig. 3 shows the distribution of the fractional
motion vector around the best integer motion vector. It is ob-
vious that more than 90% of the fractional motion vector is at
the search center in all kinds of video content. However, we still
cannot just avoid the fractional part even though there is a huge
density diagram near the bias search center. The small error drift
of the fractional part in the motion vector will lead to a signifi-
cant bit rate increase.

580 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 17, NO. 5, MAY 2007

Fig. 4. Proposed search algorithm (different symbols mean different search
patterns). (a) Case 1 and 2. (b) Case 3 and 4.

Fig. 5. Refined positions in case 1.

IV. PROPOSED FAST ALGORITHM

A. Search Pattern

The proposed algorithm uses two-step search processes, as
shown in Fig. 4.
Step 1) Calculate the cost of the best integer-pel position and

four search points in half-pel positions (rectangular
points).

Step 2) Depending on the best three search positions, the
search pattern of the second step is adaptively se-
lected as shown in Fig. 5–8. The algorithm will
bias the search pattern to the search center if the
minimum cost point is at the integer-pel, as shown
in Fig. 4(a), in which case1 or case2 is chosen as
the second step patterns according to whether the
second and third best positions are neighboring or
not. Otherwise, we will bias the search pattern away
from the search center, as shown in Fig. 4(b), in
which case3 or case4 is chosen as the second step
patterns according to whether the first and second
positions are neighboring or not. The details of each
case are shown below.

Case 1) When the minimum cost point falls on the
search center, and the second and third
best search positions are not neighboring
each other, we will choose the three search
points between them, as shown in Fig. 5.

Case 2) When the minimum cost falls on the search
center and the second best search position
is neighboring the third one, we will choose
the “L” shape pattern as shown in Fig. 6.

Case 3) When the best two search positions are at
the four end points and neighboring each
other, we will search the three candidates

Fig. 6. Refined positions in case 2.

Fig. 7. Refined positions in case 3.

Fig. 8. Refined position in case 4.

in the “L” shape between the best two as
shown in Fig. 7 with search center bias.

Case 4) When the best two search positions are at
the four end points and do not neighbor
each other, we will search the four candi-
dates around the best search point as shown
in Fig. 8.

The concept of the algorithm is described below. From the
previous analysis, we find that the fractional motion position
will be close to the center of integer search point with very high
probability. To match such statistics, we will bias our second
step search near the center. Moreover, with the valid unimodal
error surface assumption [10], we can just examine the neigh-
borhood position around the points with low cost value and thus
skip other unlikely positions. We use the fixed half-pel search
pattern for half-pel and adapt quarter-pel search patterns. In
every fractional-pel refinement, only triangle points in the same
set will be visited.

With the above steps, our algorithm just needs 8 (for case
1 3) or 9 points (for case 4). Thus, compared with 17 points in
the reference software, our algorithm significantly reduces the
required search points by over 50%, especially for the second
step refinement. In addition, the algorithm is also suitable to be
implemented in hardware architecture due to the great decrease
of the search point candidates, and thus reducing the hardware
processing elements.

V. EARLY TERMINATION

We also apply the early termination technique to every single
search point in each step. The problem for early termination is
how to define the threshold. The matching error considered as

WANG et al.: FAST ALGORITHM AND ITS VLSI ARCHITECTURE 581

Fig. 9. Relationship between best SAD in integer part and best SATD in frac-
tional part.

SATD is used in fractional ME and SAD in integer ME. SATD
is the results after SAD goes through a 2-D Hadamard trans-
form. The threshold value (SATD) used in fractional ME can be
estimated from the integer-pels matching error (SAD). We ex-
periment from several test sequences and get the formula listed
in Fig. 9.

In most of situations, we can use the above approximated for-
mula to predict the threshold. However, direct linear prediction
may lead to a too large threshold and arise too much imprecision
when the SAD is getting larger. To solve the problem and avoid
second- or high-order approximation, we adopt adaptive linear
prediction threshold. We have found that while the quantization
parameter (QP) is getting larger, the average best SAD from in-
teger ME is getting bigger. To achieve the shorter searching time
without significant performance loss, we increase the threshold
associating to the current QP. The final prediction formulas are

if

threshold

else if

threshold

else

threshold

Every coefficient used in the formula could be calculated by
add and shift, and the summation of constants could be com-
bined easily. A constant with the value of 36 is obtained in the
formula listed in Fig. 9. Constants with the value of 375 and
125 are used to maintain the continuity of the adaptive predic-
tion curve.

By applying the early termination technique, we can improve
searching speed about 8.5%–14%. While the QP is getting
larger, we may get a bigger threshold and lead to shorter
searching time.

VI. HARDWARE DESIGN

A. Hardware Consideration

Algorithms suitable for hardware designs should be regular.
Thus, it is more difficult to implement an irregular search pat-
tern used in most of the software-based fast algorithms. For
example, in the integer ME part, the memory access cannot
support jumping access. In the fractional ME part, the search
window is smaller so that access to any point in the search

window is possible. But an irregular search pattern will certainly
result in more overhead circuits. In our design, even though
there are four cases, it is still fixed. We believe that the over-
head circuits of our design will be smaller than other algorithms,
such as the gradient-based algorithm [4] that has a higher vari-
ation probability in the search window.

Furthermore, 4 4 block decomposition and vertical integra-
tion are proposed in [6]. All block types can be decomposed by
4 4 block, and the SATD of each element is accumulated to
get the final cost. For the data reusability, vertical integration is
one of the ways to reduce the encoding time to reduce redun-
dant interpolating operations in the overlapped area of an adja-
cent interpolation window. But the overhead, such as the more
complex timing control circuit, will be introduced.

B. Algorithm Modification for Hardware

The algorithm implemented is slightly different from the fast
algorithm mentioned before. The main difference is when to
apply the early termination technique. Early termination at each
search point is only reasonable in the sequential processing like
those on CPU or DSP. However, in the case of hardware design,
the available resources allow us to use parallel processing units
for all the search points in the same step, and thus we only ter-
minate the second step process if the requirement is met. With
this modification, the count of early termination occurrences de-
creases from 56%–28% in average, but is still significant ac-
cording to our simulation results.

The total encoding time of the above modification can be cal-
culated as follows. First, the encoding time is the same in each
refinement step since every search point is calculated in parallel.
Let us assume the total time without early termination is , and

as the total time with step stop early termination. We can find
the following relationship:

Thus, we can save 14% of search time in FME module.

C. Architecture

Fig. 10 shows the proposed architecture for fast FME module.
The core procedure of FME includes interpolation, residual gen-
eration, and Hadamard transform.

The 4 4 block processing unit (PU) has four times par-
allelization of horizontal adjacent pixels and is in charge of
residual generation and Hadamard transform. The architecture
of PU is shown in Fig. 11 that contains four PEs, 2-D Hadamard
transform decomposed by two 1-D Hadamard transforms, and a
transpose register array. It processes 4 4 element blocks de-
composed from subblocks in sequential order and continually
processes four pixels in each cycle without any latency.

Five 4 4 block PUs around the refinement center process
five candidates simultaneously. Four horizontal adjacent pixels
from the original macroblock (MB) are broadcasted to every PU
at the same time and the reference subpixels are provided by the
interpolation unit. The interpolation unit by the 6-tap 2-D fi-
nite impulse response (FIR) filter is divided into two directional
(horizontal and vertical) 1-D FIR filters. First, we interpolate
the horizontal half pixels by five FIR filters from ten adjacent
integer pixels. These five intermediate values and six integer

582 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 17, NO. 5, MAY 2007

Fig. 10. Block diagram of fast FME hardware.

Fig. 11. 4 � 4 block PU.

pixels are stored and shifted cycle by cycle in the interpola-
tion buffer. We use the same way to interpolate the vertical half
pixels with 11 FIR filters. In our algorithm, since we will not
visit the entire position in the whole refinement window, some
redundant interpolations appear in certain pixels in the quarter
precision. To avoid redundant interpolate operation, we remove
those redundant bilinear filters, which are from 106 (no posi-
tions skipped) to 68 (no positions redundant). Thus, the 36% of
bilinear filters that each includes an adder and a shifter can be
saved by using the proposed algorithm.

Because of the irregular search pattern used in the second step,
the adaptive selection should be done before the pixels are sent
into PU—one is the overhead by applying fast FME algorithm
and the others are the early termination unit and comparison unit.
In the former one, the way to predict threshold is the same but
different in check time. In the later one, we should know not
only the best position but also the second and third places.

TABLE I
SIMULATION RESULT WHEN QP = 28. SPEED-UP IS ONLY FOR THE

FRACTIONAL ME PART. ALL RESULTS ARE RELATIVE TO THE REFERENCE

SOFTWARE. RATE DISTORTION OPTIMIZATION IS OFF

VII. ANALYSIS AND IMPLEMENTATION RESULTS

A. Performance Analysis and Comparison

Table I shows the simulation results under constant QP that
is the worst case among our simulation for 28 to 40. We
integrate our algorithm into the reference software and use the
full search algorithm for integer ME for fair comparison. For
the original fast algorithm case, it greatly reduces computational
complexity but only leads to a small amount of quality loss. The
main reason for the quality loss is the that coverage of our search
window is not big enough. Thus, some positions cannot be ar-
rived by our fast algorithm. However, it is still acceptable since
the loss is still small. For the fast algorithm modified for hard-
ware design, we get slower encoding speed but smaller PSNR
drop due to the decreased probability for early termination.

To compare our proposed original algorithm to other fast frac-
tional ME algorithms (2SS in [8] and FSIP in [4]), we turn on
the rate control option as other fast algorithms and list the re-
sults in Table II. We can find that our proposed algorithm is the
most accurate and fastest one. In lower bit rates, the QP for every
frame is usually very large. Thus, due to the QP weighted factor
used in early termination, we may get the larger threshold and
result in better speedup. In addition, with a larger threshold, the
resulted prediction error will not be observed because the quan-
tization error in bigger QPs is too large.

B. Implementation Result

The proposed FME architecture for H.264 is implemented
by Verilog and synthesized in UMC 0.18- m technology at
100 MHz. The details of every part are listed in Table III. The
latency per MB can be calculated as follows if all 41 modes do
the FME:

Latency per MB

cycles.

For such case, our design can process 50k MB/s in 100 MHz
and is sufficient to support SDTV format in 30 Hz for one ref-
erence frame. When compared with other hardware designs [6]
with the same algorithm as the reference software, our design
has slight quality loss but is 14% faster and 40% smaller using
the same technology at the same operating frequency.

WANG et al.: FAST ALGORITHM AND ITS VLSI ARCHITECTURE 583

TABLE II
COMPARISON BETWEEN DIFFERENT FAST ALGORITHMS FOR FRACTIONAL ME. SPEEDUP IS ONLY FOR THE FRACTIONAL ME PART. ALL RESULTS ARE RELATIVE

TO THE REFERENCE SOFTWARE. RATE DISTORTION OPTIMIZATION IS OFF

TABLE III
IMPLEMENTATION RESULT OF PROPOSED ARCHITECTURE

VIII. CONCLUSION

In this paper, we propose a fast sub-pel ME and VLSI archi-
tecture design for H.264/AVC. By taking advantage of the uni-
modal error surface, the proposed algorithm can significantly
decrease more than 50% computational complexity and with
only 0.1–0.2 dB PSNR degradation. The corresponding archi-
tecture can significantly decrease the total number of 4 4
block PU by reducing the candidates in the same step and speed
up the search process by modified early termination technique.
The resulting architecture achieves the slight video quality loss
but nearly 40% area saving and 14% time saving when com-
pared to the previous one.

REFERENCES

[1] Draft ITU-T Recommendation and Final Draft International Standard
of Joint Video Specification, ITU-T Rec. H.264/ ISO/ IEC 14496-10
AVC, Mar. 2003.

[2] T. Koga, K. Iinuma, A. Hirano, Y. Iijima, and T. Ishiguro, “Motion-
compensated interframe coding for video conferencing,” in Proc. NTC
81, New Orleans, LA, Nov./Dec. 1981, pp. C9.6.1–C9.6.5.

[3] C. Zhu and K.-K. Ma, “A new diamond search algorithm. for fast block-
matching motion estimation,” IEEE. Trans. Image Process., vol. 9, no.
2, pp. 287–290, Feb. 2000.

[4] H. M. Wong, O. C. Au, and A. Chang, “Fast subpixel inter_prediction
- based on the texture direction analysis,” in Proc. ISCAS, 2005, vol. 6,
pp. 5477–5480.

[5] C.-C. Cheng, Y. J. Wang, and T.-S. Chang, “A fast fractional pel motion
estimation algorithm for H.264/AVC,” in Proc. VLSI/CAD, Taiwan,
R.O.C., 2005, pp. 181–184.

[6] T. C. Chen, Y.-W. Huang, and L. G. Chen, “Fully utiliized and reusable
architecture for fractional motion estimation of H.264/AVC,” in Proc.
ICASSP, 2004, vol. 4, pp. 9–12.

[7] Z. Wei, B. Jiang, X. Zhang, and Y. Chen, “A new full-pixel and sub-
pixel motion vector search algorithm for fast block-matching motion
estimation in H.264,” in Proc. Int. Conf. Image Graph., Dec. 2004, pp.
345–348.

[8] B. Zhou and J. Chen, “A fast two-step search algorithm for half pixel
motion estimation,” in Proc. 10th IEEE ICECS 2003, vol. 2, pp.
611–614.

[9] JM8.2. Reference Software of JVT.
[10] A. Tourapis and P. Topiwala, “Sub-pel ME for enhanced predictive

zonal search,” MPEG/JVT Meeting, Doc. JVT-Q079, Oct. 2005.
[11] Z. Chen, P. Zhou, and Y. He, “Fast motion estimation for JVT,”

MPEG/JVT Meeting, Doc. JVT G-016, Mar. 2003.

Yu-Jen Wang received the B.S. and M.S. degrees in
electronics engineering from National Chiao-Tung
University, Hsinchu, Taiwan, R.O.C., in 2004 and
2006, respectively.

After graduation, he joined M-Star, Inc., Hsinchu.
His major research interests include H.264/AVC
video coding, digital signal processing, and associ-
ated VLSI architecture design.

Chao-Chung Cheng received the B.S. and M.S.
degrees in electronics engineering from National
Chiao-Tung University, Hsinchu, Taiwan, R.O.C., in
2003, and 2005. He is currently working toward the
Ph.D. degree in the Graduate Institute of Electronics
Engineering, National Taiwan University, Taiwan,
R.O.C.

His research interests include digital signal
processing, video system design, and computer
architecture.

Tian-Sheuan Chang (S’93–M’06) received the
B.S., M.S., and Ph. D. degrees in electronics en-
gineering from National Chiao-Tung University,
Hsinchu, Taiwan, R.O.C., in 1993, 1995, and 1999,
respectively.

He is currently with the Department of Electronics
Engineering, National Chiao-Tung University, as an
Assistant Professor. From 2000 to 2004, he worked
at Global Unichip Corporation, Hsinchu, Taiwan. His
research interests include IP and SOC design, VLSI
signal processing, and computer architecture.

