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[1] A mathematical model is developed to describe the
groundwater inflow into a tunnel in a multi-layer aquifer
system. Based on the model, the closed-form solution is
derived to estimate the groundwater flow rate entering the
multi-layer tunnel during progressive drilling. The solution
has an integrand not only consisting of the product and
square of the Bessel functions but also having a singularity
at the origin. A unified numerical approach is proposed to
evaluate the solution with accuracy to five decimal places.
This approach includes a singularity removal scheme, the
Gaussian quadrature, and the Shanks method. For a multi-
layer formation, the results obtained from the solution based
on the equivalent hydraulic conductivity and the newly
derived solution differ significantly. This solution is capable
of estimating the maximum flow rate inside the horizontal
tunnel, and thus can be used as a tool for designing the
drainage tunnel system in a multi-layer formation.
Citation: Yang, S.-Y., and H.-D. Yeh (2007), A closed-form

solution for a confined flow into a tunnel during progressive

drilling in a multi-layer groundwater flow system, Geophys. Res.

Lett., 34, L07405, doi:10.1029/2007GL029285.

1. Introduction

[2] Groundwater flow entering a tunnel is a geotechnical
problem commonly encountered during a progressive dril-
ling in saturated geological formations. Some of engineer-
ing hazards occurring in a tunnel under excavation might be
attributed to the problem of large flows entering the tunnel
from highly fractured, water-saturated rocks. Since this
heavy flow makes the operation of drilling a tunnel difficult
and dangerous, the design and construction must be care-
fully exercised to stem the groundwater flow. The amount
and rate of groundwater flow entering a tunnel needed to be
accurately estimated in advance and a suitable drainage
system can then be designed to draw off the water and avoid
engineering disasters.
[3] To monitor drilling status, the types of the instant and

progressive drilling must be considered in predicting the
groundwater flow rate entering a tunnel. An install drilling
type assumes that the tunnel is installed instantaneously
through a whole length. However, this assumption results in
the initial inflow rate being unrealistically high. In reality,
the construction of a tunnel is drilled progressively and the
flow rate into a tunnel increases from zero to maximum and

is then followed by a period of decay. Perrochet [2005a]
developed a simple analytical formula to evaluate the
transient flow rate into a tunnel or well under constant
drawdown. By using a straight-forward function, an alter-
ative solution is suggested to replace the well function G(t)
of Jacob and Lohman [1952] by ln 1þ

ffiffiffiffiffiffi
pt

p
ð Þ�1. In

engineering applications, that solution can be used with
great computational benefit and can avoid directly evaluating
the integration in Jacob and Lohman’s solution. Perrochet
[2005b] further developed an analytical solution via a
convolution integral to evaluate the transient, drilling
speed-dependent discharge rate into a tunnel gradually
excavated in a homogeneous, infinite, and confined aquifer.
Based on these assumptions, he provided the type curves to
estimate total discharge sensitivity during the drilling time
and predict the maximum flow rates.
[4] There are several models seen in the literature for

calculating the flows into a tunnel in a fully saturated,
homogeneous, isotropic, and infinite aquifer system. Yet,
those existing models all assume that the aquifer is a single
permeable layer, whereas the excavation of a tunnel may in
fact go through the formation with several different geo-
logical materials. Under such circumstances, the single-
layer models cannot correctly calculate the groundwater
flow entering a tunnel during the drilling. This paper
presents a multi-layer model for predicting the transient
inflow rate into a horizontal tunnel during progressive
drilling. In addition, a unified numerical approach is pro-
vided to evaluate the newly derived closed-form solution of
a multi-layer model. This approach includes a singularity
removal scheme, the Gaussian quadrature, and the Shanks
method.

2. Theoretical Development

2.1. Formulas of Flow Rate Across the Wellbore

[5] Employing Darcy’s law, the formula representing the
flow rate Q(t) across the wellbore originally given by Jacob
and Lohman [1952] was expressed as

Q tð Þ ¼ 2pKLs0
4t
p

Z 1

0

ue�tu2 p
2
þ tan�1 Y0 uð Þ

J0 uð Þ

� �� �
du

� �
;

t ¼ Kt

Ssr2w
ð1Þ

where u is a dummy variable, K is the hydraulic
conductivity, Ss is the specific storage, L is the tunnel
length through a subvertical aquifer, s0 is the specified
drawdown at a tunnel, rw is the tunnel radius, t is the
dimensionless time, t is the test time, and J0(u) and Y0(u) are
the Bessel functions of the first and second kinds of order
zero, respectively. Actually, Jaeger [1942] also presented a
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solution for the problem of a well under constant draw-
down, which was analogous to a heat flow problem and
written as

Q tð Þ ¼ 2pKLs0
4

p2

Z 1

0

e�tu2

J 20 uð Þ þ Y 2
0 uð Þ

� �
u
du

( )
ð2Þ

[6] Based on Darcy’s law and the solution of drawdown,
a formula of flow rate across the wellbore was also derived
as [Peng et al., 2002]

Q tð Þ ¼ 2pKLs0G tð Þ ¼ 2pKLs0

� 2

p

Z 1

0

e�tu2 J1 uð ÞY0 uð Þ � J0 uð ÞY1 uð Þ½ 

J 20 uð Þ þ Y 2

0 uð Þ
du

� �
ð3Þ

where J1(u) and Y1(u) are the Bessel functions of the first
and second kinds of order one, respectively. Peng et al.
[2002] proved that these three formulas, equations (1)–(3),
are mathematically equal. Considering an instantaneously
drilling in a permeable zone, the flow rate into a tunnel can
be estimated based on equation (3).

2.2. Temporal Evolution of Flow Rate During
Progressive Drilling

[7] Recently, Taiwan opened Asia’s longest road tunnel,
Hsuehshan (or Snow Mountain) Tunnel, which is 12.9 km
long and links the capital Taipei to the northeastern county
of Ilan. The geological conditions along this tunnel are very
complex. The major geological elements of Hsuehshan
mountain ridge are Eocene, Oligocene and minor Miocene
folded sedimentary rock formations. There are six major
faults, numerous fracture zones, and high-pressure ground-
water everywhere. The rock formations traversed by the
tunnel are highly fractured and contain huge reserve of
groundwater, which made the engineering very difficult.
There were many serious collapses of the wall inside the
tunnel due to the problem of huge groundwater flow,

leading to serious delays in the construction project. There-
fore, intensive investigation on the geology and groundwa-
ter network for the site before and during excavating the
tunnel was crucial and necessary. Accordingly, development
of a multi-layer model for the estimation of transient inflow
rate into a horizontal tunnel during progressive drilling is
important and essential in engineering practices.
[8] A confined flow rate of groundwater into a horizontal

multi-layer tunnel as shown in Figure 1 is considered. It
assumes the drilling speed (v) through a subvertical forma-
tion is uniform and the aquifer is not significantly perturbed
beyond the drilling front. In addition, the flow rate entering
the tunnel is preserved as a radial symmetry. The flow rate
at any drilling location x < vt along the tunnel axis may be
expressed as

qi x; tð Þ ¼ 2pKilis0
2

pli

Z 1

0

exp
�Ki

Ssi r
2
w

t � ti�1 �
x

v

� �
u2

 ��

� J1 uð ÞY0 uð Þ � J0 uð ÞY1 uð Þ½ 

J 20 uð Þ þ Y 2

0 uð Þ
du

�
ð4Þ

Since the groundwater flow equation for a confined aquifer
is linear, the superposition principle is applied to account for
a permeable formation system with several subvertical
layers. The total flow rate entering the tunnel during and
after excavation through the permeable zone is expressed as

Q tð Þ ¼
Xn
i¼1

Z v t�ti�1ð Þ

0

qi x; tð ÞH li � xð ÞU t � ti�1ð Þdx ð5Þ

where n is the total number of layers, H(li � x ) is the
Heaviside step unction, and U(t � ti�1 ) is the unit step
function. Letting w = x/v, equations (4) and (5) can be
respectively rewritten as

qi w; tð Þ ¼ 2pKilis0
2

pli

Z 1

0

exp
�Ki

Ssi r
2
w

t � ti�1 � wð Þu2
 ��

� J1 uð ÞY0 uð Þ � J0 uð ÞY1 uð Þ½ 

J 20 uð Þ þ Y 2

0 uð Þ
du

�
ð6Þ

and

Q tð Þ ¼
Xn
i¼1

Z t�ti�1

0

vqi w; tð ÞH li

v
� w

� �
U t � ti�1ð Þdw ð7Þ

3. Dimensionless Equations

[9] Define the associated variables in dimensionless form
as

z i ¼
Ki=Ssi
K1=Ss1

; t ¼ K1t

Ss1r
2
w

; ti ¼
Kiti�1

Ssi r
2
w

; tLi ¼
Ki

Ssi r
2
w

li

v
;wi ¼

Ki

Ssi r
2
w

x

v

ð8Þ

where z i represents the ratio of hydraulic diffusivity, t is the
dimensionless drilling time, ti is the dimensionless drilling
time starting from the i-th zone, i = 2, 3, . . ., tLi is the
dimensionless drilling time at the i-th zone, and wi is the

Figure 1. A tunnel through a multi-layer subvertical
aquifer.
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dimensionless time at the drilling location x. Then, equation (7)
expressed in dimensionless form is

Q �ð Þ ¼
Xn
i¼1

2pKilis0

Z t�ti=zi

0

H tLi � wið ÞU t � ti=z ið Þ

� 2

ptLi

Z 1

0

e� t�ti=z i�wið Þu2
�

� J1 uð ÞY0 uð Þ � J0 uð ÞY1 uð Þ½ 

J 20 uð Þ þ Y 2

0 uð Þ
du

�
dwi ð9Þ

Applying the convolution to the Heaviside step function and
dimensionless flow rate, equation (9) gives

Q tð Þ ¼ 1

tL1
F1 tð Þ; t � tL1 ð10Þ

Q tð Þ ¼ 1

tL1
F1 tð Þ � F1 t � tL1ð Þð Þ

þ 1

tL2
F2 t � tL1ð Þ; tL1 � t � tL2=z2 ð11Þ

Q tð Þ ¼ 1

tL1
F1 tð Þ � F1 t � tL1ð Þð Þ

þ 1

tL2
F2 t � tL1ð Þ � F2 t � tL2=z2ð Þð Þ

þ 1

tL3
F3 t � tL3=z3ð Þ; tL2=z2 � t � tL3=z3 ð12Þ

. . .

Q tð Þ ¼ 1

tL1
F1 tð Þ � F1 t � tL1ð Þð Þ

þ 1

tL2
F2 t � tL1ð Þ � F2 t � tL2=z2ð Þð Þ

þ � � � þ 1

tLn
Fn t � tLn�1

=zn�1ð Þ � Fn t � tLn=znð Þð Þ;

t � tLn=zn ð13Þ

where

F t � tLi=z ið Þ ¼ 2pKilis0

Z t

0

G wið Þdwi

¼ 2pKilis0ð Þ 4

p2

Z 1

0

1� e� t�ti=z ið Þu2
� �

� 1

J 20 uð Þ þ Y 2
0 uð Þ

� �
u3

du ð14Þ

[10] For the case of a homogeneous aquifer with instant
drilling, the hydrogeological properties are constant and the
tunnel is assumed to instantaneously penetrate the whole
aquifer. Then equation (9) divided by 2pK1Ls0 becomes

qD tð Þ ¼ 1

t

Z t

0

G wð Þdw ¼ 4

tp2

Z 1

0

1� e�tu2

J 20 uð Þ þ Y 2
0 uð Þ

� �
u3
du ð15Þ

which indeed is the time-domain solution for dimensionless
flow rate presented in Carslaw and Jaeger [1940].

4. Numerical Evaluation of Closed-Form Solution

[11] A unified numerical method is presented to estimate
the values of the closed-form solution for dimensionless
flow rate at various dimensionless times. The method
initially adopts an approach of infinite series expansion
given by Harvard University Computation Laboratory
[1950] to remove the singularity of the integrand at u = 0
so that the numerical integration for equation (14) with
integration limit from zero is possible. The Gaussian quad-
rature is then chosen to perform the numerical integrations.
Finally, the Shanks method [Shanks, 1955; Yang and Yeh,
2002] is applied to accelerate the convergence when eval-
uating the related Bessel functions.

4.1. Removal of Singularity of Integrand at an Origin

[12] One efficient way of evaluating the integral in
equation (14) is to transform it to an alternating infinite
series. When a is a small value, the integral over the half-
domain may be expressed by piecewise integrations as

F tð Þ ¼ 4

p2

Z a

0

1� e�tu2

J 20 uð Þ þ Y 2
0 uð Þ

� �
u3

du

(

þ
Z 1

a

1� e�tu2

J 20 uð Þ þ Y 2
0 uð Þ

� �
u3

du

)
ð16Þ

[13] The value of the first term on the right-hand-side
(RHS) of equation (16) approaches infinity as u ! 0
because its numerator and denominator approach zero.
The arctangent in the interval 0 � u � a is a continuous
function, so the second term of equation (16) has a finite
value. The integral in the first term on theRHSof equation (16)
can be evaluated if the singularity at the origin is removed.
The numerator of the first term may be approximated by an
infinite series as

1� e�tu2 ¼ tu2 � 1

2!
tu2
� �2þ 1

3!
tu2
� �3� 1

4!
tu2
� �4þ � � � ð17Þ

In addition, based on the differentiation formula for an
arctangent function [Abramowitz and Stegun, 1964, p. 79,
equation (4.4.3)], one can write

� d

du
tan�1 J0 uð Þ

Y0 uð Þ

 �
¼ 2

pu
1

J 20 uð Þ þ Y 2
0 uð Þ

ð18Þ

Taking the integration of the RHS of equation (18) from
zero to a yields

2

p

Z a

0

du

J 20 uð Þ þ Y 2
0 uð Þ

� �
u
¼ � tan�1 J0 að Þ

Y0 að Þ

 �
ð19Þ
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Note that J0(0)/Y0(0) = 0when u = 0, thus tan
�1[J0(0)/Y0(0)] =

0. Based on equations (17)–(19), equation (16) can be
rewritten as

F tð Þ ¼ 4

p2

pt
2

tan�1 J0 að Þ
Y0 að Þ

 �
þ
Z a

0

� 1

2!
t2uþ 1

3!
t3u3 � 1

4!
t4u5 þ � � � þ �1ð Þnþ1 1

n!
tnu2n�3

J 20 uð Þ þ Y 2
0 uð Þ

� � du

þ
Z 1

a

1� e�tu2
� � 1

J 20 uð Þ þ Y 2
0 uð Þ

� �
u3

du

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

The variable u in the denominator of the first term on the
RHS of equation (16), which poses the problem of a
singularity at u = 0, can be cancelled out. Similarly, the
arctangent is a continuous function in the interval 0 � u � a
because J0(a)/Y0(a) is a finite value as discussed before.
Thus, the formula for dimensionless flow rate, equation (20),
not contain a singular point. Because the integrand of the
third term on the RHS of equation (20) is a monotonically
decreasing function, equation (20) can be easily evaluated
by the Gaussian quadrature [Yang and Yeh, 2002].

4.2. Numerical Integration

[14] The Shanks transform is employed to accelerate the
calculation of the Bessel functions of J0(u), J1(u), Y0(u), and
Y1(u) [Shanks, 1955; Yang and Yeh, 2002]. Both the six-
point and ten-point formulas of the Gaussian quadrature are
used at the same time to carry out the numerical integration
for each RHS term of equation (14). If the difference of
these two results for any interval between two consecutive
roots is greater than the prescribed criterion, then the
interval will be divided into two portions. The same
integration procedure is repeatedly applied to each portion
until the convergence criteria are met to ensure that the
result bears the desired accuracy. The result of the integra-
tion within the interval, considered as a term of infinite
series, is equal to the sum of the areas obtained from total
divided portions.

[15] The interval for the numerical integration of dimen-
sionless flow rate in equation (14) is chosen as 10�10. Then,
both the six-point and ten-point formulas of the Gaussian
quadrature are also used at the same time to carry out the
integration of equation (14). If the difference of these two
integration results is greater than the prescribed criterion,
say 10�7, then, the interval will be divided into two
portions, and the same integration procedure is again
applied to each portion until the integration result for each
portion is less than 10�7. Finally, the numerical integration
result for dimensionless flow rate can be obtained by simply
adding all the results from each interval or portion.

5. Numerical Evaluations and Discussions

[16] A heterogeneous hydraulic conductivity field may be
formed by geologic processes that do not yield uniform
characteristics of aquifer formation over appreciable areas.
In engineering practice, a multi-layer formation may be
represented by an equivalent homogeneous medium. An
ideal groundwater flow entering a tunnel assumes that the
speed of a progressive drilling is uniform and the radial
symmetry of flow is preserved at all times. In this study five
cases for the flow rate into a horizontal tunnel in a three-
layer aquifer system and single-layer aquifer are considered

and examined. Cases 1 and 3 give examples for a three-
layer aquifer system and case 5 shows an example for a
single-layer system. In addition, cases 2 and 4 represent
formation systems with an equivalent hydraulic conductiv-
ity to cases 1 and 3, respectively. Note that the equivalent
hydraulic conductivity for a three-layer system is defined as
K =

P
Kili/L, i = 1, 2, 3. Assume that the specific storage Ss

is 10�2/m, the specified drawdown at a tunnel (s0) and the
tunnel radius (rw) are both 5 m, and the length of progres-
sive drilling in a fully saturated formation (L) is 140 m. The
curves of flow rate versus dimensionless time (t) for those
five cases are plotted in Figure 2 to investigate the impacts
of the layered formation properties on the flow rate for
different formations with the hydrogeological parameters
listed in Table 1. The hydraulic conductivities are K1 =
10�4 m/s and K2 = 10�3 m/s for both cases 1 and 3, and
K3 = 5 � 10�3 m/s for case 1 and 5 � 10�4 m/s for case 3.
Accordingly, the equivalent hydraulic conductivity is 2.59�
10�3 m/s for case 2 and 6.57 � 10�4 m/s for case 4. For
case 5, the hydraulic conductivity is K = 10�4 m/s. The
temporal evolutions of tunnel flow rate for cases 1 to 5 are
presented in Figure 2. Figure 2 indicates that the flow rates
quickly increase with penetration distance and reach
maximums when the tunnel penetration is completed. In
addition, the flow rates tend to decrease with increasing
dimensionless time after the complete penetration and
stabilize when the dimensionless time becomes very large.
The flow rates in cases 1 and 3 are significantly different

ð20Þ

Figure 2. The transient flow-rate in a horizontal three-
layer tunnel.
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when the layer 1, 2, and 3 are respectively penetrated at
t = 1, 4 and 7. The estimated flow rate in case 1 is
apparently smaller than that of case 2 when t � 6. The
estimated flow rate in case 2 is 4.38 m3/s, which is smaller
than 4.54 m3/s of case 1, when the permeable aquifer is
completely penetrated at t = 7. However, the flow rate in
case 2 is slightly larger than that of case 1 from the
beginning of excavation toward the complete penetration.
The flow rate in case 4 is smaller than that of case 3 except
at the second layer before the penetration of the permeable
aquifer and slightly larger while the permeable formation is
completely penetrated; that is, 1.41 m3/s for case 3 and
1.46 m3/s for case 4. The flow rate in case 4 is slightly
larger than that of case 3 after the full penetration of the
permeable aquifer and tends to equal case 3 at a large
dimensionless time. Therefore, the difference of the flow
rates between the case with equivalent hydraulic conduc-
tivity and our solution increases with increasing variability
of the permeable layers. The flow rate of a single layer in
case 5 is significantly smaller than those of cases 1–4 at all
dimensionless times of progressive drilling. Those results

show that the proposed model can efficiently estimate the
flow rate of groundwater entering a tunnel during the
progressive drilling in a multi-layer aquifer system.

6. Conclusions

[17] A closed-form solution is derived to estimate the
flow rate of the ground water into a tunnel during the
progressive drilling in a multi-layer formation system. We
provide a unified numerical approach including a scheme
for singularity removal, the Gaussian quadrature, and the
Shanks method to evaluate the solution with accuracy to
five decimal places. For a multi-layer formation, the results
evaluated by assuming an equivalent hydraulic conductivity
are over-/under-estimated compared to those predicted by
our solution. The multi-layer model we present can estimate
the flow rate into a horizontal tunnel during over progres-
sive drilling time and thus can be used to design the drainage
system for various underground excavation projects.
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Table 1. Parameters for a Multi-Layer Aquifer System

Parameter Layer 1 Layer 2 Layer 3 Equivalent K Singe Layer

Case 1
K, m/s 10�4 10�3 5 � 10�3

L, m 20 60 60
z 1 10 50
tL 1 30 150

Case 2
K, m/s 2.59 � 10�3

l, m 140
z 25.9
tL 181.3

Case 3
K, m/s 10�4 10�3 5 � 10�4

l, m 20 60 60
z 1 10 5
tL 1 30 15

Case 4
K, m/s 6.57 � 10�4

l, m 140
z 6.57
tL 45.99

Case 5
K, m/s 10�4

l, m 140
z 1
tL 7
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