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We have numerically solved the Hamiltonian of an electron in a semiconductor double ring subjected to the
magnetic flux and Rashba spin-orbit interaction. It is found that the Aharonov-Bohm energy spectrum reveals
multizigzag periodic structures. The investigations of spin-dependent electron dynamics via Rabi oscillations in
two-level and three-level systems demonstrate the possibility of manipulating quantum states. Our results show
that the optimal control of photon-assisted inter-ring transitions can be achieved by employing cascade-type
and �-type transition mechanisms. Under chirped pulse impulsions, a robust and complete transfer of an
electron to the final state is shown to coincide with the estimation of the Landau-Zener formula.
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I. INTRODUCTION

The progress in epitaxial growth promotes the use of low-
dimensional semiconductor nanostructures in optoelectronic
devices. Investigations on fundamental physical properties
such as the electronic structure and the carrier population
can be directly measured and estimated from the photo-
luminescence spectrum. Theoretically, several proposals on
magneto-optical studies for quantum dot systems have been
put forward in the last decade.1 Nowadays, coherent optical
manipulations of single quantum systems have attracted fur-
ther attention. The mature technologies in optical control and
measurements provide a great opportunity to realize quantum
qubits as logical gates2 in storage and quantum information
processing.3

In the 1990s, the progress of technology has enabled the
experimental study of a mesoscopic ring threaded by a static
magnetic-field display persistent currents,4,5 which oscillate
as a function of magnetic flux � with a period �0=hc /e.
Recently, applications on spin-orbit interaction �SOI� origi-
nated from the breaking of inversion symmetry that gives
rise to intrinsic spin splitting in semiconductor systems open
a field of spintronics. It was pointed out that the quantum
transport of electrons in a spin-polarized system differs
greatly from that in a spin-degenerate device.6 The utilization
of the spin degree of freedom offers the mechanism to speed
up quantum information processing. In nature electronic de-
vices such as the Datta-Das transistor,7 spin waveguide8 and
spin filter9 were proposed.

Several theoretical works associated with Rashba SOI due
to structural inversion asymmetry in quantum dot systems
were studied.10 More recently, the success in self-assembled
formation of concentric quantum double rings11 provides a
new system to explore electron dynamics by magneto-optical
excitations on the basis of fully analyzed signature of
Aharonov-Bohm �AB� spectrum within the effect of Rashba
SOI. The radius of flat double rings is about 100 nm with
thickness of approximately 3 nm. Therefore, carriers are co-
herent all throughout these small geometries. Within a time

scale shorter than the dephasing time,12 the Rabi oscillation
�RO� can provide a direct control of excited state population
especially in strong excitation regime. It was proposed to be
a good optical implement in quantum dot systems.13 How-
ever, a simple two-level system involving Rabi oscillations
with Rashba SOI in a coaxial double quantum ring has not
yet been studied. Therefore, in this paper, we consider two-
level and three-level models to explore spin-dependent elec-
tron dynamics assisted by RO processes. Under the influence
of magnetic flux, the spin feature of the system is demon-
strated only through the effects of Rashba SOI. The presence
of Rashba SOI also plays an important role in the mixture of
neighboring angular momenta as well as spins that build up a
new selection rule, and it opens more dipole-allowed transi-
tion routes.

In view of quantum algorithm realization, the two-level
Rabi oscillators are often the prototype of the quibit genera-
tors. However, it is also important to establish coherent con-
trol in realistic multilevel quantum systems.14,15 Hence, we
explore the multilevel dynamical system involving the
cascade-type and the �-type three-level schemes driven by
either sinusoidal impulsions or chirped laser pulses. To
achieve efficient transfers, we employ adiabatic rapid pas-
sage method �ARP�,16,17 namely, that the excitation process
rapid compared with the natural lifetime of an excited state
in the limit of slowly varying detuning field, to simulate
complete transfer processes. We will show that the probabil-
ity of an electron that occupies the final state coincides with
the estimation of the Landau-Zener formula in the adiabatic
limit.18

The paper is organized as follows. In Sec. II, the single-
particle Hamiltonian is derived and numerically solved and
SOI accompanied AB energy spectrum is analyzed. In Sec.
III, ROs between two levels selected from the double-ring
spectrum are studied. In Sec. IV, photon-assisted electron
transitions in the three-level systems of the cascade and �
schemes are investigated. Finally, the paper ends with a con-
clusion in Sec. V.
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II. THE ENERGY SPECTRA OF THE DOUBLE-RING
SYSTEM

The system of a double-ring two-dimensional electron gas
is enclosed by a magnetic flux in the presence of Rashba
SOI. The electron is confined in an axial-symmetric potential
Vc, shown in Fig. 1, which is exposed in a monochromatic
electromagnetic �EM� field. In semiclassical description, the
Hamiltonian is given by

H =
1

2m*�p� −
e

c
A�r�,t��2

+ Vc�r� +
�

�
��� � �p� −

e

c
A�r�,t���

z
,

�1�

where A�r� , t� contains contributions from the magnetic flux
and the EM field and � is the coupling constant of Rashba
SOI. The double-ring potential is modeled as

Vc�r� =
1

2
m*�0

2�r − r0�2 + �
i=1

3

Vie
−�r − ri�

2/�i
2
, �2�

where �0 is a factor defining the characteristic length lc

=�� /m*�0 of the system and �i is the Gaussian spatial
width. The magnetic flux applied through the central region
of the inner ring within r� is described by the vector poten-

tial A� �=Br /2�̂ for r	r� and A� �=Br�
2 /2r�̂ for r
r�.

Therein, the unit vector in the angular direction
�̂=−sin���x̂+cos���ŷ has been used. The effect of the lin-

early polarized EM wave is simply expressed as A� EM�t�
=A0 sin�kz−�t�x̂, where k and � are the wave vector and the
frequency of the wave.

The Hamiltonian can be divided as H=H0+Hint, where H0
and Hint correspond to the unperturbed and time-dependent
Hamiltonians, respectively. From energy conservation, the

rapidly oscillating quadratic term in A� EM�t� is omitted, and
hence

Hint 	 − � eA� EM

m*c

p� −

e

c
A� �� +

�e

�c
��� � A� EMz� . �3�

It is convenient to rewrite Hint=HD+HB+HSO, indicating
three different types of interaction. The first term is the elec-
tron dipole interaction, given by

HD =
− e

m*c
A� EM · p� 	 − ex� · E� , �4�

where the time-dependent electric field, E� =E0 cos��t�x̂, is
polarized along the x direction. The second contribution HB
is due to the applied magnetic flux,

HB =
e2

m*c2A� EM · A� � =
e2E0

m*c�
A��r�sin���sin��t� . �5�

The third term HSO denotes the SO coupling mechanism,

HSO = −
�e

�c
��� � A� EM�z =

− �eE0

��
�y sin��t� . �6�

The electron dynamics can be derived based on the
knowledge of eigenfunctions of H0. At t=0, the normalized
two-component wave function is �= ��↑ ,�↓�T, where

�� = ��r�� � ��, �7�

with �=↑ or ↓ indicating two spin branches. Since total an-
gular momentum Jz commutes with time-independent Hamil-
tonian in the presence of SOI, the spatial wave function can
be expressed in the form

↑�r�� = l↑
�r�eil↑�,

↓�r�� = l↓
�r�eil↓�, �8�

where the orbital angular momenta l↑=mj −1/2 and l↓=mj
+1/2 follow the relation l↓= l↑+1, with mj corresponding to
the eigenvalue of Jz. While dipole interaction does not flip
spin directly, the spin flipping is possibly achieved in the
presence of the SOI, and therefore we can investigate the
spin-dependent charge dynamics. To characterize this fea-
ture, we define the net spin polarizability

P =
����z���

�����
=

��↑��↑� − ��↓��↓�
�����

. �9�

For the case of �P�=1, this indicates that the system is totally
polarized into spin ↑ �spin ↓� if P= +1 �P=−1�. Otherwise,
the spin polarizability can be generally specified by the no-
tation P↑ if P
0 and P↓ if P�0.

Specifically, we consider an InAs-based double quantum
ring system, of which the quantum structures are appropriate
to investigate some spin-related phenomena.19 Below, we
have selected the InAs material parameters m* /m0=0.042
and ��40 meV nm. Correspondingly, the characteristic en-
ergy E=��0=5 meV and for the EM field ��=1 meV. The
dimensionless parameters of the double-ring potential are

FIG. 1. �Color online� The diagram of part of the double-ring
potential depicted in 0	�	3� /2. The radius of the ring is about
160 nm and effective range of the magnetic flux r� is about 7 nm.
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rc=0, V1=70, V2=20, V3=−20, �1=1.825, �2=1.0, �3
=2.236, r1=0, r2=5.0, and r3=6.0. In the numerical calcula-
tion, we shall present the magnetic flux in units of the flux
quantum �0=hc /e.

By choosing the above typical physical quantities and di-
agonalizing the time-independent Hamiltonian, it is easy to
obtain the single-particle energy spectrum, as shown in Fig.
2�a�. As compared with the energy spectra in usual quantum
dots, a genuine effect of SOI can be revealed in the reduction
of degeneracies from fourfold to at most twofold. However,
for rings there are only twofold degeneracies at zero mag-
netic flux whether the SOI exists or not. The presence of the

magnetic flux breaks the time reversal symmetry but Kram-
er’s degeneracy is not lifted due to the absence of the Zee-
man effect. In Fig. 2�a�, the solid curves indicate energy
levels of positive mj, whereas those of negative mj are de-
picted by dashed curves. The lowest five pairs of energy
levels belong to �mj�=2.5, 3.5, 1.5, 4.5, and 0.5. The ordering
of these levels could change if the coupling constant � of the
Rashba SOI is varied. For instance, when �=5 meV nm, the
lowest five pairs of these levels are with �mj�=0.5, 1.5, 0.5,
2.5, and 1.5. In the concern of varying �, one can drive
coherent ROs and the idea has been realized in quantum dot
systems.20

In the absence of the magnetic flux, the second and the
third �as well as the fourth, the fifth, etc.� levels in Fig. 2�a�
are close to each other. The gap between these adjacent lev-
els arises from the zero-field splitting of the Rashba SOI,
which will disappear when the SOI coupling constant � ap-
proaches zero. In the limit �→0, not only the adjacent levels
at � /�0=0 mentioned above but also the curves split from
these levels in the region � /�0
0 will merge together. An-
other decisive feature distinguishing quantum rings from
quantum dots stands out that for the former the ground state
will periodically shift to that of higher total angular momen-
tum. However, it always corresponds to the state with the
lowest angular momentum in quantum dots.

An energy level E in Fig. 2�a� is a piecewise smooth
function of � /�0 with singular crossing points. The zigzag
thick curve shows an example of the sixth lowest level,
which has five crossing points around � /�0=0.5, 0.6, 1.0,
1.4, and 1.5 within the unit interval 0.5�� /�0�1.5 at �
=40 meV nm. If �→0, the pairs of curves merge as dis-
cussed above and the set of crossing points reduce to
� /�0=0.5 and 1.5 for the ground state, and reduce to
� /�0=0.5, 1.0, and 1.5 for other levels. It turns out that at
�=0, the electron in the double-ring reveals a similar oscil-
lation pattern, with the same oscillation period one, as the
AB oscillations in a single ring without SOI.21,22 For �
0,
the splitting of local spin branches in AB oscillating spec-
trum of a single ring can be identified.23 For the double ring,
spectral patterns become more complicated, but patterns with
regular oscillations are still rather apparent. Moreover, the
spin polarizability P defined in Eq. �9� varies in � /�0. It
seems that the crossing points of the lowest level in Fig. 2�a�,
i.e., at � /�0= �0.5,1 ,1.5,2 , . . . �, are exactly the positions
where P changes its sign, at least in the range we studied.

To explain the location of the crossing points in Fig. 2�a�,
let us consider an ideal one-dimensional ring of radius R
enclosing a magnetic flux. The spectral property of this sys-
tem reflects some key features of a radial subband of the
double ring �Fig. 2�b�. The flux-dependent energy spectrum
can be derived in the analytical form,

E =
��a

2
�
l↑ −

�

�0
�2

+ 
l↓ −
�

�0
�2

±��
l↑ −
�

�0
�2

− 
l↓ −
�

�0
�2�2

+
4�2

R2

1

�2�a
2
l↑ −

�

�0
�
l↓ −

�

�0
�� , �10�

FIG. 2. �Color online� �a� The Aharonov-Bohm oscillations in
the energy spectrum of the double ring in the presence of the
Rashba SOI with �=40 meV nm and a static magnetic flux. The
spectrum of states with positive �negative� mj is depicted in solid
�dashed� curves. The lowest five pairs of the states are specified by
�mj�=2.5, 3.5, 1.5, 4.5, and 0.5. In each 1/2−� /�0 region, up or
down arrows denote net spin orientations of ground states. The
zigzag curve shows the sixth lowest eigenenergy. �b� Energy levels
within lowest four subbands, in which energies of subband bottoms
line close by 30.6, 31.2, 52.1, and 53.6 meV, respectively. �c� Near
the second subband bottom, anticrossing levels are depicted in thick
curves. From left to right, these states are of mj =0.5, 2.5, 1.5, and
3.5.
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where ��a=�2 /2m*R2. Due to the relation l↓= l↑+1, the en-
ergy E can be expressed as a function of the variables l↓ and
� /�0. A crossing point will come up at a certain � /�0
where different integers l↓ have the same energy E. Accord-
ing to Eq. �10�, this happens when � increases from zero to
a period �0 if the Rashba SOI is absent. In the presence of
the Rashba SOI, additional crossing points appear before �
reaches �0. As compared to the Fock-Darwin spectrum in a
quantum dot where the energy is in linear proportion to the
trapping frequency and the cyclotron frequency in weak and
strong magnetic fields, respectively. However, while SOI can
be regarded as the perturbation, Eq. �10� tells well a qua-
dratic relation with the magnetic flux.

Level crossing points can be easily seen in Fig. 2�a�. An-
ticrossing levels also appear, for instance, in the example of
Fig. 2�c�, and even in high-energy regimes, as seen in the
two dashed lines at �� /�0 ,E�= �1.7,53.7� in Fig. 4�a�.
While the splitting of the accidental level degeneracy in
quantum dots has been demonstrated both theoretically and
experimentally,24 the repulsions in the avoiding levels due to
the interplay between Zeeman and Rashba terms are also
reported recently.25 In our case, anticrossings near the second
subband bottom arise in the presence of strong SOI. How-
ever, for high-energy pairs, the repulsions here are mainly
attributed to the geometric effect of the double ring under the
influence of magnetic flux. In other words, the repulsion lev-
els in the double ring will not disappear, even when Rashba
effect is turned off. In the vicinity of the minimal splitting
points, wave functions vary acutely and cannot be specified
by a set of good quantum numbers. The double-ring Hamil-
tonian thus typically manifests the signature of quantum
chaos. A comparison between the spectra of �=0 and
20 meV nm shows that the Rashba SOI will increase the
level splitting in each energy pair mentioned above but de-
crease the gap of the repulsion levels from
0.32 to 0.28 meV. Moreover, by adiabatically modulating
the gate voltage to change SOI, the double-ring system dis-
cussed here serves as a candidate for testing the Berry
phase.26

III. RABI OSCILLATIONS IN TWO-LEVEL TRANSITIONS

Since an electron in the inner �outer� ring has a definite
angular momentum, its tunneling probability to the neighbor
ring is suppressed under the constraint of the angular mo-
mentum conservation. Therefore, an eigenfunction in the
double ring may be localized only in the inner or the outer
ring, if its corresponding energy is lower than the barrier. In
the following, we are going to investigate the dynamics of an
electron under irradiations of an external EM field in the
presence of SOI. The transition between two such kind of
quantized levels in the energy space corresponds to an inter-
ring transition in the spatial space.

We consider arbitrarily two levels in the double ring. Sup-
pose the electron initially occupies state �b� with eigenfunc-
tion ub�r�� in the outer ring, the irradiation process is designed
to pump it to state �a� with eigenfunction ua�r�� in the inner
ring. For convenience, the time-dependent wave function can
be written as

�r�,t� = ca�t�ei��/2−�a�tua�r�� + cb�t�ei�−�/2−�b�tub�r�� , �11�

where ua�r�� and ub�r�� associated with Ej =�� j for j=a and b,
related to the two-component wave function � in Eq. �7�, as
eigenfunctions and eigenenergies of H0. Moreover, an optical
transition takes place between two states that correspond to
dipole-allowed eigenstates conforming to the relation �mj
= ±1. As usual, ����E /�−�� is the detuning defined as the
frequency difference between the level spacing and the laser
field, as shown in the inset of Fig. 3�a�. Inserting Eq. �11�
into the time-dependent Schrödinger equation, the time evo-
lution of an electron can be expressed as

�ċa�t�
ċb�t�

� =
i

2� − � RD + R̃

RD
* + R̃* �

��ca�t�
cb�t� � , �12�

with R̃=RA+RSO, which after some calculations have the re-
lations

FIG. 3. �Color online� �a� The energy spectrum including two
states: �a�= �−2.5�P↑

and �b�= �−1.5�P↓
. The sketch in the inset de-

picts inter-ring transitions under EM wave stimulations. �b� Popu-
lation inversion as a function of time. When ignoring the spontane-
ous emission, W�t� with large detuning is demonstrated by dotted
symbol. If the spontaneous emission of an excited state is consid-
ered, then in small detuning regime, where we set �=0.03 and
�=0.02, W�t� manifests an underdamped oscillation, as depicted by
the solid curve, and the decay behavior is fitted by an exponential
decay function, as shown by the dashed line.
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RD = eE0�ua�r��r�ub�r��/4� ,

RB = e2E0�ua�r��A��r��ub�r��/4�m*c� ,

RSO = �eE0�ua�r��ub�r��/2�2� .

Therein, RD is the dipole-induced Rabi frequency as usually
discussed and RB and RSO denote the couplings of the laser
field with the magnetic flux and the Rashba SOI, respec-
tively. In calculating RSO, only inner products between partial
waves with different spin orientations would be taken into
account. In deriving Eq. �12�, we utilized the rotating-wave
approximation �RWA� and ignored the counter-rotating terms
proportional to exp�±i��+�E /��t.

For an electron initially occupying the low-energy state
�b�, the time-dependent population probability can be exactly
written as

�ca�2 =
R̃eff

2

�d
2 sin2
�dt

2
� ,

�cb�2 = 1 −
R̃eff

2

�d
2 sin2
�dt

2
� , �13�

where �d
2= R̃eff

2 +�2 and R̃eff=RD+ R̃ can be regarded as the
effective Rabi frequency in the presence of the external fields
and the SOI. The on-resonance transitions occur when �=0;
in the case, the population probability can be simply reduced

to �ca�2=sin2�R̃efft /2� and �cb�2=cos2�R̃efft /2�.
If the energy dissipation to the environment is considered

as the interaction between an electron with continuous
vacuum modes, a phenomenological decay parameter � will
be introduced to the first element of the matrix in Eq. �12�,
which opens a decay path from the excited state to its sur-
rounding. Thus, the coefficients describing the system will be
changed in the more complicated form,

�ca�2 =
R̃eff

2

�̃2
e−�te−�̃�t sin2
 �̃�t

2
� ,

�cb�2 =
e−�t

�̃2
e−�̃�t���2 + �2�sin2
 �̃�t

2
� + �̃2 cos2
 �̃�t

2
�

+ 2�̃��� − �����sin��̃�t�� , �14�

where �=cos��1 /2� and �=sin��2 /2�, with

�1 = cos−1���2 − �d
2�/�̃2 ,

�2 = sin−1�2����/�̃2 ,

�̃2 = ���2 − �d
2�2 + �2���2,

in which �1 and �2 should be taken from the same quadrant.
For convenience, we introduce the notation �mj�P to

specify a state in terms of the total angular momentum mj

and its spin polarizability P. We choose two states
�a�= �−2.5�P↑

and �b�= �−1.5�P↓
, respectively, at �=1.3�0

with Ea=37.03 meV and Eb=30.64 meV, as depicted in Fig.
3�a�. The corresponding population inversion

W�t� = �cb�t��2 − �ca�t��2 �15�

of this system is demonstrated in Fig. 3�b�. If the vacuum
fluctuation is absent ��=0�, the total probability is con-
served, i.e., �cb�t��2+ �ca�t��2=1 at any time. In this case, W�t�
manifests the oscillating behavior within the interval

�1−2�R̃eff
2 /�d

2� ,1 without any dissipation. For �→0, this
interval approaches to its maximum values �−1,1, namely,

that �d→ R̃eff. For large detuning, e.g., �=0.2, this interval
will shrink to its 70%, and the blueshifted inversion curve is
plotted in the dotted line in Fig. 3�b�.

If the spontaneous emission of an excited state is consid-
ered, W�t� will decay with time, as shown by the solid curve
in Fig. 3�b�, in which �=0.03 and �=0.02. In this case, W�t�
oscillates underdamped. The damping behavior which is con-
sistent with the Weisskopf-Wigner theory27 is well fitted by
Wfit=e−�t, where the Fermi’s rate ��0.03. When the Rabi
relaxation time is defined as �R=1/�, our calculation shows
that a cycle of inter-ring transition accomplishes in �R for a
given �. While the spontaneous decay can be experimentally
controlled and suppressed,28 in a cavity with a limited num-
ber of modes at the transition frequency, a long decoherence
time is permitted. In assumption of weak system-
environment coupling, efficient population transfers are fea-
sible. So, in conclusion, under SOI we can simultaneously
manipulate electron transitions associated with its spin orien-
tations in either rings via the RO processes of a two-level
model.

IV. THE PHOTON-ASSISTED TRANSITIONS IN THREE-
LEVEL SCHEMES

In this section, we apply the Rabi model to several inter-
esting cases. We show how inter-ring transition are achieved
via the photon-assisted processes. The processes are demon-
strated by considering three-level systems in cascade-type
and �-type schemes that are shown in Figs 4�a� and 4�b�. For
clarity, we rewrite the time-dependent wave function as
�r� , t�=� j=1

3 cj�t�e−i�jtuj�r��, where Ej =�� j and we define
E12=E2−E1, E13=E3−E1 and E12+�=E13−�=��. The in-
volved states construct two dipole-allowed transitions
��1�↔ �2�� and ��1�↔ �3�� and a ��2�↔ �3�� dipole-forbidden
paths. For a clear demonstration, we shall ignore spontane-
ous emission processes.

A. Cascade type

It is well known that the quantum-beat spectroscopic
method permits the resolution of closely neighboring
levels.29 Earlier experiments demonstrate that quantum-beat
spectroscopy is a useful technique in the measurement of
Zeeman splittings and hyperfine intervals in atomic and mo-
lecular systems.30 It is then interesting to study spectroscopic
dynamics involving the direct inter-ring transitions in the
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cascade-type scheme nearby the avoided crossing points.
Again, we use the notation �mj�P to specify the involving

states. Here, we consider an up-spin state �1�= �−1.5�P↑
, and

down-spin doublets �2�= �−2.5�P↓
and �3�= �−2.5�P↓

at
�=1.7�0. For state �1�, the electron is localized in the inner
ring. The electron wave functions, however, extend over the
double ring for two higher states. The energy spectrum is
depicted in Fig. 4�a�, and in Fig. 4�b� we show the sketch of
the cascade model. Similar to solving Eq. �12� for the two-
level system, transitions among different spin states can be
investigated through

ċ1�t� =
i

2
�e−i�tR+

12c2�t� + ei�tR−
13c3�t� ,

ċ2�t� =
i

2
ei�tR+

*21c1�t� ,

ċ3�t� =
i

2
e−i�tR−

*31c1�t� , �16�

where R±
ij =RD

ij ± R̃ij. Adopting transformations c2�t�
=C2�t�ei�t and c3�t�=C3�t�e−i�t, Eq. �16� can be reexpressed
as a homogeneous autonomous equation. For an electron ini-

tially occupying state �1�, the population probability in small
detuning regime can be expressed approximately as

�c1�t��2 = cos2
MRt

2
� ,

�c2�t��2 = 
R+
12

MR
�2

sin2
MRt

2
� ,

�c3�t��2 = 
R−
13

MR
�2

sin2
MRt

2
� , �17�

where MR=��R+
12�2+ �R−

13�2. Beyond the small detuning ap-
proximation, Eq. �16� is numerically solved and the result for
�=0.086 is shown in Fig. 4�c�. Since transition probabilities
come up differently between two paths, namely, R+

12�R−
13,

occupations with time on each states turn out to be aperiodic
and less regular compared with probabilities obtained from
Eq. �17�. Discrepancies between Figs. 4�c� and 4�d� are
clearly illustrated. However, in the case �→0, the electron
tends to oscillate between �3� and �1� and the transition
�2�↔ �3� is less efficient, as compared with the off-resonance
transitions.

This drawback can be removed by another interesting ma-
nipulation in the cascade scheme, namely, by transferring
electrons ladder by ladder with chirped laser pulses. The idea
originates from the electron transfer in molecules, in which
stepwise excitations are applied for a rapid and efficient dis-
sociation of specific chemical bonds.31 Under ARP condition,
electrons that are resonantly pumped to state �2� could be
efficiently transited to the final state �3� in a long trapping
time.

To this end, we select a chirped laser pulse with time-
dependent electric field along the radial direction, given by

E�ch�t� = Ech exp
−
t2

2�2 − i�cht − i�
t2

2
�r̂ , �18�

where � is the pulse duration, �ch is the central frequency,
and � is the temporal chirp. The equation of motion in RWA
modified from Eq. �12� becomes

�ċ2�t�
ċ3�t�

� =
i

2
� 0 Rch�t�

Rch
* �t� 2�ch�t�

��c2�t�
c3�t� � , �19�

in which �ch�t�=�t is linearly chirped detuning, and Rch�t�
stands for the time-dependent Rabi frequency related to the

pulse envelope of E�ch�t�. By choosing proper parameters for
a pulse with peak Rabi frequency R0=0.25, �=0.01, and �
=10, a complete transfer is demonstrated by the dash-dotted
line in Fig. 4�d�. The numerical result coincides with the
estimation of the Landau-Zener formula,18

P 	 1 − exp
− �
R0

2

2�
� . �20�

In the adiabatic limit ����R0
2, electrons have great probabil-

ity to occupy an excited state in the long-time limit. Distin-
guished time-evolution populations between stimulated tran-
sitions by cws and steady transfer by a chirp pulse are

FIG. 4. �Color online� �a� The energy spectrum including the
chosen three levels, an up-spin state �1�= �−1.5�P↑

and down-spin
doublets �2�= �−2.5�P↓

and �3�= �−2.5�P↓
at �=1.7�0. Level repul-

sion occurs between the doublets, and the gap is about 0.17 meV
for �=40 meV nm. �b� A sketch of a cascade-type model in the
double ring population as a function of time for the cases of �c�
�=0.086 and �d� �→0. Dash-dotted curve in �d� shows the ARP
estimation of the transition from �2� to �3�.
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depicted by curves in Fig. 4�d�. Therefore, in addition to the
manipulation of electron transitions between a single ring
and a double ring via the subjection to cw irradiations, we
also arrive at the optimal control on stably selective excita-
tions with chirped pulses in cascade-type systems.

B. �-type transition

Finally, we shall also investigate an interesting and impor-
tant phenomenon: Whenever there are level crossings for two
energy states that belong to either one ring, �-type scheme
of indirect inter-ring transitions among which and one higher
energy state can be switched on. Applications of this model
has been proposed both in superconducting quantum interfer-
ence device33 and semiconductor double quantum dots,34 in
which multilevel ROs as a target toward coherent control
have been demonstrated.

As Fig. 5�a� shows that for an electron occupying state
�2�, the photon-assisted quantum transition is initiated from
the inter-ring surpassing an intermediate-state �1� and finally
reaching the outer-ring of state �3�. On-resonance solutions
of the mediated-indirect-transition system with initial condi-
tions c1�0�=0, c2�0�=1, and c3�0�=0 are

�c1�t��2 = 
R+
12

MR
�2

sin2
MRt

2
� ,

�c2�t��2 = 
R+
12

MR
�4

cos2
MRt

2
� + 
R−

13

MR
�4

+
2�R+

12R−
13�2

MR
4 cos
MRt

2
� ,

�c3�t��2 =
�R+

12R−
13�2

MR
4 �cos
MRt

2
� − 1�2

, �21�

and the transition probabilities are shown in Fig. 4�b�. The
incomplete transfer and occupation are restricted due to un-
equal effective Rabi frequencies in two paths. Once the ex-
ternal field optimizes the efficiency of one path, the effi-
ciency of the other is not optimal.

The formulas in Eq. �21� clearly show that the probability
�c3�t��2 has a maximum value at t=m� /MR with an odd in-
teger m and a minimum value at t=n� /MR with an even
integer n. At these extreme points, we have the ratio
�c2�t��2 / �c3�t��2= ��R+

12�2− �R−
13�22 /4�R+

12�2�R−
13�2, which indi-

cates the optimal transfer at �R+
12� / �R−

13�=1. Away from this
ratio, the transfer efficiency will decrease. In Fig. 4�b�, tran-
sition among a doublet of mj =0.5 and 2.5 and an auxiliary
level of mj =1.5 at �=0.8�0 is considered. In this case, there
is only 45% occupation in �3� for R+

12/R−
13�0.38. If the ef-

fective Rabi frequencies of the paths 2↔1 and 1↔3 are the
same, the optimal control of electron dynamics is feasible. To
show this, we calculate the time-dependent occupation prob-
ability in each state. In the inset, it is clear that at extreme
times, occupation in �3� based on a pseudo-�-transition pro-
cess has a maximum value. Meanwhile, states �1� and �2� are
left empty. Moreover, we also investigate the transition pro-
cess stimulated by chirped pulse irradiation. By setting R0

=0.25, �=0.001, and �=14.15, we obtain a long-time occu-
pation of the final state, obeying estimation of Landau-
Zener’s formula. The result is shown by dash-dotted line in
the inset.

Within proper controls of the pulse width � against the
typical level spacings and the dephasing time of electrons, it
is easy to manipulate electronic states in �-scheme system
by successive application of pulses.32 Using the same param-
eters as in Fig. 4�b�, we simulate the pulse-induced periodic
oscillations. Here, the Gaussian pulse duration �=7.3 and the
pulse interval is about 7�. Different from the sinusoidal ROs,
an alternative square wave is shown in Fig. 4�c�. Apparently,
the level occupation time in both inner and outer rings is
prolonged. Moreover, since the duration of the pulse is prop-
erly tuned, it can be expected that time evolution of the oc-
cupation should be complete in the pseudo-�-transition pro-
cess. Otherwise, underexcitation or overexcitation takes
place corresponding to the duration being too short or too
long, respectively. Level occupation will never be or just be

FIG. 5. �Color online� �a� A sketch of the �-type scheme. States
here are all with effective up-spin orientations. An electron initially
occupies state �2� can be optically pumped to an outer-ring state �3�
mediated by state �1�. �b� The population probabilities among three
levels. The long-time occupation of an excited state is feasible by
applying a short and intense pulse. In the inset, we show the optimal
transfer is feasible provided that there is common Rabi frequency in
the two paths. �c� An alternative output signal can be obtained under
successive pulse stimulations.

SPECTRAL PROPERTIES AND MAGNETO-OPTICAL… PHYSICAL REVIEW B 75, 155326 �2007�

155326-7



transiently complete. The well controled pulse delay time
also shows the flexibility of manipulations in quantum states.

V. CONCLUSION

In this work, we have studied magneto-optical transitions
in a semiconductor double ring in the presence of Rashba
spin-orbit coupling and magnetic flux. First, based on accu-
rate numerical calculations, we obtain SOI-accompanied AB
energy spectra and corresponding eigenstates. The presence
of the SOI has important influence on the occurrence of level
crossings, showing the evidence both for the periodic orbital
motion and for spin flips. In addition, there are anticrossing
levels playing the role of the magnetic-resonant extraditions
of electrons between inner and outer rings. In high-energy
regime, occurrence of avoided crossings indicates a chaotic
signature in its classical analogy. To facilitate the peculiar
features of the double-ring system, we have designed some
interesting dynamic processes such that the system can be
easily explored experimentally in the near future.

We have studied the temporal evolution processes in two-
level and two three-level models. The interaction between
external fields and electron results in the successive stimu-
lating absorption and emission of a photon and turns out as
the effective Rabi oscillators. In the two-level model, we
demonstrate an alternative manipulation of electrons transit-
ing between two rings. In cascade scheme, aperiodic and
incomplete population transfers are revealed under the sinu-
soidal field excitations. By appropriate tuning SOI strength,
the gap between avoided crossing levels can be reduced such
that the rectified output signals are measurable. Moreover, by

short pulse excitations, we also demonstrate the possibility of
optimal control of selective and direct signals. In this work,
only one ladder transition is demonstrated, which, however,
can be extended to multiladder transitions following the
same principle. Finally, we have explored the photon-
assisted tunneling in the �-type model. In addition to gen-
eration of ROs also, we give the criterion of the most effi-
cient transfer via the mediated-indirect-tunneling paths.
Further, by successive pulse irradiations, the well control on
pulse delay results in the time prolongation on state popula-
tions. We should also emphasize that in the �-type scheme,
the minimization of the intermediate-level population is
achieved which is an important and practical strategy in de-
vice realization.

The presence of SOI allows the manipulation of spin de-
gree of freedom and it is timely to examine the spin-
dependent optical response. Since similar features could be
found in double-dot systems, the above theoretical results in
a double ring might shed light on future experimental find-
ings in these burgeoning quantum systems. While there are
few works on optically induced and SOI-driven spin dynam-
ics in quantum systems,20,35,36 we believe that the theoretical
and experimental works of related spin readout information
by optical pumping in ringlike systems could be carried out
in the near future.
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