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A New Hardware-Efficient Architecture for
Programmable FIR Filters

Hwan-Rei Lee, Chein-Wei Jen, Member, IEEE, and Chi-Min Liu

Abstract— Although much research has been done on efficient
high-speed filter architectures, much of this work has focused
on filters with fixed coefficients, such as Canonical Signed Digit
coefficient filter architectures, multiplierless designs, or memory-
based designs. In this paper, we focus on digit-serial, high-speed
architectures with programmable coefficients. To achieve high
performance goals, we consider both of algorithm level and
architecture implementation level of FIR filters. In algorithm
level, we reformulate the FIR formulation in bit-level and take
the associative property of the addition in both the digit-serial
multiplications and filter formulations. In architecture level, we
considered issues to implement the reformulated results effi-
ciently. The issues include addition implementation, data flow
arrangements, and treatment of sign-extensions. Based on the
above considerations, we can obtain a filter architecture with
accumulation-free tap structure and properties of short latency,
flexible pipelinability and high speed. Comparing the cost and
performance with previous designs, we find that the proposed
architecture reduces the hardware cost of a programmable FIR
filter to only half that of previous designs without sacrificing
performance.

I. INTRODUCTION

NTENSIVE RESEARCH on digital signal processing

(DSP) and advances in VLSI technologies have had a great
impact on the application domains of electronics. Among the
DSP applications, finite impulse response (FIR) filters are
important building blocks. Recently, because of increasing
demand for video signal processing and transmission, high-
speed and high-order programmable FIR filters have frequently
been applied for performing adaptive pulse shaping and signal
equalization on the received data in real time [1]. Hence, an
efficient VLSI architecture for high-speed programmable FIR
filters is needed.

However, high-speed high-order programmable filters are
difficult to be implemented efficiently because of the high
implementation cost and the programmability requirements.
In the literature, various kinds of filter architectures have been
proposed for different applications. A programmable FIR filter
allows us to modify the filter coefficients while the filter is
operating. Hence, some low cost implementations that require
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special codings of filter coefficients, such as the canonical
signed digit (CSD) representation [2], distributed arithmetics
[3], and memory based approaches [4], are not suitable for
programmable filters because coding of coefficients is difficult
to accomplish in real time.

To implement programmable filters, one multiplier and
one adder are needed for each tap. Hence, multiplier-and-
accumulator (MAC) based architectures [5]-[7] are frequently
adopted for programmable filters. However, the cost of mul-
tipliers is high and they are not suitable for high-order fil-
ters. There are also bit-level approaches such as the free-
accumulation [8] and bit-plane [9] techniques. The former
deconstructs the multiplications into bit-level additions and
uses carry-save additions to speed up operations. However,
because of the different weights of the addend, the addition
wordlength grows fast. To reduce the required wordlength,
bit-plane [9] approaches reorder the additions to solve the
problem. However, they incur a long latency in accomplishing
all the additions and they also spend high hardware cost
on pipelining the additions to bit-level. Even though it is
featured with high speed, however, long latency and high
implementation cost make it unsuitable for adaptive or high
filtering order applications.

In comparison, coding of input signals to reduce the mul-
tiplication complexity is attractive for programmable appli-
cations because the coder of each tap can be shared and no
coding of coefficients is applied. Techniques for implementing
the MAC of each tap by a Modified Booth multiplier has
been presented in [6]. This approach reduces to the cost of
multiplication to only that of a shared Modified Booth coder
and accumulators in each tap. However, the cost of each tap
is still high, because accumulators and latches are still needed
in each tap to perform multiplications. v

To further reduce the implementation cost of a pro-
grammable FIR filters, we should consider not only the
implementation issues of multiplications and additions but also
on the algorithm formulation issues. In this paper, we consider
filter operations on both algorithm and architecture level to
pursue a high-speed low-cost and low latency implementation.
To achieve this goal, we should consider the issues to reduce
the cost of computations of the filter formulation under the
programmability requirements on algorithm level. Hence,
instead of reducing computation costs by coding of filter
coefficients at bit-level, we consider coding input signals
at bit-level and reformulate the entire filtering operation
to reduce the computation -costs. Basing on the algorithm
level reformulation, we have not only reduced the number of
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additions needed but also reduce the internal wordlength for
the whole filtering operations based on a Modified Booth
coding of input signals and the associative properties of
additions. On the architecture level, we considered the issues to
implement the filter architecture efficiently. The issues include
the addition implementation, pipeline scheme, and sign-
extension treatments. Based on the architecture considerations,
we have the algorithm reformulated results implemented as a
programmable, low-cost, accumulation-free tap structure that
can be flexibly pipelined without incurring any longer latency.
The cost of the filter is about half of the approach in [6].

The organization of this paper is as follows. In the next
section, we discuss the Modified Booth multiplication al-
gorithm, formulate the algorithm on bit-level and apply it
to the formulation of FIR filters. In Section III, issues re-
lated to implementation of the architecture are discussed. In
Section IV, the hardware cost of the proposed architecture
and the architecture proposed in [6] are compared. Concluding
remarks are given in the final section.

II. ALGORITHM REFORMULATION

Compared with merely finding an efficient way to imple-
ment multiplications, it is advantageous to consider the overall
formulation of the algorithm for FIR filters, because both the
additions in the filter formulation and the serial multiplications
are associative. Hence the additions can be arranged efficiently
to reduce the overall hardware cost.

In this section, we will first review and formulate the digit-
serial Modified Booth multiplication scheme on bit level and
then apply the formulated result to FIR filters with two possible
formulations to show the advantages of the algorithm refor-
mulation in Section II-2. One of the two formulations is the
direct replacement of the multiplication-addition operations in
FIR filters. The direct replacement approach has been adopted
in [6] and [7]. The other is the proposed reformulated algo-
rithm. A filter architecture based on the proposed reformulated
algorithm will have an accumulation-free tap, shorter internal
wordlength, and flexibly pipelinable architecture compared
with the direct implementation approach.

2.1 The Modified Booth Algorithm

The Modified Booth algorithm [10], [11] is a digit-serial
algorithm for performing 2’s complement multiplications. For
the multiplication of two numbers, taking c as the multiplicand
and considering z as the multiplier at bit level, we can encode
z according to the Modified Booth algorithm. Taking every
two bits of z as a pair and another bit from the previous pair
to form a triplet with the one bit overlapped and assuming z
has w, bits, we can represent the triplet z7 as

oy = {2241, g2 g%1 1)

where [ =0,1,--+,w,/2 — 1,2° is the ith bit of z,2~" = 0,
and 2%~ is the overlapped bit from the previous triplet. Then
we can reformulate the 2’s complement representation of z as

follows:
Wy —2
T = _x,wﬁ—l 'zwm~1 + Z Z‘i 21,
1=0
wy/2—1
— Z (_2x21+1 +.Z‘2l +$2l—1) . 221 2
=0

Based on the coding of the algorithm, the multiplication, ¢z,
is expressed as

we/2—1
-z = z (*23;21—{—1 +$21 _|_$2l—1) v 92

=0
wy [2—1
= Z B(.’L‘l, C) . 221, (3)

=0

where w, is the wordlength of z and the Modified ‘Booth
coding function B(:,-) is:

0 ifzy=1{0,0,0}{1,1,1}

¢ ifz;={0,1,0},{0,0,1}
B(zp,c) = —c ifzp={1,1,0;,{1,0,1} (@)

2¢  ifxp={0,1,1}

—2¢ if zy = {1,0,0}.

From (3), we need a (w,/2)-operand adder to sum the (w,/2)
terms in (3) for each multiplication. As for the Modified
Booth coding function, a combinational logic block is needed
to generate the selection of zero, negative, or double of the
operand, ¢, to the adder.

Compared with multiplications without the coding scheme,
the number of additions is reduced from (w,) to (w,/2)
at expense of extra Modified Booth codings. Moreover, no
further processing of the sign bit of the operand x is needed.
This corresponds to a more regular architecture or simpler
control from an implementation point of view.

2.2 Application of the Algorithm Reformulation to FIR Filters

In this section, the Modified Booth multiplication for-
mulated above is applied to FIR formulations. By taking
advantage of associative property of the accumulations in both
the FIR and the Modified Booth multiplications, we can greatly
simplify the inner product computation needed for FIR filters.

Considering an N-tap FIR filter with the input sequence z,,
output sequence ¥, and impulse response ¢;, we can express
the basic FIR formulation as '

N-1
Yn= D CiTns. (5)
=0

Replacing the multiplication of ¢;-z,,—; by the Modified Booth
multiplication, we have:

N-1
E Ci* Tn—4

Yn =
=0
N—-1 |we/2-1
=2 | 2 Benpe) 2. ©
=0 =0
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Fig. 1. Direct implementation of digit-serial multiplication and accumulation
of N-tap FIR filters.
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Fig. 2. Implementing the Modified Booth function in two steps.

A direct implementation of (6) leads to the architecture shown
in Fig. 1. In this figure, N digit-serial Modified Booth multi-
pliers are used to implement the inner summation of (6) and
each of the multiplications takes w, /2 cycles to accumulate
the results of B(z,, ;7,¢:)-2%,1=0,1,.-,w,/2— 1. Then,
for every w, /2 cyclesl the multiplication-accumulation results
are passed to the next stage.

Let us consider the cost of the directly implemented ar-
chitecture. N digit-serial multipliers and accumulators are
needed, and thus N multiplexers are also needed to switch
the computed data to the next stage every w. /2 cycles. The
internal wordlength needed to keep a full-precision output is
Wy + we + log, N-bits, where w, is the wordlength of coeffi-
cients. Note the direct replacement approach has been adopted
in [6] and [7] and the Modified Booth function B (+,+) can be
implemented in two steps (as shown in Fig. 2): the first step
encodes each triplet of x to {zero, negative, double} and the
second selects an appropriate value of {0,¢;, —¢;, 2¢;, —2¢;}
from the triplet encoded in the first step. Since the first
step is common to all taps, it can be implemented in the
preprocessing block shown in Fig. 1 and shared by all taps. In
the preprocessing stage, the bit-parallel x,, input to the stage is
converted to digit-serial bit triplets, encoded as {zero, negative,
double}, and passed to the taps.

Compared with the direct implementation, if we rearrange
the two summations in (6) according to the associative prop-
erty of addition, (6) becomes:

wy [2—1 [N-1
Yn = z [Z B(zn_i,l,ci)} X 0
=0 =0

In (7), we need to perform two summations of the results of
the Modified Booth function, B(zy, ; 1, c:). One is for index /
and the other is for 7. For the inner summation, index i, the N
results are directly summed by an IV operand adder. For the

outer summation, index [/, only one accumulator in the lower
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Fig. 3. A filter architecture that is free of accumulation in each tap.
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Fig. 4. Duplication of delay elements for digit serial sequences.

left block in Fig. 3, ACC, in Fig. 3 and w,. /2 cycles are needed
to accumulate the results. Compared with the architecture
in Fig. 1, the accumulations in each tap are moved to the
accumulator in the ACC block so that no accumulations are
needed in the taps.

In Fig. 3, the delays on the delay line to the taps are lumped
every w,/2 delay elements. Compared with a bit-parallel
approach whose tapped delay duration is one clock cycle, the
digit serial approach takes w,, /2 cycles to maintain one sample
delay. This idea is depicted in Fig. 4. In the figure, a one-cycle
delay for the bit-parallel approach should be duplicated w, /2
times to ensure that the timing of the input matches that of
the output.

Comparing the directly implemented tap structure in Fig. 1
with the reformulated structure in Fig. 3, we see that the
reformulated one have at least the following advantages: First,
there is no accumulation loop for the shift-and-add in each
tap. Instead, the partial results from each Modified Booth
multiplexer are summed with an N-operand addition and only
one final accumulator is needed to perform the first summation

we /2—1y
(27 7) in (D).

Second, since every term, B(a:n_“, ¢), of the second
summation in (7) is of the same wordlength (w. + 1), the
maximum possible wordlength for full precision output of the
N terms is (w.+1+log, N), which is shorter than (w, +w, +
log, N), which should be adopted in the direct implemented
taps. In the architecture implementation, a shorter maximum
possible wordlength translates into a lower hardware cost if
full precision output is implemented. On the other hand, if
only a fixed output wordlength is required. a shorter maximum
wordlength corresponds to a higher signal-to-noise ratio.

Third, since there are no accumulation loops in the taps, we
do not need an extra control signal to reset these accumulators
every (w,/2) clock cycles. ,

Fourth, since there is no accumulation in each tap, the
pipelining of the implemented architecture is more flexible.
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That is, we can adjust the number of pipeline stages according
to the speed specification. This will be discussed in Section III.

III. ARCHITECTURE DESIGN

Architecture design involves finding techniques to imple-
ment the algorithm formulated above efficiently—that is, with
high speed, low cost and short latency. In the previous
section, we designed an accumulation-free tap structure for
filters. In this section, we will consider how to implement
the filter efficiently. The issues we must treat include the
adder implementation, the data flow arrangement, and the
treatment to sign extensions of additions. Of these three
issues, data flow arrangement reduces the cost for pipelining
registers and increases the speed of the architecture with the
pipeline registers with incurring long latency. The addition
implementation uses carry save adders to eliminate the carry
ripple in each tap, and the treatment of sign extensions reduces
the cost of the addition implementation.

3.1 Addition Implementation and Data Flow Arrangement

As can be seen from the discussion in the previous section,
the implementation of the N-operand adder forms the critical
path in our design. This critical path includes the series
of adders needed to implement the N-operand addition and
the carry ripple in each of the adders. Since the N-operand
addition is a multi-operand addition and the carry save addition
scheme can free the addition from carry ripple until the final
result is needed [12], [11], the ripples of the additions can
be left to the final stage of our architecture, where the final
addition is performed by a vector merging adder (VMA) [12].
Since the VMA is activated only once every (w./2) cycles
and only one VMA is needed regardless of the order of the
filter, the VMA can be implemented with either a high-cost,
high-speed adder or just a low-cost adder just fast enough to
complete the addition ripple in w, /2 cycles.

Another long signal path is the series of (N — 1) CSA’s
used to implement the N-operand addition. The length of
this path can be reduced by pipelining. Considering Fig. 5,
by the associative property of addition, we can arrange the
accumulation in either the same direction or opposite to the
signal flow of z, as shown in Fig. 5(a) and (b).

The pipeline arrangement in the two cases leads to dif-
ferent results. In the first case in Fig. 5(a), we need to
insert 3 + 2(w, + 1 + log, N) extra delay registers for
every cut-line applied. The first term, 3, corresponds to the
pipelining adder applied to the flow of encoded input signals,
{negative, double, zero}, and the other term corresponds
to the wordlength of both carry and sum signals for the
CSA’s. Obviously, for every cutset, one extra latency cycle is
introduced. That is, the number of clock cycles between one
input sample and its corresponding output sample is increased
by one for every cut-line applied.

Considering the second case shown in Fig. 5(b), in which
the accumulation and the input signal flow in opposite di-
rections, we may find that pipelining the architecture shown
in Fig. 5(b) is more efficient. According to the delay transfer
rules in {13], we can move the same number of delay elements

—> (3 delays)
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Fig. 5. The cut-set retiming for the signal flow arrangement of input and
accumulation signals.

from all the inbound edges to the outbound edges of a cut-
line without modifying the system’s behavior. That is, the
delay registers in the figure can be transferred from the
signal path, {negative, double, zero}, to the CSA side.
Thus, in Fig. 5(b), the extra number of registers introduced
by the cutset retiming is equal to the difference between the
number of registers on the CSA side and on signal path side,
(2(we +14log, N) — 3). The second term, 3, corresponds to
the delay transfer instead of the insertion as in the first case.
Inspecting the resulting architecture, we find that the latency
does not increase and fewer extra registers are needed. Thus,
we adopt the contraflow scheme in our architecture.

3.2 Sign Extensions

- To reduce the number of full adders used in our imple-
mentation, we can also consider the treatment of the sign
extensions of each addition. Since the Modified Booth mul-
tiplier introduces a (w. + 1) bit number into the accumulation
path in each tap and the wordlength of the accumulation is
(we+1+1logy N),log, N b of sign extensions must be applied
to the number before the addition. Thus, (w. + 1 + log, N)
full adders should be used in each tap. However, we can show
that if a transformation similar to the idea used in Bough-
Wooley multipliers [11, 14] is applied, the full adders for the
logy N guard bits can be reduced to only half adders and
no sign extensions are needed in each tap. This reduction of
sign extensions also reduces the fanouts of the MSB (Most
Significant Bit) of the Booth multiplexer outputs and thus helps
to increase the operating speed.

To illustrate this idea, let us consider an addition of two 2’s
complement numbers, x;, and zg, with different wordlengths,
wy, and wg, respectively, and assume that wr, > wg. That is,
xr, has a longer wordlength than xs. To perform the addition
of zy, and zg,(wy — wg) bits of sign extensions must be
applied to zg so that the wordlength of the two numbers are
matched.
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The first and second terms of (9) correspond to the sign
extension bits of zg. The terms could be a sequence of either
1’s or 0’s. To eliminate the sequence, we can add a constant
2ws=1 to 25 to obtain

25429571 = —gs Tl gue g gl gus ]
wg—2
+ Y a2 (10)
=0
(wr+1)b
-1 —ws—1 -2 0
:(ZU;)S aana"'ams s 7331;5 7""‘77.5;)
’u)sb
an

where T5%$ ™! correspond to the inversion of z5° ~1. Since x5
is sign-extended to a wy -bit number, the first term in (10) can
be ignored. This is because zg is originally a wg-bit number,
and hence the addition of 2@s~! should always offset zs to
be positive. Thus, the (wy, + 1)th bit of (z5 + 2¥s~1) will
always be zero. Thus, the addition of the two numbers can be
implemented by only wg full adders for the wg nonzero bits
in (11). Applying this idea to the FIR formulation in (7), we
find that this transformation reduces the number of full adders
in the CSA’s of each tap. As for the compensation of the pre-
added value in each addition, it can be compensated together

Since this compensation does not relate to the values of
either the input sequence or the coefficients, it can be easily
implemented by preloading the constant to the ACC block
when a chip is fabricated.

3.3 The Proposed Architecture

Taking all the discussions above, we have the resulting
architecture shown in Fig. 6. This figure shows the proposed
architecture for a filter with input signal, z;,, of 8 b and it
produces one output, yout, every four cycles (w,/2 = 4).

Starting from the input of the architecture, we have the
preprocessing block on the upper left on Fig. 6 to latch zy,
and produce the Modified Booth coded result every clock
cycle. The architecture of the preprocessing block is shown
in Fig. 7. It basically contains a bit-parallel to digit-serial
converter and part of a Modified Booth coder to produce the
negative, double and zero signals for generating partial results
of the tap coefficient in each tap. There are N taps on the
right side of this figure.

The result of each tap, B(z,—;,¢;), is generated by a
Booth multiplexer and accumulated along with the carry save
adders. The carry save adders are simplified by the discussion
of (8) to (12) so that the cost of each CSA is reduced from
we~+log, N —1 full adders to (w.+1) full adders, (log, N —1)
half adders, and one XOR gate. The tap architecture is shown
in Fig. 8.
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The results obtained from each tap are fed into the post-
processing block. The post-processing block performs the
function to accumulate the results and to compensate the terms
for signed-extension treatments. The compensation term of
(12) is preloaded to the post-processing block on the lower
left of Fig. 6. The block produces one sample of 4,4 in terms
of carry and sum from the CSA path and one final result is
produced by VMA every four clock cycles. The architecture of
this block is shown in Fig. 9. The post-processing stage uses
two carry save adders (CSA’s) to accumulate the carry and
sum signals in every four cycles. During the last of the four
cycles, the accumulated results are latched and passed to the
VMA block for obtaining the final results. At the mean time,
the multiplexers are switched to the correction term to put the
term to the feedback registers for adding with the next four
cycles.

The N taps on the right of Fig. 6 are pipelined with
the contraflow arrangement of the input sequence and the
accumulation. It can be seen that pipelining this architecture is
more flexible than pipelining multiplier-based tap structures,
because there are no loops of accumulation as in the direct
replacement approach. Hence, if the speed requirement of our
application is lower, fewer pipelining stages can be adopted.
As shown in Fig. 8, the critical path of the fully pipelined
structure is only the elapsed time of the Modified Booth
multiplexer and one full adder. Thus, we can perform the cutset
retiming every two or more taps to reduce the number of delay
registers needed (and thus the hardware cost) according to the
speed requirements of a particular application.

To show how the flexible pipelining applies to different
applications, we have to verify the critical path and the number
of reduced registers of the resulting pipelined architecture.
Defining T7 4, Tarue as the delay time of a full adder and that
of a Booth multiplexer, we have the total elapse time of the
critical path of a fully pipelined architecture as Thsy, + Tr4-
On the other hand, if we perform cut-set on every k taps,
we can inspect the critical path from Fig. 6 and verify that it
becomes kTr 4 + Thrus- The number of pipeline registers are
reduced from £ sets to one for the & taps. Hence, adjusting
the values of £, we will have architectures with different speed
and cost. This is difficult for the direct replacement approach
that contains loops in each tap.

IV. Cost COMPARISONS

In this section, we will compare the cost of two archi-
tectures: the first is an architecture obtained by the direct
replacement of multipliers by digit-serial Modified Booth
multipliers [6] and the second is the proposed architecture. For
a fair comparison, the proposed architecture is fully pipelined
to a carry-save adder level such that both architecture have the
same elapse time of critical path.

For purposes of comparison, a number of components
that are common to the two implementations are ignored,
including the coefficient loading multiplexers, coefficient reg-
isters, preprocessing stage, and VMA. Table I shows the
number of components used in both of the architectures. As
shown in Table I, the proposed approach requires fewer full
adders, multiplexers, and delay registers. First, because of
the difference in addition wordlength, the proposed approach
needs N X (wy — 1) fewer full adders, and because of the
treatment of sign extensions, the other log, N full adders are
reduced to half adders. Second, since there are no multiplexers
in the taps, the number of multiplexers is reduced to only
those needed in the final accumulator block, ACC. Third, the
number of delay registers is also reduced by the reduction in
the wordlength and by the contraflow arrangement.

Let us now calculate the cost of filters of different orders.
Table II shows the estimated gate counts for full adders, mul-
tiplexers, and delay registers for filters with input wordlength
wy, = 8, coefficient wordlength w, = 8 and full precision
output wordlength for y,.;. That is, no truncations are made
in either architecture. Different filter orders, N, are listed.
The total estimated gate count is the weighted sum of FA’s
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TABLE 1
COMPARISON OF THE COST OF DIRECT MULTIPLIER REPLACEMENT AND THE PROPOSED ARCHITECTURE

Full adders Multiplexers Delay registers
Direct N(we+ wz +1ogyN) | 2N (we + wz +1ogaN) | N x %= %3

Replacement [6]

+2N(w,+ w, +logoN)

N(w.+ 287 +1) |2

New
Approach

X (we + wy +logaN) [ N x (%= —-1)x 3
+2N (we +log, N + 1)

+2(w, + wy + log,N)

TABLE II
NUMBER OF THE ESTIMATED GATE COUNTS AND THE RATIO BETWEEN THE DIRECT REPLACEMENT (1) AND THE PROPOSED DESIGN (2)
N | FA1l | FA2 | MUX1 ["MUX2 | Delayl | Delay2 | totall | total2 | ratio
4 72 40 144 36 192 160 1824 1148 | 1.58885
8 152 84 304 38 400 302 3824 2128 | 1.79699
16 | 320 | 176 640 40 832 600 8000 4176 | 1.91571
32 | 672 | 368 1344 42 1728 1226 16704 | 8464 | 1.97353
64 | 1408 | 768 | 2816 44 3584 2540 34816 | 17440 | 1.99633
128 | 2944 | 1600 | 5888 46 7424 5294 72448 | 36208 | 2.00088
256 | 6144 | 3328 | 12288 48 15360 | 11056 | 150528 | 75392 | 1.9966
FA: full adders. The cost of half adder is estimated as half of the cost of an FA
The cost of an FA is weighted by 6.
MUX: multiplexers. The cost of a MUX is weighted by 3.
Delay: delay registers. The cost of a Delay is weighted by 5.
TABLE III
SAVINGS RaTIO FOR THE CASE WHERE N = 64
Techniques applied FAx6 MUXx3 Delaysx5 Total
Wordlength reduction | 2688(7.7%) 0 4260(12.3%) || 6948(20.0%)
Accumulation-free 0 8316(23.9%) 0 8316(23.9%)
Sign-extension 1152(3.3%) 0 0 1152(3.3%)
Data flow arrangement 0 0 960(2.8%) 960(2.8%)

[ 3840(11.0%) |

8316(23.9%) | 5220(15.1%) [| 17376(50%)

Total Savings

(full adders), MUX’s (multiplexers), and Delays according to
a standard cell library [15]. The weights for FA’s, MUX’s and
Delays are 6, 3, and 5, respectively. The ratios show that the
cost of these components in our architecture is only half that
in the direct replacement approach.

More precisely, taking the case of a filter of order N = 64 as
an example, we can see from Table III how various techniques
reduce the hardware cost. As shown in the table, that the
greatest saving achieved by the reformulated FIR algorithm
is due to the reduction in the required internal wordlength and
the accumulation-free tap structure. Although the architecture
techniques do not produce as significant a hardware savings as
the algorithm reformulation, the techniques are still needed to
implement the reformulated resuits efficiently. Fig. 4 shows
a plot of the estimated gate counts for filters of various
orders. The two curves correspond to the direct replacement
approach and the proposed architecture, respectively. The
small discontinuities on the curve correspond to increases

in the wordlength for guard bits. That is, the guard bits
for order 2F + 1 are 1 b greater than for order 2*. The
proposed architecture greatly reduces the hardware cost for
the implementation of an FIR filter without sacrificing any
performance.

V. CONCLUSION

In this paper, we have proposed a new programmable
digital FIR filter architecture. In this architecture, we combined
both the algorithm and architecture level considerations. The
comparison results showed that the cost of the architecture
is about half compared with the previous approach. On the
algorithm level, we combined and reformulated the Modi-
fied Booth multiplication algorithm and the filter operation
in bit-level. The reduction of internal wordlength and the
accumulation-free tap structure are obtained through this level
of considerations. On the architecture level, carry-save addition
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Fig. 10. Estimated gate counts for the direct replacement and the proposed
approach with different filter orders.

scheme and pipelining through cut-set retiming results in
efficient architecture design. As for the signed extension
treatments, it further reduces the cost of carry save adders by
removing the additions needed for sign-extension signals. The
proposed architecture can also be used for other inner-product
based DSP applications such as discrete cosine transform,
discrete Fourier transforms (DET), etc.
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