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ABSTRACT

Motivation: Both modeling of antigen-processing pathway including

major histocompatibility complex (MHC) binding and immunogeni-

city prediction of those MHC-binding peptides are essential to

develop a computer-aided system of peptide-based vaccine design

that is one goal of immunoinformatics. Numerous studies have dealt

with modeling the immunogenic pathway but not the intractable

problem of immunogenicity prediction due to complex effects of

many intrinsic and extrinsic factors. Moderate affinity of the MHC–

peptide complex is essential to induce immune responses, but

the relationship between the affinity and peptide immunogenicity

is too weak to use for predicting immunogenicity. This study

focuses on mining informative physicochemical properties from

known experimental immunogenicity data to understand immune

responses and predict immunogenicity of MHC-binding peptides

accurately.

Results: This study proposes a computational method to mine

a feature set of informative physicochemical properties from

MHC class I binding peptides to design a support vector machine

(SVM) based system (named POPI) for the prediction of peptide

immunogenicity. High performance of POPI arises mainly from

an inheritable bi-objective genetic algorithm, which aims to

automatically determine the best number m out of 531 physico-

chemical properties, identify these m properties and tune

SVM parameters simultaneously. The dataset consisting of

428 human MHC class I binding peptides belonging to four classes

of immunogenicity was established from MHCPEP, a database of

MHC-binding peptides (Brusic et al., 1998). POPI, utilizing them¼ 23

selected properties, performs well with the accuracy of 64.72%

using leave-one-out cross-validation, compared with two sequence

alignment-based prediction methods ALIGN (54.91%) and

PSI-BLAST (53.23%). POPI is the first computational system for

prediction of peptide immunogenicity based on physicochemical

properties.

Availability: A web server for prediction of peptide immunogenicity

(POPI) and the used dataset of MHC class I binding peptides

(PEPMHCI) are available at http://iclab.life.nctu.edu.tw/POPI

Contact: syho@mail.nctu.edu.tw

1 INTRODUCTION

Developing a computer-aided system to design peptide vaccines

is one goal of immunoinformatics. The major work of previous

studies for peptide vaccine designs is to identify cytotoxic

T lymphocyte (CTL) epitopes and investigate their correspond-

ing immunogenicity. The CTL cells play a critical role in

protective immunity by recognizing and eliminating self-altered

cells, which recognize short peptides derived from intracellular

degradation of foreign proteins in combination with major

histocompatibility complex (MHC) class I molecules

(Hämmerling et al., 1999). The immunogenicity of MHC

class I binding peptides is their ability to induce CTL responses.

Accurate predictions of the CTL epitopes and their

corresponding immunogenicity are critical in developing

a computer-aided system for vaccine designs.
Direct approach to predicting the CTL epitopes has been

studied initially but its accuracy is fairly low (Deavin et al.,

1996). Instead, indirect approach to predicting the MHC-

binding peptides is useful because peptides must be processed

prior to inducing cellular immune responses. The recent studies

of bioinformatics utilized the information about antigen-

processing pathway to predict the CTL epitopes. At first, the

peptides are cleaved by proteasomal cleavage. Several studies

elucidating the specificity of proteasome have been presented.

To predict proteasomal cleavage sites, NetChop used a neural

network method (Kes�mir et al., 2002) and Pcleavage is based

on a support vector machine (SVM) learning model (Bhasin

and Raghava, 2005).
After cleavage, peptide fragments are transported into

endoplasmic reticulum by TAP, which is the transporter

associated with antigen processing. Some studies of investigat-

ing the TAP transport efficiency were presented, such as the

affinity prediction of TAP-binding peptides using the cascade

SVM (Bhasin and Raghava, 2004) and the prediction of TAP

transport efficiency of epitope precursors using a simple scoring

matrix (Peters et al., 2003). Finally, the peptide fragments that

bound to MHC class I molecules are subsequently translocated

to the cell surface, where these complexes may active CTL.

Some methods have been developed to predict MHC class I

binding affinity, such as the SVM-based SVMHC (Dönnes and

Elofsson, 2002) and Gibbs sampling method (Nielsen et al.,

2004). Moreover, the hybrid approaches integrated the above-

mentioned methods like the prediction of proteasomal*To whom correspondence should be addressed.
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cleavage, TAP transport efficiency and MHC binding to
advance the prediction performance (Dönnes and
Kohlbacher, 2005; Larsen et al., 2005).

After the prediction of CTL epitopes, defining peptide
immunogenicity is desirable to accurately predict immunogeni-
city of epitopes for the vaccine design. The peptide immuno-

genicity is influenced by many factors, including intrinsic
physicochemical properties and extrinsic factors such as host
immunoglobulin repertoire (Kanduc, 2005; Van Regenmortel,

2001). Several studies aimed to clarify the relationship between
the peptide-binding affinity to the MHC molecule and its
immunogenicity (Feltkamp et al., 1994; Ochoa-Garay et al.,

1997). These studies revealed that moderate binding affinity
of peptide-MHC molecules is essential to induce immune
responses, but the ability of peptides to induce CTL responses

does not strongly correlate with their affinity for the MHC
molecule.
Physicochemical properties of amino acids were extensively

and successfully used in sequence-based prediction methods
(Blythe and Flower, 2005; Cao et al., 2006; Idicula-Thomas
et al., 2006; Liu et al., 2006; Nanni and Lumini, 2006). Because

of the weak correlation between peptide immunogenicity and
peptide-MHC binding affinity, mining informative physico-
chemical properties is a potentially good approach to designing

a classifier for predicting immunogenicity. Because the number
of available physicochemical properties is as large as more than
500, the properties used in previous studies are usually selected

according to domain knowledge (Liu et al., 2006) or the rank-
based method (Sarda et al., 2005). Therefore, these methods
cannot be effectively applied to the investigated intractable

problems because of limited knowledge or neglect of correlated
effects among multiple properties (Blythe and Flower, 2005).
This study aims to design an accurate predictor by efficiently

selecting a small set of informative physicochemical properties
considering the correlated effects.
It is well recognized that feature selection and classifier

design should be optimized simultaneously to maximize
prediction accuracy (Ho et al., 2006). The SVM-based learning
methods are shown effective for various prediction methods

from protein sequences (Bhasin and Raghava, 2005; Dönnes
and Elofsson, 2002). However, internal detection of relevant-
feature correlation is not offered by conventional SVMs;

meanwhile, appropriate setting of their control parameters is
often treated as another independent problem (Chang and Lin,
2001). Let there be n candidates of physicochemical properties

of amino acids. To maximize accuracy of the investigated
prediction problem by selecting a small number m out of n
properties while cooperating with SVM simultaneously, it is

equivalent to solve the binary combinatorial optimization
problem having a huge search space of C(n,m) ¼

n!/(m!(n�m)!).

This study proposes an efficient method to mine a feature set
of informative physicochemical properties from MHC class I
binding peptides to design an SVM-based system (named

POPI) for prediction of peptide immunogenicity. High perfor-
mance of POPI arises mainly from an inheritable bi-objective
genetic algorithm (Ho et al., 2004a), which aims to auto-

matically determine the best number m out of n ¼ 531
physicochemical properties, identify these m properties and

tune SVM parameters simultaneously by maximizing the

prediction accuracy of 10-fold cross-validation (10-CV).

In this study, the used dataset consisting of 428 human MHC

class I binding peptides belonging to four classes of immuno-

genicity was established from MHCPEP, a database of MHC-

binding peptides (Brusic et al., 1998). POPI, utilizing the

m ¼ 23 selected properties, performs well with accuracy of

64.72% using leave-one-out cross-validation, compared with

two sequence alignment-based prediction methods ALIGN

(54.91%) and PSI-BLAST (53.23%).
In contrast to the existing affinity-based methods of

predicting immunogenicity by way of predicting MHC-binding

peptides, POPI is the first computational system based on

physicochemical properties to predict peptide immunogenicity

using epitopes associated with human MHC class I molecules,

which has been implemented as a web server (http://iclab.

life.nctu.edu.tw/POPI).

2 METHODS

2.1 Dataset and physicochemical properties

Table 1 shows the used dataset PEPMHCI of peptides associated with

human MHC class I molecules extracted from MHCPEP. The key-

words used to construct the dataset are ‘HLA’ and ‘CLASS-1’ in

the ‘MHCMolecule’ field. The immunogenicity of a peptide is

determined by measuring the concentration of peptides giving 50% of

maximum specific lysis by CTLs of target cells displaying the peptide,

and is given a descriptive value. The initial numbers of peptides

extracted belonging to the six classes, None, Little, Moderate, High,

Immunogenic-not-quantified and Unknown, are 147, 95, 125, 132, 867

and 3251, respectively. The peptides of the classes Immunogenic-not-

quantified and Unknown were not considered. After removing

19 duplicate records and 52 inconsistent records, PEPMHCI with

no artificial peptide contains 428 peptides, as shown in Table 1.

The shortest, averaged and longest lengths of the 428 peptides are

7, 10.26 and 25, respectively.

There are 544 physicochemical properties of amino acids extracted

from amino acid index database version 9.0 (AAindex), which is a

collection of published amino acid indices representing different

physicochemical and biological properties of amino acids

(Kawashima and Kanehisa, 2000). Each physicochemical property

consists of a set of 20 numerical values for amino acids. The property

having the value ‘NA’ in a value set of amino acid index was discarded.

Finally, 531 properties were used for the following mining method.

Table 1. The dataset PEPMHCI of peptides associated with human

MHC class I molecules extracted from MHCPEP, a database of MHC-

binding peptides (Brusic et al., 1998)

Immunogenicity class Number of peptides

None 144

Little 83

Moderate 100

High 101

Total 428

POPI: predicting immunogenicity of MHC class I binding peptides
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2.2 Support vector machine

Support vector machine (SVM) is a learning model dealing with

binary classification problems. SVM constructs a binary classifier by

finding a hyperplane to separate two classes with a maximal distance

between margins of two classes consisting of support vectors. In order

to make linear separation of samples easier, SVM uses one of various

kernel functions to transform the samples into a high-dimensional

search space. In this work, the commonly used radial basis function

is applied to non linearly transform the feature space, defined

as follows:

Kðxi, xjÞ ¼ exp �� xi � xj
�� ��� �

, � > 0: ð1Þ

The kernel parameter � determines how the samples are transformed

into a high-dimensional search space. The cost parameter C>0 of

SVM adjusts the penalty of total error. These two parameters C and �

must be tuned to get the best prediction performance.

For multi-class classification problems, ‘one-against-one’ strategy is

applied to transform the multi-class problem into several binary

classification problems. Given h classes, there are h(h� 1)/2 classifiers

constructed and each one trains the samples from two classes. A voting

strategy is applied to give a final prediction for test samples. In this

study, h¼ 4 and the used SVM is obtained from LIBSVM package

version 2.81 (Chang and Lin, 2001).

2.3 Orthogonal experimental design

Statistic design of experiments is a process of planning experiments.

Orthogonal experimental design with orthogonal array and factor

analysis is an efficient method to analyze the effect of several factors

simultaneously (Dey, 1985; Wu, 1978). The factors are the parameters,

which affect response variables, and a discriminative value of a factor

is regarded as a level of the factor. A ‘complete factorial’ experiment

would make measurements at each of all possible level combinations.

However, the number of level combinations is often so large that this is

impractical, and a subset of level combinations must be judiciously

selected to be used, resulting in a ‘fractional factorial’ experiment.

Orthogonal experimental design utilizes properties of fractional

factorial experiments to efficiently determine the best combination of

factor levels to use in design problems.

Orthogonal array is a fractional factorial array, which assures a

balanced comparison of levels of any factor. Orthogonal array can

reduce the number of level combinations for factor analysis. Each row

of an orthogonal array represents the levels of factors in each

combination, and each column represents a specific factor that can be

changed from each combination. The term ‘main effect’ of one factor

designates the effect on response variables that one can trace to a design

parameter, which does not bother the estimation of the main effect of

another factor. After proper tabulation of experimental results, the

summarized data are analyzed using factor analysis to determine

the relative-level effects of factors.

Factor analysis can evaluate the effects of individual factors on the

evaluation function, rank the most effective factors, and determine the

best level for each factor such that the evaluation function is optimized.

Table 2 shows an illustrative example of orthogonal experimental

design using a two-level orthogonal array LM(2M�1) with M rows and

M� 1 columns. In this example of M¼ 8, there are seven factors where

each corresponds to a physicochemical property and its two levels

correspond to exclusion and inclusion of the feature in the proposed

feature selection. Let ft denote a function value (prediction accuracy of

10-CV in this study) of the combination t. Define the main effect of

factor j with level k as Sjk where j¼ 1, . . . ,M� 1 and k¼ 1, 2:

Sjk ¼
X

ft � Ft, t ¼ 1, . . . ,M, ð2Þ

where Ft¼ 1 if the level of factor j of combination t is k; otherwise,

Ft¼ 0. Since the objective function is to be maximized, the level 1 of

factor jmakes a better contribution to the function than level 2 of factor

j does when Sj1>Sj2. The main effect reveals the individual effect of a

factor. After the better one of two levels of each factor is determined, a

good combination consisting of all factors with the better levels can be

easily reasoned (Ho et al., 2004b).

The rank in Table 2 shows the rank of the combination t in all 128

(¼27) possible combinations. In this example, the reasoned combination

gets the best accuracy with rank 1. Notably, the reasoned combination

is not guaranteed to be the best one in general cases. The most effective

factor j has the largest main effect difference MED¼ |Sj1�Sj2|. The 6th

factor having the largest MED 36.3 is the most effective factor.

2.4 Inheritable bi-objective genetic algorithm

Selecting a minimal number of informative features while maximizing

prediction accuracy is a bi-objective 0/1 combinatorial optimization

problem. An efficient inheritable bi-objective genetic algorithm

Table 2. An illustration example of orthogonal array L8(2
7) and factor analysis

t Factors Accuracy (%)

ft

Rank

1 2 3 4 5 6 7

1 1 1 1 1 1 1 1 28.8 33/128

2 1 1 1 2 2 2 2 18.8 97/128

3 1 2 2 1 1 2 2 28.8 33/128

4 1 2 2 2 2 1 1 17.5 100/128

5 2 1 2 1 2 1 2 20.0 88/128

6 2 1 2 2 1 2 1 41.3 4/128

7 2 2 1 1 2 2 1 33.8 14/128

8 2 2 1 2 1 1 2 20.0 88/128

Sj1 93.8 108.8 101.3 111.3 118.8 86.3 121.3

Sj2 115.0 100.0 107.5 97.5 90.0 122.5 87.5

MED 21.3 8.8 6.3 13.8 28.8 36.3 33.8

Rank 4 6 7 5 3 1 2

Better level 2 1 2 1 1 2 1 42.5 1/128

C.-W.Tung and S.-Y.Ho
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(IBCGA, Ho et al., 2004a) is utilized to solve this optimization

problem. IBCGA consists of an intelligent genetic algorithm (Ho et al.,

2004b) with an inheritable mechanism. The intelligent genetic algorithm

uses a divide-and-conquer strategy and an orthogonal array crossover

to efficiently solve large-scale parameter optimization problems. In

this study, the intelligent genetic algorithm can efficiently explore and

exploit the search space of C(n, r). IBCGA can efficiently search the

space of C(n, r� 1) by inheriting a good solution in the space of C(n, r)

(Ho et al., 2004a). Therefore, IBCGA can economically obtain a

complete set of high-quality solutions in a single run where r is specified

in an interesting range such as [5, 45].

The proposed chromosome encoding scheme of IBCGA consists

of both binary genes for feature selection and parametric genes for

tuning SVM parameters, where the gene and chromosome are

commonly used terms of genetic algorithm (GA), named GA-gene

and GA-chromosome for discrimination in this article. The

GA-chromosome consists of n¼ 531 binary GA-genes bi for selecting

informative properties and two 4-bit GA-genes for tuning the

parameters C and � of SVM. If bi¼ 0, the ith property is excluded

from the SVM classifier; otherwise, the ith property is included. This

encoding method maps the 16 values of � and C into {2�7, 2�6 ,. . . , 28}.

Figure 1 shows the encoding scheme of GA-chromosome and process of

constructing feature vectors for fitness function evaluation using a

concise example.

The feature vector for training the SVM classifier is obtained from

decoding a GA-chromosome using the following steps. Consider a

given peptide sequence, e.g. lysosomal acid lipase (LAL). At first, the

index vectors for all selected physicochemical properties (residue

volume and molecular weight in this example) are constructed from

AAindex for each amino acid. Feature vector of a peptide consists of

the selected features whose values are obtained by averaging the values

in their corresponding index vectors. Finally, all values of the feature

vectors are normalized into [�1, 1] for applying SVM.

Fitness function is the only guide for IBCGA to obtain desirable

solutions. To avoid from the prediction bias for some immunogenic

levels, the averaged accuracies (AA) of four immunogenic levels,

defined in (6), is adopted as the fitness function. The performance

of selected properties associated with the parameter values of SVM is

measured by 10-CV. Therefore, the fitness value of a GA-chromosome

is obtained by computing the mean accuracy of 10 runs.

IBCGA with the fitness function f(X) can simultaneously obtain a

set of solutions, Xr, where r¼ rstart, rstartþ 1, . . ., rend in a single run.

The algorithm of IBCGA with the given values rstart and rend is

described as follows:

Step 1. (Initiation) Randomly generate an initial population of Npop

individuals. All the n binary GA-genes have r 1s and n� r 0s

where r¼ rstart.

Step 2. (Evaluation) Evaluate the fitness values of all individuals

using f(X).

Step 3. (Selection) Use the traditional tournament selection that

selects the winner from two randomly selected individuals to

form a mating pool.

Step 4. (Crossover) Select Pc �Npop parents from the mating pool to

perform orthogonal array crossover on the selected pairs of

parents, where Pc is the crossover probability.

Step 5. (Mutation) Apply the swap mutation operator to the

randomly selected Pm �Npop individuals in the new popula-

tion, where Pm is the mutation probability. To prevent the

best fitness value from deteriorating, mutation is not applied

to the best individual.

Step 6. (Termination test) If the stopping condition for obtaining

the solution Xr is satisfied, output the best individual as Xr.

Otherwise, go to Step 2.

Step 7. (Inheritance) If r5rend, randomly change one bit in the

binary GA-genes for each individual from 0 to 1; increase

the number r by one, and go to Step 2. Otherwise, stop the

algorithm.

2.5 Evaluation of POPI

The selected m physicochemical properties and the associated para-

meter setting of SVM by IBCGA are used to implement the

computational system POPI for prediction of peptide immunogenicity.

Four measurements were used to evaluate POPI using leave-one-out

cross-validation (LOOCV) on the dataset PEPMHCI, namely percen-

tage accuracy (ACCi) and Matthew’s correlation coefficient (MCCi)

Fig. 1. An illustration example of fitness function evaluation from decoding a GA-chromosome.

POPI: predicting immunogenicity of MHC class I binding peptides
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for the ith immunogenicity class, i¼ 1, . . . , 4, and overall accuracy (OA)

and averaged accuracies (AA) for all classes:

ACCi ¼
TPi

TPi þ FNi
� 100%, ð3Þ

MCCi ¼
TPi � TNi � FPi � FNiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TPi þ FNið Þ � TPi þ FPið Þ � TNi þ FPið Þ � TNi þ FNið Þ
p ,

ð4Þ

OA ¼
XTPi

N
, ð5Þ

AA ¼
XACCi

h
ð6Þ

where TPi, TNi, FPi and FNi are the number of true positive, true

negative, false positive and false negative, respectively. N (¼428) is the

total number of sequences and h (¼4) is the number of immunogenicity

classes.

3 RESULTS

3.1 Mining informative physicochemical properties

IBCGA is performed to mine informative physicochemical

properties using the whole dataset PEPMHCI. In this study,

the parameters of IBCGA are set as Npop¼ 50, Pc¼ 0.8,

Pm¼ 0.05, rstart¼ 5 and rend¼ 45. For each feature set with

size r, IBCGA selected a small set of physicochemical proper-

ties and parameter values of SVM. Figure 2 shows a potentially

good result in terms of averaged accuracy (AA), and the

number of used features obtained from a single run of IBCGA

using 10-CV. The result reveals that the best number of selected

features is m¼ 23, where the SVM classifier with C¼ 2 and

�¼ 2 has the best-averaged accuracy AA¼ 63.67% and overall

accuracy OA¼ 66.12%. The SDs of AA and OA among the

10 cross-validation results are 10.87 and 9.73%, respectively.

To further evaluate the feature selection of IBCGA,
a traditional rank-based method for evaluating performance

of a single feature is also implemented for comparison.

The feature selection of the rank-based method is performed

using the following steps. (1) For each physicochemical

property, the prediction accuracy AA of 10-CV using SVM

and the single feature was computed. (2) All physicochemical
properties were ranked according to their AA accuracies.

(3) The r properties with the highest ranks and SVM were

used to predict peptide immunogenicity. Figure 2 shows the AA

accuracies of various feature sets with size r, where r¼ 5, . . . , 45.
The rank-based method suffers from the incapability of

finding appropriate values of C and � to train SVM classifiers.

In order to achieve high performance, two parameter settings of

SVM were tested. The first rank-based method named RankD

using the default values of SVM parameters that C¼ 1 and
�¼ 1/r. The best performance of RankD is AA¼ 36.08% with

21 features. The second rank-based method named RankI using

the same values of C¼ 2 and �¼ 2 obtained from IBCGA. The

best performance of RankI is AA¼ 48.87% with 18 features.

Figure 2 shows the performance of RankI is better than that

of RankD, revealing that the parameter setting of SVM
parameters derived from IBCGA is effective. Furthermore,

the performance of feature selection of IBCGA is much

better than that of the rank-based method. This result is well

recognized that the feature selection by additionally considering

the correlated effects among physicochemical properties can

advance prediction performance. Table 3 lists the AAindex

identities of the 23 physicochemical properties selected by
IBCGA.

3.2 Analyzing individual effects of properties

Estimating the individual effects of selected properties is
important for immunologists to understand peptide immuno-

genicity comprehensively. Orthogonal experimental design used

in IBCGA is capable of estimating individual effects of factors

according to the value of MED. The property with the largest

Table 3. The AAindex identities of the 23 physicochemical properties

selected by IBCGA, which are ranked according to their effectiveness of

prediction

Rank

by

MED

ID of AAindex Rank

by

RankI

Rank

by MED

ID of AAindex Rank

by

RankI

1 GEIM800103 257 13 MUNV940101 347

2 OOBM770104 347 14 HUTJ700102 530

3 PALJ810115 99 15 MITS020101 481

4 QIAN880132 462 16 KARP850103 312

5 OOBM850102 347 17 FAUJ880113 347

6 NADH010106 47 18 ISOY800106 197

7 RADA880106 281 19 RACS820113 347

8 QIAN880112 347 20 GEOR030105 308

9 WEBA780101 347 21 QIAN880114 336

10 QIAN880125 347 22 DIGM050101 347

11 JOND750101 48 23 MIYS850101 94

12 QIAN880124 337

Fig. 2. Averaged accuracies (AAs) of 10-CV for IBCGA, rank-based

methods (RankD and RankI) and the alignment-based method

(ALIGN).
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value of MED is the most effective property. Figure 3 shows

the value of MED for each selected property. The property

of AAindex identity GEIM800103 is the most effective

property with MED¼ 33.29, which corresponds to ‘Alpha-

helix indices for beta-proteins’ (Geisow and Roberts, 1980).

The least effective property is MIYS850101 with MED¼ 0.80,

which corresponds to ‘Effective partition energy’ (Miyazawa

and Jernigan, 1985).
Since all the properties were selected at the same time based

on the prediction performance, the feature set obtained by

IBCGA would be not the same always for each run of IBCGA

due to the reasons: (1) IBCGA is a non-deterministic algorithm;

(2) the selected kernel function and parameter setting of SVM

would slightly affect the prediction performance and (3) the

feature selection is a machine-learning approach and its result

depends on the distribution of samples in the dataset. A larger

training dataset would make the selected feature set more

stable.
In the computer experiment of mining informative features,

there are 72 independent runs performed by IBCGA. The

largest, mean and smallest numbers m of selected features are

45, 29.10 and 8, respectively. The highest, mean and lowest AA

accuracies in the training phase are 63.78, 61.11 and 58.56%,

respectively. The statistic result reveals that a small set of

effective properties is more stable in each run of IBCGA. For

example, the three properties QIAN880112, MITS020101

and KARP850103 with ranks 8, 15 and 16 shown in Figure 3

have the highest ranks 1, 6 and 6, respectively, according to

the selection frequency in the 72 runs.

Table 3 also shows the ranks of the selected properties based

on the prediction accuracy of RankI. The best one of selected

properties is NADH010106 in terms of the rank by RankI,

which has the accuracy of AA¼ 32.98% and rank 47. On the

other hand, the most effective property GEIM800103 has the

rank 257 by RankI. Table 3 reveals that the ranks by RankI

for the 23 selected properties are uniformly distributed. This

scenario indicates that a set of properties should be considered

simultaneously rather than single property at a time because of

strong correlation among physicochemical properties.

3.3 Prediction system POPI

The prediction system POPI is implemented by adopting

the 23 selected informative properties (shown in Table 3) and

the established SVM-based classifier in the training phase.

To evaluate the ability of POPI in predicting novel peptides,

the LOOCV performance is applied on the whole dataset

PEPMHCI.

Table 4 shows the performance of POPI in terms of ACC

and MCC for the four immunogenicity classes, and the

prediction accuracies of OA and AA. The ACC accuracies of

the four classes None, Little, Moderate and High are 83.33,

50.60, 55.00 and 59.41%, respectively. The mean of MCC

performance is 0.51.
The test performance of POPI (OA¼ 64.72 and

AA¼ 62.09%) is slightly worse than the training performance

(OA¼ 66.12 and AA¼ 63.67%). This result indicates that

the overfitting problem is not obviously occurred in selecting

informative features.

3.4 Alignment-based prediction

Sequence alignment may be an efficient approach to predicting

peptide immunogenicity because similar sequences may have

similar peptide immunogenicity. In order to compare the

alignment-based prediction methods with POPI, two methods

including global sequence alignment tool ALIGN (Myers and

Miller, 1988) and advanced sequence comparison method PSI-

BLAST that is capable of detecting remote homologs (Altschul

et al., 1997) were applied to search for similar sequences.

For each tested peptide, ALIGN and PSI-BLAST using three

iterations were applied separately to search for its homologs.

For comparison, LOOCV was used to evaluate their

prediction performances on the same dataset. The immuno-

genicity class with the highest similarity score was assigned

to the test peptide. If there are multiple peptides with the

same score, voting strategy is applied. Otherwise, if two or

more immunogenicity classes have equal votes, the candidate

immunogenicity classes will be ranked by sample size in the

dataset and the immunogenicity class with highest rank was

assigned to the test peptide.

Table 4 shows the results of ALIGN (OA¼ 54.91 and

AA¼ 52.64%) and PSI-BLAST (OA¼ 53.23 and

AA¼ 52.35%). Notably, the accuracy of PSI-BLAST shown

in Table 4 is measured by considering only the peptides whose

homologs can be obtained. When considering the 118 of 428

peptides with no homolog found, the accuracy of PSI-BLAST

Table 4. Performance comparisons of ALIGN, PSI-BLAST and POPI

using LOOCV on the whole dataset PEPMHCI

Immunogenicity

class

ALIGN PSI-BLAST POPI

ACC

(%)

MCC ACC

(%)

MCC ACC

(%)

MCC

None 69.44 0.61 82.14 0.59 83.33 0.63

Little 39.76 0.32 45.59 0.40 50.60 0.44

Moderate 39.00 0.22 34.67 0.12 55.00 0.47

High 62.38 0.37 46.99 0.37 59.41 0.49

OA 54.91 53.23 64.72

AA 52.64 52.35 62.09Fig. 3. Individual effects of 23 selected properties sorted by MED.
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would be decreased. The lines shown in Figure 2 represents the

performance (AA¼ 49.23 and OA¼ 51.17%) of ALIGN using

10-CV for comparison. The results reveal that POPI performs

well compared with the alignment-based methods ALIGN

and PSI-BLAST, when the size of the reference dataset is not

sufficiently large. Notably, the performance of all methods

using 10-CV is not significantly different from that using

LOOCV.

3.5 Affinity-driven prediction

In the past, affinity was considered as an important index

to predict peptide immunogenicity. To evaluate the affinity-

driven prediction method, an additional dataset was

established by extracting MHC class I binding peptides

with known activity levels in both fields of ‘BINDING’

and ‘IMMUNOGENICITY’ from the MHCPEP database.

However, there are four levels in the field of

‘IMMUNOGENICITY’, but the field of ‘BINDING’ has

only three levels without the level ‘none’. To fairly evaluate the

prediction performance of the affinity-driven prediction, the

immunogenic class None was combined with the class Little.

The dataset contains 160 peptides belonging to three classes.
To evaluate the affinity-driven prediction method, a predic-

tion system named AFFIPRE to predict peptide immunogeni-

city was implemented using the following criterion. If the

immunogenic level and the affinity level of a peptide are

identical, this test is regarded as a successful prediction.

Otherwise, this prediction is fail. The four measurements

were used to evaluate AFFIPRE, which are the same with

those for IBCGA. Table 5 shows the results of AFFIPRE

(OA¼ 39.38% and AA¼ 40.09%) and POPI (OA¼ 60.63%

and AA¼ 50.50%). The poor performance of AFFIPRE

reveals that the affinity only cannot be directly used to predict

peptide immunogenicity and this result is consistent with

previous studies that the affinity of peptide-MHC molecules

is not the main factor for predicting peptide immunogenicity

(Feltkamp et al., 1994; Ochoa-Garay et al., 1997).

4 DISCUSSIONS

The effectiveness of vaccination depends on peptide immuno-

genicity in designing peptide-based vaccines. Accurate

prediction of peptide immunogenicity will decrease many

experimental efforts. This study investigates the prediction

problem of peptide immunogenicity and proposes an efficient

prediction system POPI to predict immunogenicity of peptides

with variable lengths. POPI is an SVM-based classifier with

a set of informative features selected by the proposed IBCGA.

In this study, a dataset PEPMHCI of peptides associated

with human MHC class I molecules extracted from MHCPEP

was established. Considering the correlated effects among

physicochemical properties and the cooperation with the

SVM classifier, both feature selection and parameter tuning

are simultaneously optimized using IBCGA. A feature set

consisting of 23 physicochemical properties was selected to

implement the prediction system POPI.
To our knowledge, POPI is the first computational system

for prediction of peptide immunogenicity based on physico-

chemical properties. To evaluate POPI comprehensively, the

feature selection method was compared with a rank-based

selection method and the selected properties were analyzed

using the factor analysis of orthogonal experimental design.

Simulation results show that IBCGA can select a small set of

informative properties considering the correlated effects,

compared with the rank-based method.
In order to further evaluate POPI, three prediction methods

were tested for comparison, namely the alignment-based

methods ALIGN and PSI-BLAST, and the affinity-driven

prediction method AFFIPRE. Because the reference dataset is

not sufficiently large, ALIGN and PSI-BLAST cannot work

well. This poor performance of AFFIPRE shows that affinity is

not suitable to predict peptide immunogenicity directly. This

result is consistent with previous studies that the peptide

immunogenicity does not strongly correlate with its affinity for

the MHC molecule (Feltkamp et al., 1994; Ochoa-Garay et al.,

1997).
To cope with the small size of the training dataset in mining

informative physicochemical properties, the proposed method

can provide each selected property with the effectiveness

according to its main effect difference in discriminating

immunogenic levels and the robustness in terms of selection

frequency. The valuable information is helpful in determining a

best set of features to implement an accurate prediction system

as well as to further understand immune responses from the

informative physicochemical properties. The future work is to

collect more immunogenicity data by combining biological

knowledge and related sources, such as Immune Epitope

Database and Analysis Resource (IEDB, Peters et al., 2005),

to advance the prediction performance of IBCGA.
In fact, the feature selection method of IBCGA has been

shown effective in solving large-scale binary combinatorial

optimization problems (Ho et al., 2004a, b, 2006). On the other

hand, the SVM-based learning methods are shown effective for

protein sequence-based predictions. As a result, IBCGA with

SVM can be easily used to design an SVM-based classifier for

solving sequence-based prediction problems by mining infor-

mative features of physicochemical properties from an experi-

mental dataset.
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