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ABSTRACT: A simplified structural analysis model for mat foundations with grid floor beams as stiffeners is
presented here. In the model, the Winkler type of subgrade reaction spring is assumed for the whole area under
the mat foundation, and the yield-line theory of slab is used to lump the Winkler springs under slabs to the
corresponding locations under the adjacent floor beams of the slabs. Therefore, each floor beam is now supported
by springs with a segmentally linearly varied spring constant. The total analysis model for the mat foundation
is then simplified to be a grid beam system on an elastic foundation with a segmentally linearly varied spring
constant, and is subjected to loadings from the columns of the building structure. Some numerical comparisons
with the results by a sophisticated finite-element model are made in order to demonstrate the effectiveness and
efficiency of the presented analysis model.
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FIG. 1. 'TYpical Mat Foundation with Grid Floor Beams: (a) El­
evation A-A; (b) Plan View
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The spring constant is assumed to be constant for the entire
area under the mat foundation. To simplify the analysis model,
the yield line theory (Johansen 1962) for bottom slabs is em­
ployed to lump the subgrade reaction springs to the locations
under grid floor beams. Now, the model becomes grid floor
beams on an elastic foundation with loadings (moments and
vertical forces from columns) applied at the intersections of
floor beams. Also, the spring constant of the elastic foundation
may vary linearly along the beams since points under the floor
beams represent the condensation of different lengths of the
subgrade reaction coefficient by the yield line theory of slab.
Therefore, the stiffness matrix for the beam on an elastic foun­
dation with piecewise linear variation of the spring constant
also has to be derived.

To demonstrate the effectiveness and efficiency of the pre­
sented model, a simple example is used to compare the pro­
posed model with a sophisticated finite-element model in
which plate elements on a constant elastic foundation and
beam elements are used. Also, a fictitious building structure is
used as an example for the structural analysis of its mat foun­
dation by employing the presented model. After extensive nu­
merical analysis by the proposed model, some conclusions and
discussions are also presented in this paper.

ANALYSIS MODEL

The plan view of a typical mat foundation of a building
structure is shown in Fig. 1. To set up the analysis model of
mat foundation, the Winkler spring is first assumed for the mat
foundation structure, which is constant for the whole region
under the mat foundation. The spring constant (subgrade re­
action coefficient) is highly dependent on the dimensions.
shapes, and depth of the embedment of the foundation, and
the mechanical properties of subsoil (especially shear modu­
lus). To obtain the spring constant for the structural model of
the mat foundation, one can refer to the works by Terzaghi
(1955), Vesic (1961, 1963), Bowles (1982), Horvath (1983)
and Scott (1981).
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There are two types of mat foundations (Bowles 1982). One
is just a solid thick plate without apparent floor beams and the
other is a thin plate with grid floor beams as stiffeners as
shown in Fig. 1. The former is better in terms of rigidity,
which is assumed in the conventional design method. How­
ever, the latter is more popular since it saves a large volume
of concrete and the cells enclosed by grid floor beams can be
used as the tanks of drinking water, fire protection water, and
sanitary water.

The conventional design method completely neglects the ef­
fect of the moments and shears induced by differential elastic
settlement of subsoil. Therefore, the conventional design
method is sometimes conservative and may be unrealistic es­
pecially for the type of thin plate with grid floor beams, since
the reaction of subsoil at the areas near the loading columns
is larger due to the flexibility of floor beams. This means that
the conventional method could overdesign the foundations.
This situation of overdesign could be amplified when the offset
from property limit for the part of the building structure above
ground level is large and, therefore, the difference between the
reactions of subsoil at the edges of the foundation and at the
center of the foundation are huge. Unfortunately, this is the
case for most building structures in urban areas due to archi­
tectural reasons which do not allow a building structure above
ground to cover the whole area of a property. Therefore, some
offsets from property limits for building structures above
ground level are required as specified in the most architectural
codes. However, due to the parking problem of cars in the city
most buildings are built to have basements as large as possible
in order to provide sufficient parking space. This situation will
make some of the floor beams of a mat foundation act like
cantilevers, and sometimes make the design of the floor beams
impossible if the conventional design method is used. Even if
the floor beams can be designed, it would result in uneconomic
design.

This paper is aimed at presenting a structural analysis model
for a mat foundation with grid floor beams as shown in Fig.
I. To set up the model, the Winkler spring is adopted to de­
scribe elastic deformation of the subsoil subjected to loadings.
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(4)d~S~) + a~Y(~) =0

where a = Kb/E/[(Kb/m)t. The general solution for (4) is com­
posed of four infinite polynomial series as follows (Hetenyi
1946):

where

_x
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NUMERICAL ANALYSIS
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and the unknown coefficients CI , C2 , C3 , C4 can be determined
by the boundary conditions of the beam segment.

For the case of m < 0, the solution for (1) is the same as
that in (5) except when redefining ~ = mx/Ka + 1 and a =
(Ka/E/)(Ka/m)4.

The accuracy of truncating the infinite series in (5b)-(5e)
is dependent on the value of a, since, according to the defi­
nition in (4), ~ is always less than 1. A large a can occur only
when m, the slope of variation of the spring constant as defined
in (3), is approaching zero. Fortunately as m -+ 0, one can
just use the solution for constant K(x) in (2) without losing
accuracy. After some extensive numerical investigations, it is
concluded that one just needs to control the a value within
the limit of 10,000 for using the solution in (5a)-(5d) by
truncating the terms after the fifth term in the infinite series,
otherwise one must employ the solution of (2).

After the solution for each segment of beam has been ob­
tained, the stiffness matrices for beams can be generated by
employing the continuity conditions of displacement, rotation,
moment, and shear at joints between segments and the bound­
ary conditions at both ends of the beams. Now, the global
stiffness matrix of the total model can be assembled and the
total model is subjected to loadings from columns at the in­
tersections of the floor beams.

Two numerical examples are presented in order to demon­
strate the effectiveness and efficiency of the proposed analysis
model for the mat foundation of a thin plate with grid floor
beams. The dimensions and nodal numbers of the first example
are indicated in Fig. 3, and the foundation is subjected to a
1,224 t of vertical force at node 5 only. The cross section of
the floor beams is assumed to be 3-m high and 0.6-m wide
and Young's modulus of concrete is 3.0 106 t/m2

• The level of
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where Kb and K a = spring coefficients at both ends of the
segment; and b = length of the segment. If m > 0, let variable
~ = mx/Kb + K.lKb. After some mathematical manipulations,
(1) becomes

FIG. 2. (a) Yield Line Theory; (b) Variation of Spring Constant

where EI = cross-sectional rigidity of the segment of the beam;
and K(x) = linearly varied spring constant. In (I), the external
loadings can only be applied at the intersections of floor
beams.

If K(x) = constant in (1), the solution for (1) can be simply
obtained as follows:

Y(x) = elo.x(CI cos Ax + C2 sin Ax)

+ e-lo.x(C3 cos Ax + C4 sin Ax) (2)

where X.4 = K/4E/; and Ch C2 , C3, and C4 =unknown coeffi­
cients and can be determined by the boundary conditions of
the beam segment.

For K(x) which varies linearly, the solution can be obtained
by the change of variables technique. The linearly varied
spring constant is rewritten as

K b - K.
K(x) = b x + K. = m.x + K.

After the subgrade reaction coefficient representing the sub­
soil has been obtained, the yield line theory for slabs is em­
ployed to lump the springs under the slabs to the correspond­
ing locations under floor beams as shown in Fig. 2. In Fig.
2(a) the subgrade reaction springs under the areas G t and G2

are condensed to the location under floor beam BI • Therefore,
the spring constant under the floor beams may vary linearly
or keep constant for some portion of the floor beams as shown
in Fig. 2(b). This kind of variation of the spring constant is
called segmentally linear variation here. After the aforemen­
tioned simplification, the structural analysis model of the mat
foundation in Fig. 1 becomes a grid structure resting on an
elastic foundation with piecewise linear variation of the spring
constant, and is subjected to the loadings (moments and ver­
tical forces from columns) at the intersections of floor beams.

For the mat foundation grid model, one has to generate the
stiffness matrix for each individual beam first before ll$sem­
bling the global stiffness matrix for the grid model. If one
assumes the shapes of slabs adjacent to a floor beam can be
rectangular, triangular, or trapezoidal, the beam at most has
five segments with different slopes of linear variations of
spring constants. For example, beam B. in Fig. 2 has three
segments with different slopes of linear variations of spring
constants. This is the consequence of using the yield line the­
ory to condense the subgrade reaction coefficient under slabs.
For each segment of the beam on the linear elastic foundation,
the governing equation can be expressed as follows:

d 4 y(x)
EI --;j;4 + K(x)Y(x) =0

J. Struct. Eng. 1996.122:1114-1117.
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FIG. 3. Dimensions and Nodal Numbers of First Example

the foundation is assumed to be at 10 m below ground level,
and the shear modulus and Poisson's ratio are assumed to be
1,830 tlm2 and 0.45 for subsoil, respectively. Terzaghi's (1955)
method is used to calculate the subgrade reaction coefficient
for the analysis model.

To investigate the accuracy of the proposed model, the anal­
ysis results of the model are compared to that of the finite­
element model in which the commercial computer program
ANSYS 50 is used. In the finite-element model, beam ele­
ments and plate elements on an elastic foundation are used to
model the floor beams, slabs, and the subgrade reaction co­
efficient. After some comparison study, one can find that each
beam in Fig. 3 has to be modeled by eight identical beam
elements and each slab has to be modeled by 64 identical plate
elements in order to obtain good results by the finite-element
method. Three kinds of thickness (0.5, 0.6, and 0.7 m) of slab,
which are commonly used in design practice for a mat foun­
dation with grid floor beams, are chosen in the finite-element
model in order to see the effect of thickness of slab on the
overall structural behavior of the mat foundation.

For simplicity of presentation, only the results for beam 4-5,
in which the numbers are referred to nodal numbers in Fig. 3,
are compared in the paper. Fig. 4 shows the comparisons of
the displacements of the beams in the proposed model with
that in the finite-element model. In the finite-element model,
one can see Figs. 3 and 4 that three different thicknesses of
slab are used. On examining these figures, one can observe
that the proposed model gives pretty good results for the dis­
placement of beams and the effect of thickness of slab on the
structural behavior is not important. Again, one can also ob­
serve from Fig. 5 that the results of moment by the proposed
model agree with those by the sophisticated finite-element
model. After examining the comparison in the example and
other numerical comparisons, one can easily conclude that the

(B:££JANSY.mfSOO.S~I::E'EEElANSYS60 0.6
~ANSYS500.7
........ PROc,

1000.0

~
? 800.0
Eo:
""is 600.0

~
i:J 400.0

~... 200.0

1200.0

proposed model can give quite accurate results and is very
efficient.

Also, one can compare the total moment of the three mo­
ments at the critical cross sections of the beams L2, 4--5, and
7_8 with the corresponding total moment by conventional anal­
ysis method, which assumes the subgrade reaction is uniformly
distributed. The total moment by the proposed method is 1,470
tim and the corresponding total moment by the conventional
method is 2,330 tim. This means that the conventional analysis
method gives a very conservative result and will make the
design uneconomic.

The second example presented is the foundation for a fic­
titious building. The building is 20 stories above ground level
and two stories below ground level, with a 56 X 48 m foun­
dation base. To calculate the loadings applied at the nodal
points of the mat foundation, a uniform 1.0 tlm2 loading is
assumed for the floors above the ground and a uniform 1.5 tI
m2 loading for the ground and basement floors. The depth of
embedment of the foundation is 10 m, and all other basic data
are the same as those used in the first example. In the example,
the average subgrade reaction on each slab of the foundation
is also calculated, which will be useful for the design of the
slab. To calculate the average reaction, one just needs to uni­
formly redistribute the spring reactions under the beams
around the slab. The average reactions on slabs are shown in
Table 1. In the table, only a quarter number of slabs for the
foundation is shown, since the foundation and loadings are
symmetric with respect to both the x and y directions. From
Table 1, one can see that the reaction on the slab ranges from
6.2 tlm2 to 26 tlm2 in contrast to a uniformly distributed 13.3
tlm2 in the conventional analysis method.

Since the subgrade reaction spring cannot resist tensile
stress, uplift may occur at some part of the foundation during
a rainstorm. For this example, the foundation is located at 10
m below the ground level, thus a uniform 10 tlm2 buoyancy
is also considered. The 10 tlm2 uplift stress is greater than
some reactions in Table 1. To cancel the tensile stress caused
by buoyancy, one can release the tensile stress using the same

3

6

8M x2=16M

P.3 P.4

4 5

P.I P.2

1 21
6Mx2=12

Reac- Reac- Reac- Reac-
tion tion tion tion

Slab (tfm') Slab (tfm') Slab (tfm') Slab (tfm')
(1 ) (2) (3) (4) (5) (6) (7) (8)

P.1 6.851 P.8 7.768 P.l5 9.785 P.22 11.02
P.2 6.218 P.9 10.23 P.16 16.73 P.23 20.76
P.3 6.358 P.10 11.70 P.17 20.38 P.24 25.72
PA 6.385 P.ll 11.88 P.18 20.58 P.25 25.98

Equivalent Uniform Subgrade Reactions

TABLE 1. Subgrade Reactions on Slabs

4
BEAM4_ 5(UNIT:M)

FIG. 5. Moment Diagram of Beam 4-5
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FIG. 4. Displacement of Beam 4_5
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FIG. 6. Displacement of Mat Foundation for Case without 10 tI
m2 Uplift

FIG. 7. Displacement of Mat Foundation for Case with 10 tlm2

Uplift

structural model and recalculate the distribution of subgrade
reaction until there is no negative reaction.

Figs. 6 and 7 show the deformations of the mat foundation
for the cases without and with 10 t1m2 buoyancy, respectively.
From Fig. 7, one can observe that uplift does occur. This in­
dicates that the case with buoyancy may govern the design of
some part of the mat foundation.

CONCLUDING REMARKS

After extensive numerical investigations, some conclusions
regarding the proposed model can be drawn as follows.

The proposed analysis model can be easily implemented as
a computer program, and the preparation of input data is much

easier than that in the finite-element method. For example, one
just needs to give the subgrade reaction coefficient and the
program will automatically generate the stiffness matrix for
each beam on an elastic foundation with piecewise linear var­
iation of the spring constant.

Through extensive comparisons, the results by the proposed
model are quite close to those by the sophisticated finite-ele­
ment analysis. This would validate the usage of the proposed
model.

Most importantly, the proposed model can dramatically
slash the computational cost for the structural analysis of mat
foundation with grid floor beams, and give accurate results for
design purposes. For example, the central processing time
(CPU) time on a 486-DX50 personal computer is 6 s for the
analysis of the first example, while it takes 100 s using the
commercial software ANSYS 50 on the same machine. Gen­
erally, the more complicated the mat foundation is, the more
the savings of computational cost will be. Also, the memory
space needed in the computer by using the proposed model
will be much less than that by using the finite-element model.
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