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Abstract—The problem of fault diagnosis has been discussed widely and the diagnosability of many well-known networks has been

explored. Under the PMC model, we introduce a new measure of diagnosability, called local diagnosability, and derive some structures

for determining whether a vertex of a system is locally t-diagnosable. For a hypercube, we prove that the local diagnosability of each

vertex is equal to its degree under the PMC model. Then, we propose a concept for system diagnosis, called the strong local

diagnosability property. A system GðV ;EÞ is said to have a strong local diagnosability property if the local diagnosability of each vertex

is equal to its degree. We show that an n-dimensional hypercube Qn has this strong property, n � 3. Next, we study the local

diagnosability of a faulty hypercube. We prove that Qn keeps this strong property even if it has up to n� 2 faulty edges. Assuming that

each vertex of a faulty hypercube Qn is incident with at least two fault-free edges, we prove Qn keeps this strong property even if it has

up to 3ðn� 2Þ � 1 faulty edges. Furthermore, we prove that Qn keeps this strong property no matter how many edges are faulty,

provided that each vertex of a faulty hypercube Qn is incident with at least three fault-free edges. Our bounds on the number of faulty

edges are all tight.

Index Terms—PMC model, local diagnosability, strong local diagnosability property.

Ç

1 INTRODUCTION

THE problem of identifying faulty processors in a multi-
processor system has been widely studied in the

literature [9], [16], [18]. The bases of this area and the
original diagnostic model were established by Preparata
et al. [16]. This model, known as the PMC model, has been
extensively studied [1], [2], [3], [4], [10], [11], [12], [13], [14],
[16]. In [10], Hakimi and Amin proved that a system is
t-diagnosable if it is t-connected with at least 2tþ 1 vertices.
They also gave a necessary and sufficient condition for
verifying if a system is t-diagnosable under the PMC model.

The hypercube structure [17] is a popular topology for
multiprocessor systems. An n-dimensional hypercube is
denoted by Qn and the diagnosability of Qn is shown to be
n [13] under the PMC model, n � 3. In [15], Lai et al.
introduced a measure of diagnosability called conditional
diagnosability by restricting that a faulty set cannot contain
all the neighbors of any vertex. Based on this restriction, the
conditional diagnosability of the n-dimensional hypercube is
shown to be 4ðn� 2Þ þ 1. Besides, Lai et al. introduced a
concept called a strongly t-diagnosable system and proved that
the n-dimensional hypercube is strongly n-diagnosable.
Essentially, it means that an n-dimensional hypercube is
almost ðnþ 1Þ-diagnosable except for the case where all the
neighbors of some vertex are faulty simultaneously. In [19],
Wang proved that the diagnosability of an incomplete
hypercube under some conditions can be determined by
simply checking the degree of each vertex under the PMC
model. An incomplete hypercube is a hypercube with some

missing edges. It is also called a faulty hypercube. There are
some results concerning the diagnosability of several varia-
tions of the hypercube [1], [5], [7], [8], [10], [13], [19]. In
classical measures of system-level diagnosability for multi-
processor systems, it has generally been assumed that any
subset of processors can potentially fail at the same time. As a
consequence, the diagnosability of a system is upper
bounded by its minimum degree.

We observe that the discussions in previous literature
about the diagnosability of a system consider the global
sense but ignore some local information. A system is
t-diagnosable if all the faulty processors can be uniquely
identified, provided that the number of faulty processors
does not exceed t. However, it is possible to correctly
indicate all the faulty processors in a t-diagnosable system
when the number of faulty processors is greater than t. For
example, consider a multiprocessor system generated by
integrating two arbitrary subsystems with a few commu-
nication links in some way, where the two subsystems are
m-diagnosable and n-diagnosable, respectively, and m >> n.
The diagnosability of this system is limited by n, but it is
possible to correctly point out all the faulty processors even
if the number of the faulty ones is between m and n.
Therefore, if we only consider the global faulty/fault-free
status, we lose some local systematic details.

In this paper, we propose a new measure of diagnosa-
bility, called local diagnosability, and study the local
diagnosability of each processor of a system. We can
identify the diagnosability of a system by computing the
local diagnosability of each processor. This measure of the
local diagnosability leads us to study the local diagnosa-
bility of each processor instead of the whole system. We
propose a necessary and sufficient condition, Theorem 3, to
determine the local diagnosability of a processor. We also
provide two useful structures, called the Type I structure
and the Type II structure, to determine the local diagnosa-
bility of a processor under the PMC model. Based on these
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structures, the local diagnosability of each vertex in a
hypercube is shown to be equal to its own degree. Then, we
propose a concept for system diagnosis, called the strong
local diagnosability property. A system GðV ;EÞ is said to
have a strong local diagnosability property if the local
diagnosability of each vertex is equal to its degree. We
show that an n-dimensional hypercube Qn has this strong
property. Then, we study the local diagnosability of an
incomplete hypercube. First, we show that Qn keeps this
strong property even if it has up to n� 2 faulty edges.
Second, assuming that each vertex of an incomplete
hypercube Qn is incident with at least two fault-free edges,
we show that Qn keeps this strong property even if it has
up to 3ðn� 2Þ � 1 faulty edges. Finally, we show that Qn

keeps this strong property no matter how many edges are
faulty, provided that each vertex of an incomplete
hypercube Qn is incident with at least three fault-free edges.

The rest of this paper is organized as follows: Section 2
provides preliminaries and previous results for diagnosing
a system. Section 3 introduces the concept of local
diagnosability and proposes a necessary and sufficient
condition for verifying if it is locally t-diagnosable at a given
processor in a system. In Section 4, we define a strong local
diagnosability property for a system and study the strong
property in a faulty hypercube. In Section 5, we study the
strong property in a conditional faulty hypercube. Finally,
our conclusions are given in Section 6.

2 PRELIMINARIES AND PREVIOUS RESULTS

A multiprocessor system can be represented by a graph
GðV ;EÞ, where the set of vertices V ðGÞ represents proces-
sors and the set of edges EðGÞ represents communication
links between processors. Throughout this paper, we focus
on an undirected graph without loops and follow [20] for
graph theoretical definitions and notations.

Let GðV ;EÞ be a graph and v 2 V ðGÞ be a vertex. We
use the notation EGðvÞ to denote the set of edges incident
with v. The cardinality jEGðvÞj is called the degree of v,
denoted by degGðvÞ or simply degðvÞ. G is d-regular if
degðvÞ ¼ d for every v 2 V ðGÞ. The neighborhood NGðvÞ of
a vertex v in G is the set of all vertices that are adjacent to v
in G. For a set of edges (respectively, vertices) S, we use the
notation G� S to denote the graph obtained from G by
removing all the edges (respectively, vertices) in S. The
components of a graph G are its maximal connected
subgraphs. A component is trivial if it has no edges;
otherwise, it is nontrivial. The connectivity �ðGÞ of a graph
GðV ;EÞ is the minimum number of vertices whose removal
results in a disconnected or a trivial graph. Letting G1 be a
subgraph of G, we shall write the vertex set of G1 as V ðG1Þ.
The neighborhood set of V ðG1Þ is defined as NðV ðG1ÞÞ ¼
fu 2 V ðGÞ � V ðG1Þj there exists a vertex v 2 V ðG1Þ such
that ðu; vÞ 2 EðGÞg. Let S1, S2 � V ðGÞ be two distinct sets.
The symmetric difference of the two sets S1 and S2 is
defined as the set S1�S2 ¼ ðS1 � S2Þ

S
ðS2 � S1Þ.

The PMC diagnosis model is presented by Preparata
et al. [16]. In this model, a self-diagnosable system is often
represented by a directed graph T ðV ;EÞ in which an edge
directed from vertex u to vertex v means that u can test v. In
this situation, u is called the tester and v is called the tested
vertex. The outcome of a test ðu; vÞ is 1 (respectively, 0) if u

evaluates v as faulty (respectively, fault-free). We assume
that the testing results of fault-free vertices are always
reliable and the testing results of faulty vertices are
unreliable. The collection of all testing results is called a
syndrome. Formally, a syndrome is a function � : E ! f0; 1g.
The set of all faulty processors in the system is called a
faulty set. This can be any subset of V ðT Þ. For a given
syndrome �, a subset of vertices F � V ðT Þ is compatible
with � if the syndrome � can be produced from the situation
that all vertices in F are faulty and all vertices in V � F are
fault-free. A syndrome � is said to be compatible with a
faulty set F � V ðT Þ if, for a ðu; vÞ 2 EðT Þ, such that
u 2 V � F , �ðu; vÞ ¼ 1 if and only if v 2 F . This corresponds
to the assumption that fault-free testers always give correct
testing results. Since faulty testers can give arbitrary testing
results, any syndrome compatible with a faulty set F can
occur when faulty processors in the system are exactly those
in F . A system G is called t-diagnosable if, given the test
outcomes obtained by the testing link, all the faulty vertices
can be uniquely identified without replacement, provided
that the number of faulty vertices does not exceed t. The
maximum number of faulty vertices that the system G can
guarantee to identify is called the diagnosability of G, written
as tðGÞ. Let �F be the set of all syndromes which could be
produced if F is the set of faulty vertices. Two distinct sets
F1, F2 � V ðGÞ are said to be distinguishable if �F1

T
�F2
¼ �;

otherwise, F1, F2 are said to be indistinguishable. We say
ðF1; F2Þ is a distinguishable pair if �F1

T
�F2
¼ �; otherwise,

ðF1; F2Þ is an indistinguishable pair. We need some previous
results concerning the t-diagnosable systems.

Lemma 1 [6]. A system GðV ;EÞ is t-diagnosable if and only if,
for any two distinct sets F1, F2 � V with jF1j � t and
jF2j � t, ðF1; F2Þ is a distinguishable pair.

Lemma 2 [6]. Let GðV ;EÞ be a graph. For any two distinct sets
F1, F2 � V , ðF1; F2Þ is a distinguishable pair if and only if
there exists a vertex u 2 V � ðF1

S
F2Þ and a vertex v 2

F1�F2 such that ðu; vÞ 2 E.

The following Lemma 3 is equivalent to Lemma 1:

Lemma 3 [6]. A system GðV ;EÞ is t-diagnosable if and only if,
for each indistinguishable pair F1, F2 � V , it implies that
jF1j > t or jF2j > t.

The following two lemmas related to t-diagnosable
systems are proposed by Hakimi and Amin [10] and
Preparata et al. [16], respectively:

Lemma 4 [16]. Let GðV ;EÞ be a graph and jV j ¼ N . The
following two conditions are necessary for G to be
t-diagnosable:

1. N � 2tþ 1, and
2. each processor in G is tested by at least t other

processors.

Lemma 5 [10]. Let GðV ;EÞ be a graph and jV j ¼ N . G is
t-diagnosable if

1. N � 2tþ 1, and
2. �ðGÞ � t.

For our discussion later, a useful result presented by Lai
et al. [15] is stated below:
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Theorem 1 [15]. Let GðV ;EÞ be a graph. G is t-diagnosable if
and only if, for each set of vertices S � V with jSj ¼ p,
0 � p � t� 1, each connected component of G� S has at least
2ðt� pÞ þ 1 vertices.

3 LOCAL DIAGNOSABILITY

We first review some related results on system diagnosability
of some well-known networks under the PMC model. In [13],
Kavianpour and Kim proved that the diagnosability of an
n-dimensional hypercube Qn is n. In [7] and [8], Fan proved
that an n-dimensional Crossed cube and an n-dimensional
Möbius cube have diagnosability n under the PMC model. In
[19], Wang proved that the diagnosability of a faulty
hypercube can be determined by checking the degree of
each vertex under the PMC model, provided that the
minimum degree of the faulty hypercube is at least three.

We observe that the traditional diagnosability discussed
in most literatures describes the global status of a system.
In this paper, we study the local status of each processor
instead of the global status of a system. For example, for
any two positive integers m and n with m >> n � 3, the
diagnosability of two hypercube systems Qm and Qn is m
and n, respectively. Combining Qm and Qn with a few
edges in some way may cause the diagnosability of the
new system to become n. In this situation, the strong
diagnosability of Qm is disregarded. For this reason, we are
motivated to study the local status of each processor. Given
a single vertex, we require only identifying the status of
this particular processor correctly. We now propose the
following concept:

Definition 1. Let GðV ;EÞ be a graph and v 2 V be a vertex. G is
locally t-diagnosable at vertex v if, given a syndrome �F
produced by a set of faulty vertices F � V containing vertex v
with jF j � t, every set of faulty vertices F 0 compatible with �F
and jF 0j � t must also contain vertex v.

Definition 2. Let GðV ;EÞ be a graph and v 2 V be a vertex. The
local diagnosability of vertex v, written as tlðvÞ, is defined to be
the maximum value of t such that G is locally t-diagnosable at
vertex v.

The following result is another point of view for
checking whether a vertex is locally t-diagnosable:

Lemma 6. Let GðV ;EÞ be a graph and v 2 V be a vertex. G is
locally t-diagnosable at vertex v if and only if, for any two
distinct sets of vertices F1, F2 � V , jF1j � t, jF2j � t,
v 2 F1�F2, and ðF1; F2Þ is a distinguishable pair.

In the following, we study some properties of a system
being locally t-diagnosable at a given vertex and its
relationship between a system being t-diagnosable:

Proposition 1. Let GðV ;EÞ be a graph and v 2 V ðGÞ be a
vertex. If G is locally t-diagnosable at vertex v, then
jV ðGÞj � 2tþ 1.

Proof. We show this by contradiction. Assume that
jV ðGÞj � 2t. We partition V ðGÞ into two disjoint subsets
F1, F2 with jF1j � t, jF2j � t. The vertex v is either in F1 or
in F2. Since V � ðF1

S
F2Þ ¼ ;, there is no edge between

V � ðF1

S
F2Þ and F1�F2. By Lemma 2, ðF1; F2Þ is an

indistinguishable pair, which contradicts the assumption
that G is locally t-diagnosable at vertex v. So, the result
follows. tu

Proposition 2. Let GðV ;EÞ be a graph and v 2 V be a vertex
with degðvÞ ¼ n. The local diagnosability of vertex v is at
most n.

Proof. Let F1 be the set of vertices adjacent to vertex v,
F1 ¼ NGðvÞ and jF1j ¼ n. Let F2 ¼ F1

S
fvg with

jF2j ¼ nþ 1. It is a simple matter to check that there is
no edge between V � ðF1

S
F2Þ and F1�F2. By Lemma 2,

ðF1; F2Þ is an indistinguishable pair. Thus, G is not locally
ðnþ 1Þ-diagnosable at vertex v, so tlðvÞ � n ¼ degðvÞ. We
have the stated result. tu

Proposition 3. Let GðV ;EÞ be a graph. G is t-diagnosable if
and only if G is locally t-diagnosable at every vertex.

Proof. To prove the necessity, we assume that G is
t-diagnosable. If the result is not true, there exists a
vertex v 2 V such that G is not locally t-diagnosable at
vertex v. By Lemma 6, there exists a distinct pair of sets
F1, F2 � V with jF1j � t, jF2j � t and v 2 F1�F2, ðF1; F2Þ
is an indistinguishable pair. By Lemma 1, G is not
t-diagnosable. This contradicts the assumption; hence, the
necessary condition follows.

To prove the sufficiency, suppose on the contrary that,
if G is not t-diagnosable, there exists a distinct pair of sets
F1, F2 � V with jF1j � t, jF2j � t; thus, ðF1; F2Þ is an
indistinguishable pair. Being distinct, using the set
F1�F2 6¼ ;, we can find a vertex v 2 F1�F2. By Lemma 6,
G is not locally t-diagnosable at vertex v, which is a
contradiction. This completes the proof. tu

By Definition 2 and Proposition 3, we know that the
diagnosability of a multiprocessor system is equal to the
minimum local diagnosability of all vertices of the system.
Thus, we have the following theorem:

Theorem 2. Let GðV ;EÞ be a multiprocessor system. The
diagnosability of G is t if and only if

minftlðvÞ j for every v 2 V g ¼ t:

From Theorem 2, we can identify the diagnosability of a
system by computing the local diagnosability of each
vertex. Because many well-known systems are vertex-
symmetric, the diagnosability of these system can be easily
identified by this effective method.

Before studying the local diagnosability of a vertex, we
need some definitions for further discussion. Let S be a set
of vertices and v be a vertex not in S. After deleting the
vertices in S from G, we use Cv to denote the connected
component that vertex v belongs to. Now, we propose a
necessary and sufficient condition for verifying if a system
is locally t-diagnosable at a given vertex v.

Theorem 3. Let GðV ;EÞ be a graph and v 2 V be a vertex. G is
locally t-diagnosable at vertex v if and only if, for each set of
vertices S � V with jSj ¼ p, 0 � p � t� 1, and v =2 S, the
connected component, which v belongs to in G� S, has at
least 2ðt� pÞ þ 1 vertices.

Proof. To prove the necessity, we assume that G is locally
t-diagnosable at vertex v. If the result does not hold, there
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exists a set of vertices S � V with jSj ¼ p, 0 � p � t� 1,
v =2 S such that the connected component Cv has strictly
less than 2ðt� pÞ þ 1 vertices, jV ðCvÞj � 2ðt� pÞ. We
then arbitrarily partition V ðCvÞ into two disjoint subsets,
V ðCvÞ ¼ S1

S
S2 with jS1j � t� p, jS2j � t� p. Let F1 ¼

S1

S
S and F2 ¼ S2

S
S. It is clear that

jF1j � ðt� pÞ þ p ¼ t;

jF2j � ðt� pÞ þ p ¼ t, the vertex v 2 F1�F2 and there is
no edge between V � ðF1

S
F2Þ and F1�F2. By Lemma 6,

ðF1; F2Þ is an indistinguishable pair. This contradicts the
assumption that G is locally t-diagnosable at vertex v.

We now prove the sufficiency by contradiction.
Suppose G is not locally t-diagnosable at vertex v, then,
there exists an indistinguishable pair ðF1; F2Þ with
jF1j � t, jF2j � t and v 2 F1�F2. By Lemma 2, there is no
edge between V � ðF1

S
F2Þ and F1�F2. Let S ¼ F1

T
F2

with jSj ¼ p, 0 � p � t� 1 and v =2 S. F1�F2 is discon-
nected from other parts after removing all the vertices in S
from G. We observe that jF1�F2j � 2ðt� pÞ. Thus, the
connected component Cv has at most 2ðt� pÞ vertices
and jV ðCvÞj � 2ðt� pÞ. This contradicts the assumption
that the connected component Cv has to satisfy
jV ðCvÞj � 2ðt� pÞ þ 1. Hence, the theorem holds. tu

We now propose two special subgraphs called Type I
structure and Type II structure. They provide us with an
efficient and simple method to identify the local diagnosa-
bility of each vertex of a system under the PMC diagnosis
model.

Definition 3. Letting GðV ;EÞ be a graph, v 2 V be a vertex, and
k be an integer, k � 1, a Type I structure T1ðv; kÞ of order k at
vertex v is defined to be the following graph:

T1ðv; kÞ ¼ V ðv; kÞ; Eðv; kÞ½ �;

which is composed of 2kþ 1 vertices and of 2k edges as
illustrated in Fig. 1, where

. V ðv; kÞ ¼ fvg [ fxi; yij1 � i � kg, and

. Eðv; kÞ ¼ fðv; xiÞ; ðxi; yiÞj1 � i � kg.
Following Theorem 3 and Definition 3, we propose a

sufficient condition for verifying if it is locally t-diagnosable
at a given processor in a system.

Theorem 4. Let GðV ;EÞ be a graph and v 2 V be a vertex. G is
locally t-diagnosable at vertex v if G contains a Type I
structure T1ðv; tÞ of order t at vertex v as a subgraph.

Proof. We use Theorem 3 to prove this result. Assume that
G contains a subgraph T1ðv; tÞ at vertex v. Let ei ¼ ðxi; yiÞ
be the edge for each i, 1 � i � t, with respect to T1ðv; tÞ.
The number of vertices of the connected component
including vertex v is at least 2tþ 1. Let S � V ðGÞ be a set

of vertices with jSj ¼ p, 0 � p � t� 1, and v =2 S. After
deleting S from V ðGÞ, there are at least ðt� pÞ complete
eis still remaining in T1ðv; tÞ. Therefore, the number of
vertices of the connected component Cv is at least
2ðt� pÞ þ 1. By Theorem 3, G is locally t-diagnosable at
vertex v. The proof is complete. tu
A Type II structure T2ðv; k; 2Þ at a vertex v is defined as

follows:

Definition 4. Letting GðV ;EÞ be a graph, v 2 V be a vertex, and

k be an integer, k � 1, a Type II structure T2ðv; k; 2Þ of order

kþ 2 at vertex v is defined to be the following graph:

T2ðv; k; 2Þ ¼ ½V ðv; k; 2Þ; Eðv; k; 2Þ�;

which is composed of 2kþ 5 vertices and of 2kþ 5 edges as

illustrated in Fig. 2, where

. V ðv; k; 2Þ ¼ fvg[ fxi; yij1 � i � kg[ fz1; z2; z3; z4g;
and

. Eðv; k; 2Þ ¼ fðv; xiÞ; ðxi; yiÞj1 � i � kg
[ fðv; z1Þ; ðv; z2Þ; ðz1; z3Þ; ðz2; z3Þ; ðz3; z4Þg:

In the following, we propose another sufficient condition

for verifying if it is locally t-diagnosable at a given processor

in a system:

Theorem 5. Let GðV ;EÞ be a graph and v 2 V be a vertex. G is

locally t-diagnosable at vertex v if G contains a Type II

structure T2ðv; k; 2Þ of order kþ 2 at vertex v as a subgraph,

where t ¼ kþ 2.

Proof. We use Theorem 3 to prove this result. Assume thatG
contains a subgraphT2ðv; k; 2Þof order t ¼ kþ 2 at vertexv.
The number of vertices of the connected component
including vertex v is at least 2kþ 5 ¼ 2tþ 1. Letting S �
V be a set of vertices with jSj ¼ p, 0 � p � t� 1, and v =2 S,
the number of vertices ofCv is at least ð2kþ 5Þ � 2 � 1 after
removing one vertex in S, the number of vertices of Cv is
at least ð2kþ 5Þ � 2 � 2 after removing two vertices in S,
and so on. Thus, the connected component Cv satisfies
jV ðCvÞj � ð2kþ 5Þ � 2p ¼ 2ðt� pÞ þ 1. By Theorem 3,G is
locally t-diagnosable at vertex v. This proves the theorem.tu
In the following, we give some examples:

Example 1. Let us consider a cycle of length four as shown
in Fig. 3a. We can find a Type I structure T1ðv; 1Þ of

order 1 at vertex v as shown in Fig. 3b; hence, vertex v is
locally 1-diagnosable.

Example 2. Consider examples as shown in Fig. 4a, 4b, and

4c. It is a routine work to check that there is a subgraph
T1ðv1; 2Þ, T1ðv2; 2Þ, and T2ðv3; 1; 2Þ at vertex v1, v2, and v3,
respectively. Hence, it is locally 2-diagnosable, 2-diag-

nosable, and 3-diagnosable at vertex v1, v2, and v3,
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Fig. 1. A Type I structure T1ðv; kÞ consists of 2kþ 1 vertices and

2k edges. Fig. 2. A Type II structure T2ðv; k; 2Þ consists of 2kþ 5 vertices and

2kþ 5 edges.



respectively.

By Theorem 4 and Theorem 5, we have the following
result:

Theorem 6. Let GðV ;EÞ be a graph and v 2 V be a vertex with
degðvÞ ¼ n. The local diagnosability of vertex v is n if G
contains a subgraph which is either a Type I structure
T1ðv;nÞ of order n or a Type II structure T2ðv;n� 2; 2Þ of
order n at vertex v.

4 STRONG LOCAL DIAGNOSABILITY PROPERTY

We use a hypercube as an example to introduce our con-

cept of the strong local diagnosability property. An

n-dimensional hypercube can be modeled as a graph Qn,

with the vertex set V ðQnÞ and the edge set EðQnÞ. There are

2n vertices in Qn, and each vertex has degree n. Each

vertex v of Qn can be distinctly labeled by a binary n-bit

string, v ¼ vn�1vn�2 . . . v1v0. There is an edge between two

vertices if and only if their binary labels differ in exactly one

bit position. Let u and v be two adjacent vertices. If the

binary labels of u and v differ in the ith position, then the

edge between them is said to be in the ith dimension and

the edge ðu; vÞ is called an ith dimensional edge. Letting i be

a fixed position, we use Q0
n�1 to denote the subgraph of Qn

induced by fv 2 V ðQnÞjvi ¼ 0g and Q1
n�1 to denote the

subgraph of Qn induced by fv 2 V ðQnÞjvi ¼ 1g. Conse-

quently, Qn is decomposed to Q0
n�1 and Q1

n�1 by

dimension i, and Q0
n�1 and Q1

n�1 are ðn� 1Þ-dimensional

subcubes of Qn induced by the vertices with the ith bit

position being 0 and 1, respectively. Q0
n�1 and Q1

n�1 are

isomorphic to Qn�1. For each vertex v 2 V ðQ0
n�1Þ, there is

exactly one vertex in Q1
n�1, denoted by vð1Þ, such that

ðv; vð1ÞÞ 2 EðQnÞ. Conversely, for each vertex v 2 V ðQ1
n�1Þ,

there is exactly one vertex in Q0
n�1, denoted by vð0Þ, such that

ðv; vð0ÞÞ 2 EðQnÞ. Let Di be the set of all edges with one end

in Q0
n�1 and the other in Q1

n�1. These edges are called

crossing edges in the ith dimension between Q0
n�1 and Q1

n�1.

We also call Di the set of all ith dimensional edges.

In the previous section, we presented two sufficient

conditions for identifying the local diagnosability of a

vertex. It seems that identifying the local diagnosability of a

vertex is the same as counting its degree. We give an

example to show that this is not true in general. As shown

in Fig. 5, we take a vertex v in 2-dimensional hypercube Q2;

let F1 ¼ fv; 1g and F2 ¼ f2; 3g with jF1j ¼ 2 and jF2j ¼ 2. It

is a simple matter to check that ðF1; F2Þ is an indistinguish-

able pair. Hence, tlðvÞ 6¼ degðvÞ ¼ 2. We then propose the

following two concepts:

Definition 5. Let GðV ;EÞ be a graph and v 2 V be a vertex.
Vertex v has the strong local diagnosability property if the
local diagnosability of vertex v is equal to its degree.

Definition 6. Let GðV ;EÞ be a graph. G has the strong local
diagnosability property if every vertex in the graph G has the
strong local diagnosability property.

By Definition 5 and Definition 6, we have the following
theorem:

Theorem 7. Let Qn be an n-dimensional hypercube, n � 3. Qn

has the strong local diagnosability property.

Proof. We use Theorem 6 to prove this result, and we shall

construct a Type I structure of order n at each vertex for

n � 3. We prove this by induction on n. Since an

n-dimensional hypercube Qn is vertex-symmetric, we can

concentrate on the construction of Type I structure at a

given vertex v. For n ¼ 3, degðvÞ ¼ 3 and it is clear that Q3

contains a Type I structureT1ðv; 3Þof order 3 at vertex v (see

Fig. 6a and 6b). As the inductive hypothesis, we assume

that Qn�1 contains a Type I structure T1ðv;n� 1Þ of order

n� 1 at each vertex for some n � 4. Now, we consider that

Qn, Qn can be decomposed into two subcubes Q0
n�1 and

Q1
n�1 by some dimension. Without loss of generality, we

may assume that the vertex v 2 Q0
n�1. By the inductive

hypothesis,Q0
n�1 contains a Type I structure T1ðv;n� 1Þ of

order n� 1 at vertex v. Consider the vertex vð1Þ in Q1
n�1.

Vertex vð1Þ has an adjacent neighbor that is in Q1
n�1 due to

degðvð1ÞÞ ¼ n, where n � 3. Thus, Qn contains a Type I

structure T1ðv;nÞ of order n at vertex v. By Theorem 6,
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Fig. 3. A cycle of length four and a Type I structure T1ðv; 1Þ of order 1 at v.

Fig. 4. Some examples of local diagnosability.

Fig. 5. An indistinguishable pair ðF1; F2Þ in Q2.

Fig. 6. A Q3 and a Type I structure T1ðv; 3Þ of order 3 at vertex v.



Definition 5, and Definition 6, Qn has the strong local

diagnosability property. tu
We now consider a system which is not vertex-sym-

metric. Let GðV ;EÞ be a graph and S � EðGÞ be a set of

edges. Removing the edges in S from G, the degree of each

vertex in the resulting graph G� S is called the remaining

degree of v and is denoted by degG�SðvÞ. We consider a

faulty hypercube Qn with a faulty set S � EðQnÞ, n � 3. We

shall prove that Qn has the strong local diagnosability

property even if it has up to ðn� 2Þ faulty edges. The

number n� 2 is optimal in the sense that a faulty hypercube

Qn cannot be guaranteed to have this strong property if

there are n� 1 faulty edges. As shown in Fig. 7a and 7b, we

take a vertex v 2 V ðQnÞ and a vertex x which is an adjacent

neighbor of v. Letting S ¼ fðy; xÞ 2 EðQnÞ j vertex y is

directly adjacent to xg � fðv; xÞg, then jSj ¼ n� 1 and the

remaining degree of v in Qn � S is n. Let F1 ¼ ðNQn�SðvÞ �
fxgÞ

S
fvg and F2 ¼ NQn�SðvÞ, then jF1j ¼ jF2j ¼ n and

v 2 F1�F2. It is clear that there is no edge between V �
ðF1

S
F2Þ and F1�F2. By Lemma 2, ðF1; F2Þ is an indis-

tinguishable pair; hence, tlðvÞ 6¼ degQn�SðvÞ ¼ n. Therefore,

Qn � S may not have this strong property if jSj � n� 1.

Theorem 8. Let Qn be an n-dimensional hypercube with n � 3

and S � EðQnÞ be a set of edges, 0 � jSj � n� 2. Removing

all the edges in S from Qn, the local diagnosability of each

vertex is still equal to its remaining degree.

Proof. We use Theorem 6 to prove this result, and we shall

construct a Type I structure at each vertex. We prove this

by induction on n. For n ¼ 3, 0 � jSj � 1, if jSj ¼ 0, it is

clear that Q3 contains a Type I structure T1ðv; 3Þ of

order 3 at every vertex. If jSj ¼ 1, a 3-dimensional

hypercube Q3 with one missing edge is shown in Fig. 8.

It is a routine work to see that every vertex has a Type I

structure T1ðv; kÞ of order k at it, where k is the

remaining degree of the vertex. As the inductive

hypothesis, we assume that the result is true for Qn�1,

0 � jSj � ðn� 1Þ � 2, for some n � 4. Now, we consider

Qn, 0 � jSj � n� 2. If jSj ¼ 0, referring to the proof of

Theorem 7, Qn contains a Type I structure T1ðv;nÞ of

order n at every vertex. If 1 � jSj � n� 2, we choose an

edge in S, the edge is in some dimension, decomposing

Qn into two subcubes Q0
n�1 and Q1

n�1 by this dimension,

such that the edge is a crossing edge. Consider a vertex

v 2 V ðQnÞ. Let S0 ¼ S
T
EðQ0

n�1Þ, 0 � jS0j � ðn� 3Þ, and

S1 ¼ S
T
EðQ1

n�1Þ, 0 � jS1j � ðn� 3Þ. Without loss of

generality, we may assume that the vertex v is in Q0
n�1

and degQ0
n�1
�S0
ðvÞ ¼ k. By the inductive hypothesis,

Q0
n�1 � S0 contains a Type I structure T1ðv; kÞ at v.

Consider the crossing edge ðv; vð1ÞÞ. If ðv; vð1ÞÞ 2 S, Qn �
S contains a Type I structure T1ðv; kÞ of order k at

vertex v. If ðv; vð1ÞÞ =2 S, the remaining degree of v in Qn �
S is kþ 1 and the vertex vð1Þ has at least an adjacent

neighbor in Q1
n�1 due to 0 � jS1j � ðn� 1Þ � 2. There-

fore, Qn � S contains a Type I structure T1ðv; kþ 1Þ of

order kþ 1 at vertex v. By Theorem 6, removing all the

edges in S from Qn, the local diagnosability of each

vertex is still equal to its remaining degree. tu
We have the following corollary:

Corollary 1. Let Qn be an n-dimensional hypercube with n � 3,
and S � EðQnÞ be a set of edges, 0 � jSj � n� 2. Then,
Qn � S has the strong local diagnosability property.

We give an example to show that an n-regular graph

GðV ;EÞ has the strong local diagnosability property, but

it may not keep this strong property after removing

n� 2 edges from G. For example, a 3-regular graph is

shown in Fig. 9a. The degree of each vertex is 3 and there

exists a Type I structure T1ðv; 3Þ of order 3 at each vertex. By

Theorem 6, Definition 5, and Definition 6, this graph has the

strong local diagnosability property. Letting S ¼ fð2; 3Þg be

a set of one single edge, G� S is shown in Fig. 9b. The

vertex u does not have the strong local diagnosability

property. The reason is as follows: Let F1 ¼ fu; 1; 4g and

F2 ¼ f1; 2; 4g with jF1j � 3, jF2j � 3. Since there is no edge

between V ðGÞ � ðF1

S
F2Þ and F1�F2, by Lemma 2, ðF1; F2Þ

is an indistinguishable pair. Therefore, the local diagnosa-

bility of vertex u is at most 2 which is smaller than its degree.

5 CONDITIONAL FAULT LOCAL DIAGNOSABILITY

In the previous section, we know that Qn does not have the
strong local diagnosability property if there are n� 1 faulty
edges, all these faulty edges are incident with a single
vertex and this vertex is incident with only one fault-free
edge. Therefore, we are led to the following question: How
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Fig. 7. An indistinguishable pair ðF1; F2Þ, where jF1j ¼ jF2j ¼ n.

Fig. 8. Q3 with one missing edge. The number labeled on each vertex

represents its local diagnosability.

Fig. 9. A 3-regular graph without the strong local diagnosability property

after removing one edge.



many edges can be removed from Qn such that Qn keeps
the strong local diagnosability property under the condition
that each vertex of the faulty hypercube Qn is incident with
at least two fault-free edges? First, we give an example to
show that a faulty hypercube Qn with 3ðn� 2Þ faulty edges
may not have the strong local diagnosability property, even
if each vertex of the faulty hypercube Qn is incident with at
least two fault-free edges. As shown in Fig. 10a, we take a
cycle of length four in Qn, n � 3. Let fv; a; b; cg be the four
consecutive vertices on this cycle, and S � EðQnÞ be a set of
edges, S ¼ S1

S
S2

S
S3, where S1 is the set of all edges

incident with a except ðv; aÞ and ðb; aÞ, S2 is the set of all
edges incident with b except ða; bÞ and ðc; bÞ, and S3 is the
set of all edges incident with c except ðv; cÞ and ðb; cÞ, then
jS1j ¼ jS2j ¼ jS3j ¼ n� 2. The remaining degree of vertex v
in Qn � S is n, degQn�SðvÞ ¼ n. As shown in Fig. 10b, let
F1 ¼ ðNQn�SðvÞ� fcgÞ

S
fvg and F2 ¼ ðNQn�SðvÞ� fagÞ

S
fbg,

then jF1j ¼ jF2j ¼ n and v 2 F1�F2. It is clear that there is
no edge between V ðQnÞ � ðF1

S
F2Þ and F1�F2. By Lem-

ma 2, ðF1; F2Þ is an indistinguishable pair, hence,
tlðvÞ 6¼ degQn�SðvÞ ¼ n. So, some vertex of Qn � S may not
have this strong property if jSj � 3ðn� 2Þ. Then, we shall
show that Qn � S has the strong local diagnosability
property if each vertex of Qn � S is incident with at least
two fault-free edges and jSj � 3ðn� 2Þ � 1. We need the
following results to construct a Type I structure or a Type II
structure at a vertex of a faulty hypercube.

Theorem 9 [20]. Let GðV ;EÞ be a bipartite graph with
bipartition ðX;Y Þ. Then, G has a matching that saturates
every vertex in X if and only if

jNðSÞj � jSj; for all � X:

Theorem 10 [20]. Let GðV ;EÞ be a bipartite graph. The
maximum size of a matching in G equals the minimum size of
a vertex cover of G.

Lemma 7. An n-dimensional hypercube Qn has no cycle of
length 3 and any two vertices have at most two common
neighbors.

For our discussion later, we need some definitions. Let
Qn be an n-dimensional hypercube and S � EðQnÞ be a set
of edges. Removing the edges in S from Qn, for a vertex
v in the resulting graph Qn � S, we define BGðvÞ ¼
ðL1ðvÞ

S
L2ðvÞ; EÞ to be the bipartite graph under v with

bipartition ðL1ðvÞ; L2ðvÞÞ, where L1ðvÞ ¼ fx 2 V ðQnÞ j ver-
tex x is adjacent to vertex v in Qn � Sg, L2ðvÞ ¼ fy 2
V ðQnÞ j there exists a vertex x 2 L1ðvÞ such that ðx; yÞ 2
EðQnÞ in Qn � Sg � fvg, and EðBGðvÞÞ ¼ fðx; yÞ 2 EðQnÞ j

vertex x 2 L1ðvÞ and vertex y 2 L2ðvÞg. L1ðvÞ (L2ðvÞ,
respectively) is called the level one (level two, respec-
tively) vertex under v (see Fig. 11).

Theorem 11. Let Qn be an n-dimensional hypercube with n � 3
and S � EðQnÞ be a set of edges, 0 � jSj � 3ðn� 2Þ � 1.
Assume that each vertex of Qn � S is incident with at least
two fault-free edges. Removing all the edges in S from Qn, the
local diagnosability of each vertex is still equal to its remaining
degree.

Proof. According to Theorem 6, we can concentrate on the
construction of Type I structure or Type II structure at
each vertex. Consider a vertex v in Qn � S with
degQn�SðvÞ ¼ k. As shown in Fig. 11, let BGðvÞ ¼
ðL1ðvÞ

S
L2ðvÞ; EÞ be the bipartite graph under v. Then,

jL1ðvÞj ¼ k. Let M � EðBGðvÞÞ be a maximum matching
from L1ðvÞ to L2ðvÞ. In the following proof, we consider
three cases by the size of M: 1) jMj ¼ k, 2) jMj ¼ k� 1,
and 3) jMj � k� 2.

Case 1: jMj ¼ k. Since jMj ¼ k and jL1ðvÞj ¼ k, there
exists a Type I structure T1ðv; kÞ of order k at vertex v.
By Theorem 6, the local diagnosability of vertex v is
equal to k.

Case 2: jMj ¼ k� 1. We shall show that there is a
Type II structure of order k at vertex v. As shown in
Fig. 12, let L1ðvÞ ¼ fx1; x2; . . . ; xkg and let ML2ðvÞ �
L2ðvÞ be the set of vertices matched under M,
ML2ðvÞ ¼ fy 2 L2ðvÞ j there exists a vertex x 2 L1ðvÞ
such that ðx; yÞ 2 Mg. So, jML2ðvÞ j ¼ k � 1. Let
ML2ðvÞ ¼ fy1; y2; . . . ; yk�1g and assume vertex xi is
matched with vertex yi for each i, 1 � i � k� 1. Then,
there exists a vertex xk 2 L1ðvÞ and xk is unmatched by
M. Since each vertex of Qn � S is incident with at least
two fault-free edges, there exists a vertex yi 2ML2ðvÞ,
i 2 f1; 2; . . . ; k� 1g, such that ðxk; yiÞ 2 EðBGðvÞÞ. With-
out loss of generality, let ðxk; y1Þ 2 EðBGðvÞÞ. If the
remaining degree of y1 is at least three, as shown in
Fig. 13, there exists a Type II structure T2ðv; k� 2; 2Þ
of order k at vertex v. By Theorem 6, the local
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Fig. 10. An indistinguishable pair ðF1; F2Þ, where jF1j ¼ jF2j ¼ n.

Fig. 11. The bipartite graph BGðvÞ.

Fig. 12. An illustration for Case 2 of Theorem 11 and Theorem 12.



diagnosability of vertex v is equal to k and the result
follows. If the remaining degree of y1 is two, the
number of faulty edges incident with y1 is n� 2. Next,
we divide the case into two subcases: Subcase 2.1,
where both xk and x1 have remaining degree two, and
Subcase 2.2, where one of xk and x1 has remaining
degree at least three and the other has at least two.

Subcase 2.1: Both xk and x1 have remaining degree
two. This is an impossible case. Since the number of
faulty edges incident with xk and x1 is 2ðn� 2Þ, the total
number of faulty edges is at least 3ðn� 2Þ which is
greater than 3ðn� 2Þ � 1, a contradiction.

Subcase 2.2: One of xk and x1 has remaining degree at
least three and the other has at least two. Without loss
of generality, assume xk has remaining degree at least
three and x1 has remaining degree at least two. Since
degQn�SðxkÞ � 3, there exist at least two vertices inML2ðvÞ
that are the neighbors of vertex xk. Then, we can find a
vertex yi 2ML2ðvÞ and yi 6¼ y1, i 2 f2; 3; . . . ; k� 1g, such
that ðxk; yiÞ 2 EðBGðvÞÞ. Without loss of generality, let
ðxk; y2Þ 2 EðBGðvÞÞ. If the remaining degree of y2 is at
least three, there exists a Type II structure T2ðv; k� 2; 2Þ
of order k at vertex v. By Theorem 6, the local
diagnosability of vertex v is equal to k and the result
follows. If the remaining degree of y2 is two, the number
of faulty edges incident with y2 is n� 2. We then
consider two further cases:

Subcase 2.2.1: Vertex x1 has remaining degree two.
This is an impossible case. Since the number of faulty
edges incident with x1 is n� 2, the total number of
faulty edges is at least 3ðn� 2Þ which is greater than
3ðn� 2Þ � 1, a contradiction.

Subcase 2.2.2: Vertex x1 has remaining degree at
least three. Since degQn�Sðx1Þ � 3, there exist at least two
vertices in ML2ðvÞ that are the neighbors of vertex x1. By
Lemma 7, any two vertices of Qn have at most two
common neighbors. We can find a vertex yi 2ML2ðvÞ,
yi 6¼ y1 and yi 6¼ y2, i 2 f3; 4; . . . ; k� 1g, such that
ðx1; yiÞ 2 EðBGðvÞÞ. Without loss of generality, let
ðx1; y3Þ 2 EðBGðvÞÞ. If the remaining degree of y3 is at
least three, there exists a Type II structure T2ðv; k� 2; 2Þ
of order k at vertex v. By Theorem 6, the local
diagnosability of vertex v is equal to k and the result
follows. If the remaining degree of y3 is two, then the
number of faulty edges incident with y3 is n� 2, and the
total number of faulty edges is at least 3ðn� 2Þ which is
greater than 3ðn� 2Þ � 1, a contradiction.

Case 3: jMj � k� 2. We shall see that this is an

impossible case. By Theorem 10, the minimum size of a

vertex cover of the bipartite graph BGðvÞ is no greater

than k� 2. We take a vertex cover with the minimum

size and let V CL1ðvÞ � L1ðvÞ, V CL2ðvÞ � L2ðvÞ, and

V CL1ðvÞ
S
V CL2ðvÞ be the vertex cover as shown in

Fig. 14. V CL1ðvÞ and V CL2ðvÞ can cover all the edges of

BGðvÞ. Let NVCL1ðvÞ ¼ L1ðvÞ � V CL1ðvÞ. We claim

that the total number of faulty edges is at least

ðn� 1ÞjNVCL1ðvÞj � 2jV CL2ðvÞj, and this number is
greater than 3ðn� 2Þ, which is a contradiction. With

this claim, the case is impossible.

Now, we prove the claim. First, for each vertex

x 2 NVCL1ðvÞ, the edges connecting x except ðx; vÞ
must be incident with the vertices in V CL2ðvÞ. For each

vertex y 2 V CL2ðvÞ, by Lemma 7, at most two edges

connecting y are incident with the vertices in

NVCL1ðvÞ. Then, the total number of faulty edges
is at least ðn � 1Þ jNVCL1ðvÞ j � 2 jV CL2ðvÞ j. Since

V CL1ðvÞ
S
V CL2ðvÞ is a minimum vertex cover,

jV CL1ðvÞ j þ jV CL2ðvÞ j � k� 2. Since jL1ðvÞj ¼ k and

each vertex of Qn � S is incident with at least two

fault-free edges, there exists a vertex in L1ðvÞ �
V CL1ðvÞ such that the vertex has at least one neighbor

in V CL2ðvÞ. Thus, jV CL2ðvÞj � 1. Now, we show that

the number ðn� 1ÞjNVCL1ðvÞj � 2jV CL2ðvÞj is greater
than 3ðn� 2Þ. With jV CL1ðvÞj þ jV CL2ðvÞj � k� 2 and

jV CL2ðvÞj � 1, we have the following:

½ðn� 1ÞjNVCL1ðvÞj � 2jV CL2ðvÞj� � ½3ðn� 2Þ�
¼ ½ðn� 1Þðk� jV CL1ðvÞjÞ � 2jV CL2ðvÞj� � ½3ðn� 2Þ�
� ½ðn� 1ÞðjV CL2ðvÞj þ 2Þ � 2jV CL2ðvÞj� � ½3ðn� 2Þ�
¼ ðjV CL2ðvÞj � 1Þðn� 3Þ þ 1

> 0; for all n � 3:

Thus, our claim holds.
In summary, aside from those impossible cases, we

showed that Qn � S contains either a Type I structure
T1ðv; kÞ or a Type II structure T2ðv; k� 2; 2Þ of order k at
vertex v. By Theorem 6, removing all the edges in S from
Qn, the local diagnosability of each vertex is still equal to
its remaining degree. tu
By Theorem 11, we have the following corollary:

Corollary 2. Let Qn be an n-dimensional hypercube with n � 3

and S � EðQnÞ be a set of edges, 0 � jSj � 3ðn� 2Þ � 1.

Qn � S has the strong local diagnosability property, provided

that each vertex of Qn � S is incident with at least two fault-

free edges.
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Fig. 13. A Type II structure T2ðv; k� 2; 2Þ of order k at vertex v.
Fig. 14. An illustration for Case 3 of Theorem 11 and Theorem 12.



Finally, we consider another condition: Each vertex of a

faulty hypercube Qn is incident with at least three fault-free

edges. Based on this condition, we prove that Qn keeps the

strong local diagnosability property no matter how many

edges are faulty.

Theorem 12. Let Qn be an n-dimensional hypercube with n � 3

and S � EðQnÞ be a set of edges. Assume that each vertex of

Qn � S is incident with at least three fault-free edges.

Removing all the edges in S from Qn, the local diagnosability

of each vertex is still equal to its remaining degree.

Proof. According to Theorem 6, we can concentrate on the

construction of Type I structure or Type II structure

at each vertex. Consider a vertex v in Qn � S with

degQn�SðvÞ ¼ k. Let BGðvÞ ¼ ðL1ðvÞ
S
L2ðvÞ; EÞ be the

bipartite graph under v. Then, jL1ðvÞj ¼ k. Let M �
EðBGðvÞÞ be a maximum matching from L1ðvÞ to L2ðvÞ.
In the following proof, we consider three cases by the

size of M: 1) jMj ¼ k, 2) jMj ¼ k� 1, and 3) jMj � k� 2.
Case 1: jMj ¼ k. Since jMj ¼ k and jL1ðvÞj ¼ k, there

exists a Type I structure T1ðv; kÞ of order k at vertex v.
By Theorem 6, the local diagnosability of vertex v is
equal to k.

Case 2: jMj ¼ k� 1. We will show that there is a Type II
structure of order k at vertex v. As shown in Fig. 12, let
L1ðvÞ ¼ fx1; x2; . . . ; xkg and let ML2ðvÞ � L2ðvÞ be the set
of vertices matched under M, ML2ðvÞ ¼ fy 2 L2ðvÞ j
there exists a vertex x 2 L1ðvÞ such that ðx; yÞ 2Mg. So,
jML2ðvÞj ¼ k� 1. Let ML2ðvÞ ¼ fy1; y2; . . . ; yk�1g and
assume vertex xi is matched with vertex yi for each i,
1 � i � k� 1. Then, there exists a vertex xk 2 L1ðvÞ and
xk is unmatched by M. Since each vertex of Qn � S is
incident with at least three fault-free edges, there exists
a vertex yi 2ML2ðvÞ, i 2 f1; 2; . . . ; k� 1g, such that
ðxk; yiÞ 2 EðBGðvÞÞ. Without loss of generality, let
ðxk; y1Þ 2 EðBGðvÞÞ. Since the remaining degree of y1

is at least three, as shown in Fig. 13, there exists a
Type II structure T2ðv; k� 2; 2Þ of order k at vertex v. By
Theorem 6, the local diagnosability of vertex v is equal
to k and the result follows.

Case 3: jMj � k� 2. We will see that this is an
impossible case. By Theorem 10, the minimum size of a
vertex cover of the bipartite graph BGðvÞ is no greater
than k� 2. However, we claim that any k� 2 vertices of
BGðvÞ can not cover all the edges of BGðvÞ. With this
claim, the case is impossible.

Now, we prove this claim. Suppose we take a vertex
cover with the minimum size and let V CL1ðvÞ � L1ðvÞ,
V CL2ðvÞ � L2ðvÞ, and V CL1ðvÞ

S
V CL2ðvÞ be the vertex

cover as shown in Fig. 14. V CL1ðvÞ and V CL2ðvÞ can
cover all the edges of BGðvÞ. Since

jV CL1ðvÞj þ jV CL2ðvÞj � k� 2;

we rewrite this inequality into the following equivalent

form:

2ðk� jV CL1ðvÞjÞ � 2ðjV CL2ðvÞj þ 2Þ:

Let NVCL1ðvÞ ¼ L1ðvÞ � V CL1ðvÞ. Since each vertex of

Qn � S is incident with at least three fault-free edges, for

each vertex x 2 NVCL1ðvÞ, aside from the edge ðx; vÞ, at

least two edges connecting x must be incident with the
vertices in V CL2ðvÞ. So, the total number of edges
incident with the vertices in V CL2ðvÞ is at least
2jNVCL1ðvÞj. For each vertex y 2 V CL2ðvÞ, by Lemma 7,
at most two edges connecting y are incident with the
vertices in NVCL1ðvÞ. So, the total number of edges
incident with the vertices in NVCL1ðvÞ is at most
2jV CL2ðvÞj. Compare the lower bound 2jNVCL1ðvÞj
and the upper bound 2jV CL2ðvÞj. We have the following
inequality:

2jNVCL1ðvÞj ¼ 2ðk� jV CL1ðvÞjÞ
� 2ðjV CL2ðvÞj þ 2Þ > 2jV CL2ðvÞj:

The lower bound 2jNVCL1ðvÞj is greater than the
upper bound 2jV CL2ðvÞj. It means that some edges are
not covered by V CL1ðvÞ or V CL2ðvÞ in BGðvÞ. Thus, our
claim follows.

In Case 1, Qn � S contains a Type I structure T1ðv; kÞ
of order k at vertex v. In Case 2, Qn � S contains a Type
II structure T2ðv; k� 2; 2Þ of order k at vertex v. We also
proved that Case 3 is impossible. By Theorem 6,
removing all the edges in S from Qn, the local
diagnosability of each vertex is still equal to its
remaining degree. tu

By Theorem 12, the following corollary holds:

Corollary 3. Let Qn be an n-dimensional hypercube with n � 3
and S � EðQnÞ be a set of edges. Qn keeps the strong local
diagnosability property no matter how many edges are faulty,
provided that each vertex of Qn � S is incident with at least
three fault-free edges.

6 CONCLUSION

In this paper, we propose a new concept called local
diagnosability for a system and derive some structures for
determining whether a system is locally t-diagnosable at a
given vertex. Through this concept, the diagnosability of a
system can be determined by computing the local diagno-
sability of each vertex. We also introduce a concept for
system diagnosis, called the strong local diagnosability
property. A system has this strong property if the local
diagnosability of every vertex is equal to its degree. We
prove that the hypercube has this strong property. Then, we
consider an n-dimensional faulty hypercube Qn with a set of
faulty edges S � EðQnÞ, 0 � jSj � n� 2, n � 3. We prove
that a faulty hypercube Qn � S keeps this strong property.
According to Theorem 2, the global diagnosability of Qn � S
is equal to the minimum local diagnosability of all vertices.
A conditional local diagnosability measure for systems is
also introduced in this paper. Assume that each vertex of a
faulty hypercube Qn is incident with at least two fault-free
edges, we prove that Qn has this strong property even if it
has up to 3ðn� 2Þ � 1 faulty edges. Finally, we prove that
Qn keeps this strong property no matter how many edges
are faulty, provided that each vertex of a faulty hypercube
Qn is incident with at least three fault-free edges.

We use the hypercube as an example to introduce the
concepts of the local diagnosability, the local structures, and
the strong local diagnosability property. In fact, many well-
known systems also have these local structures and this
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strong property. Furthermore, there is a close relationship
between its local structure and its local syndrome. We are
currently studying on these issues. There are several
different fault diagnosis models in the area of diagnosa-
bility. It is worth investigating, under various models,
whether a system has this strong local diagnosability
property after removing some edges. It is also an attractive
work to develop more different measures of diagnosability
based on network reliability, network topology, application
environment, and statistics related to fault patterns.
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