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The Ce**/Eu?* codoped Ba,ZnS phosphor shows intense blue absorption and tunable green-to-red
emission. The energy transfer from Ce** to Eu®* in this phosphor has been demonstrated to be a
resonant type via an electric dipole-dipole mechanism. The Ba,ZnS:Ce**, Eu** phosphor would be
the great potential application as a blue radiation-converting phosphor for white light-emitting
diodes. © 2007 American Institute of Physics. [DOI: 10.1063/1.2731685]

White light-emitting diodes (LEDs) could be produced
by blue chip-pumped yellow Y;AlsO,,:Ce** (YAG:Ce),
whereas color rendering index (CRI) of white light made by
the complementary blue and yellow emission is deficient due
to the lack of red light contribution. Hence, several red phos-
phors were developed to add into the above-mentioned sys-
tem in order to improve CRI1.>® Unfortunately, the extreme
difference in degradation between different host phosphors
will produce color aberration. Accordingly, it is important to
investigate a single-host phosphor with green-to-red emis-
sion bands for blue LEDs. A phosphor could emit a couple of
radiation by codoping activators with f-d or d-d electron
configurations,” such as Eu?*/Mn?**'" Ce3*/Mn?*,'*" and
Ce**/Eu?*;*"'% the energy transfer (ET) would occur be-
tween activator/coactivator couples by effective resonant
type via a multipolar interaction and the ET to Mn?* can be
of exchange interaction.*'® Nevertheless, in the past few
years, coactivated single-host phosphors with blue absorp-
tion or for blue LEDs were rarely investigated. In this work,
we have explored and discovered a single-host phosphor,
Ce**/Eu** codoped Ba,ZnS;, which shows ultraviolet-to-
blue absorption and green-to-red emission, exhibiting great
potential application in white LEDs while a blue chip is
coupled.

Ba,ZnS; was prepared and reported in 1959 by Hoppe;17
until 1961, its crystal structure was determined by Schnerung
et al.;'® the luminescence of Ba,ZnS;:Ce** was reported by
Lin er al." Nonetheless, the luminescence properties of
Ce**/Eu”* codoped Ba,ZnS; were not reported in literatures.
Therefore, we report herein the investigation of the lumines-
cence properties and ET phenomenon between activators and
demonstrate that white light emission can be achieved in
Ba,ZnS;:Ce** Eu** (BZS:Ce,Eu).

Ba,ZnS; has two crystallographically independent cation
sites in a unit cell: a seven-coordinated Ba®* site and a four-
coordinated Zn?* site.'® We could propose that Ce** and Eu?*
are both expected to occupy the Ba®* sites preferably be-
cause the ionic radii of Ce?* (1.07 A) and Eu?* (1.20 A) are
close to that of Ba?* (1.38 A).”” However, the Zn?* sites
(0.60 A) are too small for Ce** and Eu?* to occupy.””

The absorption spectrum of Ba,ZnS; host reveals a di-
rect band gap of about 3.3 eV, as shown in Fig. 1; the pho-
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toluminescence (PL) spectrum of that shows an emission
band centered at 623 nm. As presented in Fig. 2, the photo-
luminescence excitation (PLE) spectrum of Ba,ZnS;:Ce**
shows two excitation bands centered at 364 and 420 nm,
assigned to host-lattice absorption and 4f' — 5d' transition of
Ce’", respectively. In addition, as expected the PLE intensity
ratio (Iigs ym/Lung nm) Of that is found to decrease as the Ce**
concentration increases, indicating that Ce** ions undoubt-
edly substitute for Ba?* sites. The PL spectrum of
Ba,ZnS;:Ce** shows an asymmetric band emission de-
convoluted into two peaks centered at 489 and 540 nm, at-
tributed to the transitions from 5d' to *Fs,, and *F,,,, respec-
tively. The spin-orbit splitting of ground state (*F,) for Ce**
was estimated at about 1900 cm™!, approximating to that re-
ported in Ref. 7. As depicted in Fig. 3, the PLE spectrum of
Ba,ZnS;:Eu’* shows a host-lattice absorption centered at
357 nm and an unresolved band from 375 to 570 nm as-
signed to the 4f°54" multiplets of Eu?* excited states; the PL
spectrum of that displays a broad band deconvoluted into
two peaks centered at 623 and 671 nm, attributed to host-
lattice emission and 47°5d' —4f7(®S,,,) transition of Eu®*,
respectively. Moreover, the host-lattice emission still retains
under 420 nm excitation because the conduction band edge
of host lattice is close to the lowest energy level of Eu**
excited state; at higher Eu?* concentrations, the emission
band does not show obvious change because the emission
intensity of host lattice and Eu®* decreases simultaneously
under the influence of substitution of Eu?* for Ba** and con-
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FIG. 1. Absorption spectrum of Ba,ZnS; host; the inset for PLE and PL

spectra of Ba,ZnS; host (PLE monitored at 623 nm and PL excited at
352 nm).
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FIG. 2. PLE and PL spectra of Ba,ZnS;:0.1%Ce** (PLE monitored at
498 nm and PL excited at 420 nm); the inset for dependence of intensity
ratio T34 nm/Lsng am in BayZnS5:m % Ce** on m.

centration quenching, respectively. In fact, the red emission
of Eu?* is the effect of the larger crystal-field splitting and
the lower energy of the center of gravity of 5d level. The
Stokes shift of Eu?* was roughly calculated to be about
7800 cm™!, and the large shift might be the result of the
lower lattice stiffness.’ Besides, a significant spectral overlap
was observed between the emission band of Ce** and the
excitation band of Eu?* exhibited in Fig. 4(a), with the result
that the effective resonance-type ET from Ce** to Eu?* is
expected. Consequently, Ce** and Eu®* are regarded as en-
ergy donor and energy acceptor, respectively.

The ET evidence from Ce** to Eu?* excited at 420 nm is
shown in Fig. 4(b); the red-emission intensity of Ce**/Eu**
codoped Ba,ZnS; is higher than that of Eu** doped one.
Furthermore, with increasing Eu?* concentration, the PL in-
tensity of Ce** as well as the total intensity of BZS:Ce,Eu are
found to decrease gradually as displayed in Fig. 5. The ET
efficiency (7;) from Ce®* to Eu®* can be expressed by

Is

nr=1- (1)

Iso’
where I, and I, are the luminescence intensity of Ce>* in the
absence and presence of Eu®*, respectively. As Eu** content
increases, the 77 is found to increase and finally saturate.
Based on Dexter’s ET formula of multipolar interaction and
Reisfeld’s approximation, the following relation can be
obtained:*'
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FIG. 3. PLE and PL spectra of Ba,ZnS;:0.8%Eu?* (PLE monitored at
655 nm and PL_excited at 357 nm); the inset for PL spectra of
Ba,ZnS;:n%Eu’* excited at 420 nm.
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FIG. 4. (a) Spectral overlap between PLE spectrum of Ba,ZnS;:Eu**
(dashed line) and the PL spectrum of Ba,ZnS;:Ce** (solid line); (b) PL
spectra for Ba,ZnS;:0.8 % Eu?** and Ba,ZnS;:0.1% Ce**,0.8 % Eu* excited
at 420 nm.
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where C is the content of Eu** and a=6 and 8 corresponding
to electric dipole-dipole and dipole-quadrupole interactions,
respectively. The plots represented in Figs. 6(a) and 6(b)
both exhibit linear relationships; moreover, electric dipole-
dipole interaction usually accompanies electric dipole-
quadrupole interaction because the Coulombic effect of the
former is larger than that of the latter. Therefore, the electric
dipole-dipole interaction is dominant in the ET mechanism
from Ce’* to Eu?* in BZS:Ce,Eu, which is similar to that
observed in several references.'>™'°

For electric dipole-dipole mechanism, the critical dis-
tance (R.) of ET from Ce** to Eu?* can be expressed by™

R%=0.63 X 1028% f Fy(E)F(E)dE, (3)

where Q,=4.8X107'° £, is the absorption cross section of
Eu?*, £,~0.02 is the electric dipole oscillator strength for
Eu**, [F((E)F,(E)dE represents the spectral overlap be-
tween the normalized shapes of Ce®* emission F¢(E) and
Eu?* excitation F,(E), estimated at about 0.96 eV~!, and E
(in eV) is the maximum energy of spectral overlap. There-
fore, the R, of ET was calculated to be about 32.7 A, which
is longer than that (25 A) reported in BaLiF;: Ce,Eu because
the spectral overlap (0.96 eV~') in BZS:Ce,Eu is larger than
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FIG. 5. PL spectra for Ba,ZnS;:0.1%Ce**,n%Eu®* excited at 420 nm; the
inset  showing dependence of  », and  total  intensitv  in
Ba,ZnS;:0.1% Ce**,n%Eu’* on n.
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FIG. 6. Dependence of Igy/Is of Ce** on (a) C®? and (b) C®°.

that (0.77 eV™') in BaLiF;:Ce,Eu.'* When Ce**—Eu?* was
supposed to form a close pair at a distance of 4.210 A, the
shortest distribution length between Ce>* and Eu®*, the R, of
ET was approximated about eight lattice sites.

Because a commercial blue chip providing 420 nm was
unavailable, the samples for blue LED application were
simulated by measuring with a Xe light source with the same
excitation wavelength. The Commission International de
I’Eclairage (CIE) chromaticity coordinates for BZS:Ce,Eu
excited at 420 nm were also measured, and the results are
shown in Fig. 7. The CIE chromaticity coordinates of Ce**-
and Eu**-activated Ba,ZnS; are (0.34, 0.49) and (0.64, 0.33),
respectively, corresponding to hues of green-yellow and red.
Furthermore, with increasing Eu?* content, we have ob-
served that the hues of BZS:Ce,Eu locate in the yellow to

CIEy

FIG. 7. CIE chromaticity diagram for Ba,ZnS;:m % Ce**,n % Eu** exited at
420 nm. (1) m=0.1, n=0; (2) m=0.1, n=0.2; (3) m=0.1, n=0.4; (4) m
=0.1, n=0.6; and (5) m=0, n=0.8.
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orange range. As a consequence, the tunable emission of
BZS:Ce,Eu coupled with blue LEDs could generate various
white lights, which are more numerous than single-emitting
YAG:Ce coupled with ones. In addition, the CRI of white
light generated by BZS:Ce,Eu would be higher than that pro-
duced by YAG:Ce because the former contains the red light
component. Indeed, BZS:Ce,Eu has the promising applica-
tion for white LEDs.

In conclusion, the unprecedented Ba,ZnS;:Ce**,Eu’**
shows intense blue absorption and two emission bands: the
one at 498 nm is attributed to Ce**, and the other at 655 nm
is assigned to host lattice and Eu**. We have demonstrated
that the energy transfer from Ce** to Eu®* is of a resonant
type via an electric dipole-dipole mechanism. All in all,
Ba,ZnS;:Ce** Eu’* has been proven to be potentially useful
as a blue radiation-converting phosphor for white light-
emitting diodes.
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