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Abstract

Twisted cubes, crossed cubes, Möbius cubes, and locally twisted cubes are some of the widely studied hypercube variants. The
4-pancyclicity of twisted cubes, crossed cubes, Möbius cubes, locally twisted cubes and the 4-edge-pancyclicity of twisted cubes,
crossed cubes, Möbius cubes are proven in [C.P. Chang, J.N. Wang, L.H. Hsu, Topological properties of twisted cube, Inform.
Sci. 113 (1999) 147–167; C.P. Chang, T.Y. Sung, L.H. Hsu, Edge congestion and topological properties of crossed cubes, IEEE
Trans. Parall. Distr. 11 (1) (2000) 64–80; J. Fan, Hamilton-connectivity and cycle embedding of the Möbius cubes, Inform. Process.
Lett. 82 (2002) 113–117; X. Yang, G.M. Megson, D.J. Evans, Locally twisted cubes are 4-pancyclic, Appl. Math. Lett. 17 (2004)
919–925; J. Fan, N. Yu, X. Jia, X. Lin, Embedding of cycles in twisted cubes with edge-pancyclic, Algorithmica, submitted for
publication; J. Fan, X. Lin, X. Jia, Node-pancyclic and edge-pancyclic of crossed cubes, Inform. Process. Lett. 93 (2005) 133–138;
M. Xu, J.M. Xu, Edge-pancyclicity of Möbius cubes, Inform. Process. Lett. 96 (2005) 136–140], respectively. It should be noted
that 4-edge-pancyclicity implies 4-node-pancyclicity which further implies 4-pancyclicity. In this paper, we outline an approach to
prove the 4-edge-pancyclicity of some hypercube variants and we prove in particular that Möbius cubes and locally twisted cubes
are 4-edge-pancyclic.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Interconnection networks are essential for parallel
and distributed computing. The hypercube is one of the
most popular interconnection networks since it has sim-
ple structure and is easy to implement. An interconnec-
tion network can be represented by a graph G = (V ,E),
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where V is the set of nodes and E is the set of edges of
the network. In this paper, we will use graphs and inter-
connection networks interchangeably.

It has been shown that hypercubes do not achieve the
smallest possible diameter for its resources. Therefore,
many variants were proposed. The most well-known
variants are twisted cubes [9], crossed cubes [4], and
Möbius cubes [3]; they have diameters about half of that
of a hypercube. Generally, the drawback of these vari-
ants is that the labels of some neighboring nodes may
differ in as many as n/2 bits, where n is the dimen-
sion of these hypercube variants (see [11] for details).
For example, in the 10-dimensional crossed cube, nodes
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0001010101 and 1011111111 are adjacent and they dif-
fer in 5 bits. Based on this observation, Yang et al. [11]
proposed the locally twisted cubes with diameters about
half of that of a hypercube, of which the labels of any
two neighboring nodes differ in at most two successive
bits.

The following terminologies will be used through-
out this paper. An �-cycle is a cycle of length �. Let
G = (V ,E) be a graph and L � |V | be a positive in-
teger. G is L-pancyclic if for every integer � ∈ {L,

L + 1, . . . , |V |}, G contains an �-cycle. G is L-node-
pancyclic if for every node x ∈ V and every integer
� ∈ {L,L + 1, . . . , |V |}, G contains an �-cycle C such
that x is in C. G is L-edge-pancyclic if for every edge
(x, y) ∈ E and every integer � ∈ {L,L + 1, . . . , |V |}, G

contains an �-cycle C such that (x, y) is in C.
One way to evaluate an interconnection network

(a host graph) is to see how well other existing networks
(the guest graphs) can be embedded into it. Graph em-
bedding can be formally defined as follows: Given two
graphs G = (V ,E) and H = (V ′,E′), an embedding
from G to H is a mapping ψ :V → V ′. An important
benefit of graph embedding is that we can apply existing
algorithms for the guest graphs to the host graph. Cycles
(i.e., rings) and trees are commonly used guest graphs.
This paper will discuss the cycle-embedding properties
of Möbius cubes and locally twisted cubes (these cubes
will be defined later).

Twisted cubes, crossed cubes, Möbius cubes, and lo-
cally twisted cubes are superior to hypercubes when the
cycle-embedding capability is considered. The 4-pan-
cyclicity of twisted cubes, crossed cubes, Möbius cubes,
and locally twisted cubes are proven in [2,1,5,12], re-
spectively. Recently, Fan et al. [6] proved that crossed
cubes are not only 4-node-pancyclic but also 4-edge-
pancyclic. It should be noted that 4-edge-pancyclicity
implies 4-node-pancyclicity (thus the proof in [6] for
the 4-node-pancyclicity of crossed cubes is actually re-
dundant) which further implies 4-pancyclic. Lately, the
4-edge-pancyclicity of twisted cubes and Möbius cubes
are proven in [7,10], respectively (see also [8]).

In this paper, we outline an approach to prove the
4-edge-pancyclicity of some hypercube variants and
we prove, in particular, that Möbius cubes and locally
twisted cubes are 4-edge-pancyclic. We also show how
to use our approach to prove that crossed cubes are
4-edge-pancyclic.

This paper is organized as follows. In Section 2,
we give some definitions and notations. In Section 3,
we outline an approach to prove 4-edge-pancyclicity.
In Sections 4–6, we prove that locally twisted cubes,
crossed cubes, and Möbius cubes are 4-edge-pancyclic.
The final section concludes this paper.

2. Preliminaries

Let G = (V ,E) be a graph and let L � |V | − 1 be a
positive integer. G is L-path-connected if G contains
a path of length L between any two distinct nodes.
G is Hamiltonian-connected if G is (|V | − 1)-path-
connected.

The n-dimensional hypercube Qn is a graph with 2n

nodes and n · (2n−1) edges such that its nodes are n-tu-
ples with entries in {0,1} and its edges are the pairs of
n-tuples that differ in exactly one position. Thus Q1 is
the complete graph with two nodes 0 and 1, and Qn

(n � 2) is built from two copies of Qn−1 as follows:
Let k ∈ {0,1} and let kQn−1 denote the graph obtained
by prefixing the label of each node of one copy of Qn−1
with k; connect each node 0xn−1 . . . x2x1 of 0Qn−1 with
the node 1xn−1 . . . x2x1 of 1Qn−1 by an edge.

We now define a generalization of Qn. The n-di-
mensional general cube GQn is defined recursively as
follows (see Fig. 1). GQ1 is Q1, and GQn (n � 2) is
built from two GQn−1’s (not necessarily identical) as
follows: Let k ∈ {0,1} and let kGQn−1 denote the graph
obtained by prefixing the label of each node of one of
the two GQn−1’s with k; add a perfect matching be-
tween 0GQn−1 and 1GQn−1, i.e., each node in 0GQn−1
is adjacent to exactly one node in 1GQn−1.

We assume conventionality of the node prefixing
method kGQn−1 which will be used repeatedly in the
definitions of specific hypercube variants late in this
paper unless otherwise specified. We will see in the fol-
lowing sections that crossed cubes, Möbius cubes, and
locally twisted cubes are the examples of GQn. Note
that the two GQn−1’s in GQn are not necessarily identi-
cal. For instance, for crossed cubes and locally twisted
cubes, the two GQn−1’s are identical; but for Möbius
cubes, they are not.

For clarity, let V (G) and E(G) denote the set of
nodes and the set of edges of G, respectively. We

Fig. 1. The n-dimensional general cube GQn .
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say that (x, y) is a matching edge in GQn if x ∈
V (0GQn−1), y ∈ V (1GQn−1), and x is matched with
y. If (x, y) is a matching edge, then we write m(x) for
y and m(y) for x. We say that GQn has the 4-cycle
property if for every matching edge (x, y), there ex-
ists a matching edge (u, v) such that (x,u, v, y, x) form
a 4-cycle in GQn. We say that GQn has the 5-cycle
property if for every matching edge (x, y), there exist
a matching edge (s, t) and a node r ∈ V (0GQn−1) such
that (x, r, s, t, y, x) form a 5-cycle in GQn.

3. 4-edge-pancyclicity of general cubes

In this section, we outline an approach to prove 4-
edge-pancyclicity. We first give two lemmas.

Lemma 1. For n � 4, if both 0GQn−1 and 1GQn−1
are Hamiltonian-connected, then GQn is Hamiltonian-
connected.

Proof. Let x and y be two arbitrary distinct nodes of
GQn. Then there are four cases.

Case 1. x ∈ V (0GQn−1) and y ∈ V (0GQn−1). Since
0GQn−1 is Hamiltonian-connected, it has a Hamil-
tonian path (p1,p2, . . . , p2n−1) such that p1 = x and
p2n−1 = y. Since 1GQn−1 is Hamiltonian-connected,
it has a Hamiltonian path (q1, q2, . . . , q2n−1) such that
q1 = m(p1) and q2n−1 = m(p2). Hence (x, q1, q2, . . . ,

q2n−1 ,p2,p3, . . . , p2n−1−1, y) is a Hamiltonian path be-
tween x and y in GQn.

Case 2. x ∈ V (1GQn−1) and y ∈ V (1GQn−1). The
argument is similar to that of Case 1.

Case 3. x ∈ V (0GQn−1) and y ∈ V (1GQn−1).
Let z ∈ V (0GQn−1) such that z �= x. Since 0GQn−1
is Hamiltonian-connected, it has a Hamiltonian path
(p1,p2, . . . , p2n−1) such that p1 = x and p2n−1 = z.
Since 1GQn−1 is Hamiltonian-connected, it has a Ha-
miltonian path (q1, q2, . . . , q2n−1) such that q1 = m(z)

and q2n−1 = y. Hence (x,p2, . . . , p2n−1 , q1, q2 . . . ,

q2n−1−1, y) is a Hamiltonian path between x and y in
GQn.

Case 4. x ∈ V (1GQn−1) and y ∈ V (0GQn−1). The
argument is similar to that of Case 3. �
Lemma 2. For n � 4, if both 0GQn−1 and 1GQn−1 are
Hamiltonian-connected and (2n−1 −2)-path-connected,
then GQn is (2n − 2)-path-connected.

Proof. Let x and y be two arbitrary distinct nodes of
GQn. Then there are four cases.

Case 1. x ∈ V (0GQn−1) and y ∈ V (0GQn−1). Since
0GQn−1 is Hamiltonian-connected, it has a Hamil-
tonian path (p1,p2, . . . , p2n−1) such that p1 = x and
p2n−1 = y. Since 1GQn−1 is (2n−1 −2)-path-connected,
it has a path (q1, q2, . . . , q2n−1−1) of length 2n−1 − 2
such that q1 = m(p1) and q2n−1−1 = m(p2). Hence
(x, q1, q2, . . . , q2n−1−1,p2,p3, . . . , p2n−1−1, y) is a path
of length 2n − 2 between x and y in GQn.

Case 2. x ∈ V (1GQn−1) and y ∈ V (1GQn−1). The
argument is similar to that of Case 1.

Case 3. x ∈ V (0GQn−1) and y ∈ V (1GQn−1).
Let z ∈ V (0GQn−1) such that z �= x. Since 0GQn−1
is Hamiltonian-connected, it has a Hamiltonian path
(p1,p2, . . . , p2n−1) such that p1 = x and p2n−1 = z.
Since 1GQn−1 is (2n−1 − 2)-path-connected, it has a
path (q1, q2, . . . , q2n−1−1) of length 2n−1 − 2 such that
q1 = m(z) and q2n−1−1 = y. Hence (x,p2, . . . , p2n−1 ,

q1, q2 . . . , q2n−1−2, y) is a path of length 2n −2 between
x and y in GQn.

Case 4. x ∈ V (1GQn−1) and y ∈ V (0GQn−1). The
argument is similar to that of Case 3. �

We now outline an approach to prove the 4-edge-
pancyclicity of GQn.

Theorem 3. For n � 4, if all the GQ3’s in GQn are 4-
edge-pancyclic, Hamiltonian-connected, and (23 − 2)-
path-connected, and if GQn has both the 4-cycle and
the 5-cycle properties, then GQn is 4-edge-pancyclic.

Proof. This theorem follows from Lemmas 1, 2, and
the following claim.

Claim. For n � 4, if both 0GQn−1 and 1GQn−1 are
4-edge-pancyclic, Hamiltonian-connected, and (2n−1 −
2)-path-connected, and if GQn has both the 4-cycle
property and the 5-cycle property, then GQn is 4-edge-
pancyclic.

We now prove the claim. Let (x, y) be an arbitrary
edge of E(GQn) and let � ∈ {4,5, . . . ,2n}. There are
four cases.

Case 1. x ∈ V (0GQn−1) and y ∈ V (0GQn−1). Then
there are three subcases.

Subcase 1.1. 4 � � � 2n−1. Since 0GQn−1 is 4-edge-
pancyclic, there exists an �-cycle that contains (x, y) in
0GQn−1, hence in GQn.

Subcase 1.2. � = 2n−1 + 1. Let u = m(x) and v =
m(y). Since 1GQn−1 is (2n−1 − 2)-path-connected, it
has a path (p1,p2, . . . , p2n−1−1) of length 2n−1 −2 such
that p1 = v and p2n−1−1 = u. Thus (x, y,p1,p2, . . . ,

p2n−1−1, x) is a (2n−1 + 1)-cycle in GQn that contains
(x, y).
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Subcase 1.3. 2n−1 + 2 � � � 2n. Since 0GQn−1
is 4-edge-pancyclic and (x, y) is an edge in 0GQn−1,
there exists a 2n−1-cycle C = (p1,p2, . . . , p2n−1 ,p1) in
0GQn−1 such that p1 = x and p2 = y. Note that 1 �
� − 2n−1 − 1 � 2n−1 − 1. Let (p1,p2, . . . , p�−2n−1) be
the path of length �−2n−1 −1 in C. Set w = p�−2n−1 for
easy writing. Let u = m(x) and v = m(w). Then u,v ∈
V (1GQn−1). Since 1GQn−1 is Hamiltonian-connected,
there is a path (q1, q2, . . . , q2n−1) of length 2n−1 − 1
in 1GQn−1 such that q1 = v and q2n−1 = u. Thus
(p1,p2, . . . , p�−2n−1 , q1, q2, . . . , q2n−1 ,p1) is a cycle of
length (� − 2n−1 − 1) + 1 + (2n−1 − 1) + 1 = � in GQn

that contains (x, y).
Case 2. x ∈ V (1GQn−1) and y ∈ V (1GQn−1). The

argument is similar to that of Case 1.
Case 3. x ∈ V (0GQn−1) and y ∈ V (1GQn−1). Then

there are four subcases.
Subcase 3.1. � ∈ {4,5}. Since GQn has the 4-cycle

property and the 5-cycle property, there exists a cycle of
length � in GQn that contains (x, y).

Subcase 3.2. 6 � � � 2n−1 + 2. Since GQn has
the 4-cycle property, there exist u ∈ V (0GQn−1) and
v ∈ V (1GQn−1) such that (x,u, v, y, x) form a 4-cycle
in GQn. Let m = � − 2. Then 4 � m � 2n−1. Since
0GQn−1 is 4-edge-pancyclic, there exists a m-cycle
(p1,p2, . . . , pm,p1) in 0GQn−1 such that p1 = x and
pm = u. Thus (x,p2, . . . , pm, v, y, x) is an (m + 2)-
cycle (i.e., an �-cycle) in GQn that contains (x, y).

Subcase 3.3. � = 2n−1 + 3. Since GQn has the 4-
cycle property, there exist u ∈ V (0GQn−1) and v ∈
V (1GQn−1) such that (x,u, v, y, x) form a 4-cycle
in GQn. Since 0GQn−1 is 4-edge-pancyclic, there ex-
ists a (2n−1 − 1)-cycle (p1,p2, . . . , p2n−1−1,p1) in
0GQn−1 such that p1 = x and p2n−1−1 = u. Since
1GQn−1 is 4-edge-pancyclic, there exists a 4-cycle
(q1, q2, q3, q4, q1) in 1GQn−1 such that q1 = v and
q4 = y. Thus (p1,p2, . . . , p2n−1−1, q1, q2, q3, q4,p1) is
a (2n−1 + 3)-cycle in GQn that contains (x, y).

Subcase 3.4. 2n−1 + 4 � � � 2n. Since GQn has the
4-cycle property, there exist u ∈ V (0GQn−1) and v ∈
V (1GQn−1) such that (x,u, v, y, x) form a 4-cycle in
GQn. Since 0GQn−1 is 4-edge-pancyclic, there exists a
2n−1-cycle (p1,p2, . . . , p2n−1 ,p1) in 0GQn−1 such that
p1 = x and p2n−1 = u. Let m = �−2n−1. Then 4 � m �
2n−1. Since 1GQn−1 is 4-edge-pancyclic, there exists a
m-cycle (q1, q2, . . . , qm, q1) in 1GQn−1 such that q1 =
v and qm = y. Thus (p1,p2, . . . , p2n−1 , q1, q2, . . . , qm)

is a cycle of length (2n−1 − 1) + (m − 1) + 2 = m +
2n−1 = � in GQn that contains (x, y).

Case 4. x ∈ V (1GQn−1) and y ∈ V (0GQn−1). The
argument is similar to that of Case 3. �
Fig. 2. (a) LTQ3. (b) A symmetric drawing of LTQ3.

Fig. 3. LTQ4.

4. Pancyclicity of locally twisted cubes

The purpose of this section is to use Theorem 3 to
prove that locally twisted cubes are 4-edge-pancyclic.

The n-dimensional locally twisted cube LTQn is de-
fined recursively as follow. LTQ1 is Q1, and LTQ2 is the
graph consisting of four nodes labeled with 00, 01, 10,
and 11, respectively, and connected by the four edges
(00, 01) (00, 10), (01, 11), and (10, 11). LTQn (n � 3)
is built from two identical LTQn−1’s as follows: connect
each node 0xn−1xn−2 . . . x1 of 0LTQn−1 with the node
1(xn−1 + x1)xn−2 . . . x1 of 1LTQn−1 by an edge, where
‘+’ means the modulo 2 addition operation. See Figs. 2
and 3 for examples.

Before going any further, we work out the adjacency
relation of LTQn. For convenience, xi denotes the com-
plement of xi .

Lemma 4. For every x = xnxn−1 . . . x1 ∈ V (LTQn), the
n nodes y1, y2, . . . , yn adjacent to x are:

y1 = xnxn−1xn−2 . . . x3x2x1,

y2 = xnxn−1xn−2 . . . x3x2x1,

y3 = xnxn−1xn−2 . . . x3(x2 + x1)x1,
...

yn−1 = xnxn−1(xn−2 + x1) . . . x3x2x1,

yn = xn(xn−1 + x1)xn−2 . . . x3x2x1.

Proof. By the definition of LTQn, (x, yn) ∈ E(LTQn).
(x, y1) ∈ E(LTQn) because (x1, x1) ∈ E(LTQ1) and
LTQn is built from LTQ1. Similarly, (x, y2) ∈ E(LTQn)
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because (x2x1, x2x1) ∈ E(LTQ2) and LTQn is built
from LTQ2. For 3 � i � n − 1, (x, yi) ∈ E(LTQn)

because (xixi−1xi−2 . . . x1, xi(xi−1 + x1)xi−2 . . . x1) ∈
E(LTQi ) and LTQn is built from LTQi . �

It is not difficult to see that: for each n, there is only
one type of LTQn. Thus for n � 4, all the LTQ3’s in
LTQn are identical. We are now ready to prove that lo-
cally twisted cubes satisfy Theorem 3.

Theorem 5. LTQ3 is 4-edge-pancyclic, Hamiltonian-
connected, and (23 − 2)-path-connected. For n � 4,
LTQn has both the 4-cycle property and the 5-cycle
property.

Proof. In [12], it was proven that LTQn is Hamiltonian-
connected and (2n − 2)-path-connected for n � 3. Thus
LTQ3 is Hamiltonian-connected and (23 − 2)-path-
connected. We now prove that LTQ3 is 4-edge-pan-
cyclic. Since LTQ3 is node-symmetric (see Fig. 2(b)), it
suffices to consider the edge (x, y) ∈ {(000,001), (000,

010)}. The cycles of lengths from 4 to 8 containing
(000,001) (underlined) are listed as follows:

length 4: 000,001,011,010,000;
length 5: 000,001,111,101,100,000;
length 6: 000,001,011,010,110,100,000;
length 7: 000,001,011,101,111,110,100,000;
length 8: 000,001,111,110,010,011,101,100,000.

The cycles of lengths from 4 to 8 containing (000,010)

(underlined) are listed as follows:

length 4: 000,010,110,100,000;
length 5: 000,010,110,111,001,000;
length 6: 000,010,110,111,101,100,000;
length 7: 000,010,110,100,101,111,001,000;
length 8: 000,010,110,111,001,011,101,100,000.

Thus LTQ3 is 4-edge-pancyclic.
We now prove that LTQn has the 4-cycle property

and the 5-cycle property. Let (x, y) be an arbitrary
matching edge of LTQn and let x = 0xn−1xn−2 . . . x2x1.
By the definition of LTQn, y = 1(xn−1 + x1)xn−2 . . .

x2x1.
First consider the 4-cycle property. Let u = 0xn−1

xn−2 . . . x2x1 and v = 1(xn−1 + x1)xn−2 . . . x2x1. By
Lemma 4, {(x,u), (u, v), (v, y)} ⊆ E(LTQn). Hence
(x,u, v, y, x) is a 4-cycle in LTQn that contains (x, y).
Now consider the 5-cycle property. If x1 = 0, let
r = 0xn−1xn−2 . . . x20, s = 0xn−1xn−2 . . . x21, and t =
1xn−1xn−2 . . . x21; otherwise, if x1 = 1, let r = 0xn−1
xn−2 . . . x20, s = 0xn−1xn−2 . . . x20, and t = 1xn−1xn−2
. . . x20. By Lemma 4, {(x, r), (r, s), (s, t), (t, y)} ⊆
E(LTQn). Hence (x, r, s, t, y, x) is a 5-cycle in LTQn

that contains (x, y). �
It was proven in [12] that LTQn is 4-pancyclic. We

now strengthen this result.

Theorem 6. For n � 2, LTQn is 4-edge-pancyclic.

Proof. Clearly, this theorem holds when n = 2. By The-
orem 5, this theorem holds when n = 3. For n � 4, this
theorem follows from Theorems 3 and 5. �

The following corollary is obvious.

Corollary 7. For n � 2, LTQn is 4-node-pancyclic.

5. Pancyclicity of crossed cubes

We first give the definition of crossed cubes. Two bi-
nary strings x = x2x1 and y = y2y1 of length two are
said to be pair related (denoted by x ∼ y) if and only if
(x, y) ∈ {(00,00), (10,10), (01,11), (11,01)}. The n-
dimensional crossed cube CQn is defined recursively as
follows. CQ1 is Q1, and CQ2 is the graph consisting
of four nodes labeled with 00, 01, 10 and 11, respec-
tively, and connected by the four edges (00,01), (00,

10), (01,11), and (10,11). CQn (n � 3) is built from
two identical CQn−1’s as follows: connect each node
0xn−1 . . . x2x1 of 0CQn−1 with the node 1yn−1 . . . y2y1
of 1CQn−1 by an edge if and only if

(1) xn−1 = yn−1 if n is even, and
(2) x2ix2i−1 ∼ y2iy2i−1 for 1 � i < 	n/2
.

In [6], Fan et al. have proven that crossed cubes are
4-edge-pancyclic. We now show how to use Theorem 3
to obtain this result. It is not difficult to see that: for
each n, there is only one type of CQn. Thus for n � 4,
all the CQ3’s in CQn are identical. We are now ready to
prove that crossed cubes satisfy Theorem 3.

Theorem 8. CQ3 is 4-edge-pancyclic, Hamiltonian-
connected, and (23−1 − 2)-path-connected. For n � 4,
CQn has both the 4-cycle property and the 5-cycle prop-
erty.

Since the proof for each condition in this theorem
can be found in [6], we omit the proof. We have the
following theorem.

Theorem 9. [6] For n � 2, CQn is 4-edge-pancyclic.
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Proof. Clearly, this theorem holds when n = 2. By The-
orem 8, this theorem holds when n = 3. For n � 4, this
theorem follows from Theorems 3 and 8. �

By Theorem 9, it is obvious that for n � 2, CQn is
4-node-pancyclic and 4-pancyclic.

6. Pancyclicity of Möbius cubes

In [10], Xu et al. have proven that Möbius cubes are
4-edge-pancyclic. In this section, we show how to use
Theorem 3 to obtain this result.

The n-dimensional Möbius cube MQn is defined re-
cursively as follow (see Figs. 4 and 5):

(1) MQ1 is Q1.
(2) There are two types of MQ2: one is named 0-MQ2

and the other, 1-MQ2. 0-MQ2 is the graph consist-
ing of four nodes labeled with 00, 01, 10, and 11,
respectively, and connected by the four edges (00,

01), (00,10), (01,11), and (10,11). 1-MQ2 has the
same nodes as 0-MQ2, but connected by the four
edges (00,01), (00,11), (01,10), and (10,11).

(3) For n � 3, there are two types of MQn: 0-MQn

and 1-MQn. Both 0-MQn and 1-MQn are built from

Fig. 4. (a) 0-MQ3. (b) 1-MQ3.

Fig. 5. (a) 0-MQ4. (b) 1-MQ4.
0MQn−1 and 1MQn−1 with the MQn−1 in 0MQn−1
being 0-MQn−1 and the MQn−1 in 1MQn−1 being
1-MQn−1. In 0-MQn, each node 0xn−1xn−2 . . . x1
of 0MQn−1 is connected with the node 1xn−1xn−2
. . . x1 of 1MQn−1; while in 1-MQn, each node
0xn−1xn−2 . . . x1 of 0MQn−1 is connected with the
node 1xn−1xn−2 . . . x1 of 1MQn−1.

Before going any further, we work out the adjacency
relation of MQn.

Lemma 10. For every x = xnxn−1 . . . x2x1 ∈ V (MQn),
the n nodes y1, y2, . . . , yn adjacent to x are as follows.
For 1 � i � n − 1,

yi =
{

xnxn−1 . . . xi+1xixi−1 . . . x1 if xi+1 = 0,

xnxn−1 . . . xi+1xixi−1 . . . x1 if xi+1 = 1.

For 0-MQn, yn = xnxn−1 . . . x1; for 1-MQn, yn =
xnxn−1 . . . x1.

Proof. This lemma follows from the definition of
Möbius cubes given in [3]. �

It is not difficult to see that: for each n, there are
two types of MQn: the 0-MQn and the 1-MQn. Thus
for n � 4, all the MQ3’s in MQn are either 0-MQ3 or
1-MQ3. We are now ready to prove that Möbius cubes
satisfy Theorem 3.

Theorem 11. Both the 0-MQ3 and the 1-MQ3 are 4-
edge-pancyclic, Hamiltonian-connected, and (23 − 2)-
path-connected. For n � 4, MQn has both the 4-cycle
property and the 5-cycle property.

Proof. From Figs. 2, 4, and 6, both 0-MQ3 and 1-MQ3
are isomorphic to LTQ3. Thus by Theorem 5, both 0-
MQ3 and 1-MQ3 are 4-edge-pancyclic, Hamiltonian-
connected, and (23 − 2)-path-connected.

We now prove that MQn has the 4-cycle property and
the 5-cycle property. Let (x, y) be an arbitrary matching

Fig. 6. (a) A symmetric drawing of 0-MQ3. (b) A symmetric drawing
of 1-MQ3.
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edge of MQn and let x = 0xn−1xn−2 . . . x2x1. By the
definition of MQn, y = 1xn−1xn−2 . . . x2x1 if this MQn

is 0-MQn and y = 1xn−1xn−2 . . . x2x1 if this MQn is
1-MQn.

First consider the 4-cycle property. Let u = xnxn−1
. . . x2x1. If this MQn is 0-MQn, then let v = xnxn−1 . . .

x2x1; otherwise, if this MQn is 1-MQn, then let v =
xnxn−1 . . . x2x1. By Lemma 10, {(x,u), (u, v), (v, y)} ⊆
E(MQn). Hence (x,u, v, y, x) is a 4-cycle in MQn that
contains (x, y).

Now consider the 5-cycle property. Let s = 0xn−1
xn−2 . . . x2x1 and choose r and t according to the fol-
lowing rules:

1. If this MQn is 0-MQn and xn−1 = 0, then let r =
0xn−1xn−2 . . . x2x1 and t = 1xn−1xn−2 . . . x2x1.

2. If this MQn is 0-MQn and xn−1 = 1, then let r =
0xn−1xn−2 . . . x2x1 and t = 1xn−1xn−2 . . . x2x1.

3. If this MQn is 1-MQn and xn−1 = 0, then let r =
0xn−1xn−2 . . . x2x1 and t = 1xn−1xn−2 . . . x2x1.

4. If this MQn is 1-MQn and xn−1 = 1, then let r =
0xn−1xn−2 . . . x2x1 and t = 1xn−1xn−2 . . . x2x1.

By Lemma 10, {(x, r), (r, s), (s, t), (t, y)} ⊆ E(MQn).
Hence (x, r, s, t, y, x) is a 5-cycle in MQn that contains
(x, y). �

It was proven in [5] that MQn is 4-pancyclic. We now
strengthen this result (see also [10]).

Theorem 12. For n � 2, MQn is 4-edge-pancyclic.

Proof. Clearly, this theorem holds when n = 2. By The-
orem 11, this theorem holds when n = 3. For n � 4, this
theorem follows from Theorems 3 and 11. �

The following corollary is obvious.

Corollary 13. For n � 2, MQn is 4-node-pancyclic.

7. Concluding remarks

In this paper, we outline an approach to prove the
4-edge-pancyclicity (hence 4-node-pancyclicity and 4-
Table 1
Pancyclicity of hypercube variations

cubes 4-pan 4-node-pan 4-edge-pan

twisted [2] [7,8] [7,8]
crossed [1] [6] [6]
Möbius [5] [10] [10]
loc twisted [12] this paper this paper

pancyclicity) of some hypercube variants. We prove in
particular that Möbius cubes and locally twisted cubes
are 4-edge-pancyclic. We now summarize known results
on the pancyclicity properties of various hypercube vari-
ants in Table 1 (in this table, “pan” means pancyclic and
“loc twisted” means locally twisted).
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