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Statistical properties of experimental coherent waves in microcavity lasers:
Analogous study of quantum billiard wave functions
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We use a microcavity laser to explore the properties of experimental coherent waves as an analogous study
of the chaotic wave functions in quantum billiards. With the eigenstate expansion method, the experimental
high-order chaotic coherent waves are well reconstructed. The reconstructed wave functions are employed to
calculate the field and intensity correlations. It is found that the spreading of k-space (momentum space)
distribution leads to not only wave localization in coordinate space but also enhancement of long-range

correlations.
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I. INTRODUCTION

Quantum billiards as paradigm models are often used to
examine the quantum chaotic properties corresponding to
classical chaotic systems. Most theoretical studies of quan-
tum billiard problems are concentrated on energy-level sta-
tistical features [1-4]. For chaotic wave functions, Berry
conjectured that the higher eigenmodes of a ray-chaotic
Hamiltonian should be statistically indistinguishable from a
superposition of plane waves of fixed wave-vector magni-
tude with random amplitude, phase, and direction [5]. He
showed that the space-averaged spatial correlation of the
two-dimensional wave function is given by a Bessel function
of zeroth order. The conjecture has attracted many theoretical
studies with satisfactory results [1-4]. However, on the ex-
perimental side, besides resonance energies, the wave func-
tions are also interfered with in the measuring processes
[6,7]. For example, the microwave cavity is perturbed by a
metallic bead [8—10], the quantum dot is interacted with the
tip of an atomic force microscope [11], and the microcavity
laser is externally driven to be oscillating and raying [12,13].

It is known that microwave cavities have been used
mostly in experimental analogized studies of quantum bil-
liards, in which the statistics of wave function imagings has
been obtained successfully [9,10]. Recently, it has been also
reported that with microcavity lasers the transverse-mode
patterns can be analogously interpreted as the wave function
imagings of quantum billiards [12,13]. The coherent wave in
laser cavities enables one to achieve precise measurements of
intensity patterns. Nevertheless, the work of transforming the
intensity patterns into field distributions for the purpose of
getting more information from the wave functions has never
been realized so far in microcavity lasers.

In this paper, we fabricate chaotic-shaped oxide-confined
vertical cavity surface emitting lasers (VCSELSs) with a large
aperture and measure the near-field transverse patterns. We
reconstruct the wave functions of these coherent optical cha-
otic patterns by judging the signs of the nodal domains
[14,15] and exploiting the orthogonality integrals of Fourier
series. We find that the reconstructed wave function is com-

*Electronic address: ccliu@cc.nctu.edu.tw

1539-3755/2007/75(4)/046202(7)

046202-1

PACS number(s): 05.45.Mt, 03.65.Ge, 42.55.Sa, 42.60.Jf

posed of a set of nearly degenerate wave vectors k, which are
spreading on a ring area to a certain extent. By using these
wave functions we explore the statistical properties of the
experimental chaotic optical transverse patterns of microcav-
ity as an analogous study of the chaotic wave function in
quantum billiards. We also study the statistical characteristics
of the wave functions with localizations on the periodic or-
bits in the square billiard for comparison.

II. EXPERIMENTAL RESULTS

The VCSEL cavity with a large aperture can be inter-
preted as a two-dimensional billiard (microcavity) because of
large index discontinuities between the oxide layer and sur-
rounding semiconductor material [12,13]. The device struc-
ture of these oxide-confined VCSELSs is similar to that de-
scribed in Ref. [12]. The size of our oxide aperture is 40
X 40 um?, and the effective cavity length between two dis-
tributed feedback reflectors is designed to have an emission
wavelength around 808 nm (a single longitudinal frequency
because of the short cavity length). The near-field patterns
are measured with a (340X 280)-pixel charge-coupled-
device (CCD) camera (Coherent, Beam-Code) and an optical
setup similar to Ref. [12]. An optical spectrum analyzer
(ADVANTEST Q8347) is used to monitor the spectral infor-
mation of the laser with a resolution of 0.002 nm. Compar-
ing to the transverse-mode spacing A)\,%)\g /(4a?)
=0.0824 nm, the transverse-mode spectral information can
be clearly resolved.

We cooled the device to a temperature around 260 K.
Near the lasing threshold the transverse pattern is emitted
from the VCSEL device. Experimental results show that the
transverse patterns of square-shaped cavities can be evi-
dently divided into two regimes of low-divergence and high-
divergence emissions. It is expected that the thermal-lensing
effect will switch the device into the low-divergence regime
because the joule heating induces a rising temperature across
the device cross section. Typically, high-divergence patterns
are very symmetric and those of the low divergence are more
irregular. Therefore, it is easy to differentiate the regimes in
which the lasers are operated. On the other hand, the trans-
verse patterns emitted from deformed-square-shaped cavi-
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FIG. 1. The near-field patterns of the same shaped device with a
moderate ripple boundary deformed from square (size of the oxide
aperture is 40 X 40 um?): (a) pattern A and (b) pattern B, where
white color represents the highest value of intensity in the gray
level. The dashed lines are depicted to indicate the boundaries of
the cavities.

ties, in the shape of a moderate ripple, are found to be lin-
early polarized and always ergodic.

The photons inside the microcavity laser are reflected by
and oscillated between the two mirrors (z direction), which
are designed to be a high reflection rate (about 99.9%). In-
side the cavity, in the transverse (xy) direction the photons
behave as standing waves confined by the oxide aperture. In
the longitudinal (z) direction they oscillate between the two
plane mirrors also forming standing waves. After separating
the z component in the wave equation, we are left with a
two-dimensional Helmholtz eqution (Vtz+kt2) Y(x,y)=0. The
wave functions inside the cavity can be expressed as stand-
ing waves: Win(x,y,z)=y(x,y)sin k.z. The section wave pat-
terns at different z=z; positions inside the cavity are almost
identical with only a difference of factor of [sin k.z;|*> be-
tween their intensities. Once the photon is emitted out of the
cavity in the z direction, the information of (x,y) can be
carried out by the longitudinal wave vector k, and the wave
function will then become W°'(x,y,z)=ilx,y)exp(-ik.z).
The near field of the microcavity laser is the field at the
starting emission plane (z=0) out of the cavity and equiva-
lent to the field of the xy plane inside the cavity.

Figure 1 shows two near-field patterns of the microcavity
lasers, denoted as pattern A and pattern B, with the same
deformed-square-shaped cavity. The boundary of the cavity
is in the shape of a moderate ripple, which is depicted by the
dashed line. These two patterns have very clear formations
including nodal lines and nodal domains. The optical spec-
trum for the laser beam reveals that the linearly polarized
transverse pattern is a single-frequency oscillation; namely, it
is a stationary state. Previous laser experiments have proved
that the transverse-mode locking is an important process in
transverse pattern formation [6,16,17].

III. NUMERICAL ANALYSIS AND DISCUSSION

Since the experimental patterns captured by the CCD
camera are in the form of intensity point matrices |¢(x;,y ) 2
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FIG. 2. (Color online) The one-dimensional sine wave function
A(x) can be obtained from its absolute wave function |¢(x)| and
positive wave function |##(x)| by the equation of y(x)=2|¢P(x)]
—|¢(x)|. The "@_ are the nodal points and the positive (negative)
domains are marked by + (—).

which are always positive, we will need to reconstruct the
wave functions for further statistical analysis. However, the
wave field cannot be obtained from |1//()c,~,yj)|2 by just taking
the square root as it is only related to its magnitude. Here the
indices of i and j (i,j=1,2,...,S) denote the positions in the
pattern, where S is determined by the position resolution of
the CCD camera and the image size of the pattern; the inten-
sity data we obtained are a S X .S=200 X 200 matrix.

To obtain the wave function, the first step is to translate
the intensity point matrix [¢(x;,y;)|* into the field point ma-
trix ¢(x;,y;). According to Blum et al. [14] and Bogomolny
and Schmit [15], the positive and negative nodal domains of
the wave function can be separated by the nodal lines [in
which #(x;,y;)=0]. Therefore, the field point matrix ¢(x;,y;)
can be constructed from the intensity point matrix [¢(x;,y;)|*
by taking the square root and judging the signs of the nodal
domains. As an illustration in Fig. 2, the nodal points " @
separate the positive and negative domains of the absolute
sine wave function |¢/(x)|, marked by “+” and “—.” The
positive wave function |¢?(x)| is obtained by setting the
negative domains of the absolution wave function |¢{(x)| to
be zero. The one-dimensional sine wave can be obtained by

(x) = 2[¢P(x)| = [lx)]. (1)

Similarly, the two-dimensional positive wave functions can
be obtained by judging the signs of the nodal domains that
are separated by the nodal lines and setting the negative ones
to be zero. In Figs. 3(a) and 3(b), we show the density plots
of |/°(x;,y;)| for pattern A and pattern B, respectively. With
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FIG. 3. The intensity plots of the positive wave functions
|¢P(x,y)| of pattern A (a) and pattern B (b). The dashed lines are
depicted to indicate the boundaries of the cavities.

the equation of #(x;,y;)=2|P(x;,y;)|—|¢(x;,y;)], their field
point matrices are derived.

Except for the restriction of the position resolution
(§X ), the intensity resolution of patterns is discrete to 8
levels, while it is multiplied to 15 levels for the wave field.
The discontinuousness make the pattern information from
the experiment not precise enough for the study. So one will
need to reconstruct the wave function ¢/(x,y) from the field
point matrix #(x;,y;) as the second step. Since the Helmholtz
equation (V2+k%) =0 can be viewed as the time-
independent Schrodinger equation for the motion of a par-
ticle (with a mass) [12,13,18], the eigenfunctions of a square
rigid boundary (square billiard) can be given by

2
Yinn(x,y) = = sin 7 sin 2)
a a
with the wave numbers being
2 2
mar ni
kf,m:kf+k§=<—> +(—> , (3)
a a

where a is the billiard length and m (n) is the quantized
number in the x (y) direction. Note that the energy here is
proportional to k for a photonic wave, while the energy for a
material wave is proportional to k. With the eigenstate ex-
pansion method, the two-dimensional coherent wave func-
tions of the weakly deformed-square billiard can be repre-
sented by a double Fourier sine series

mmx niry

sin , (4)
a

oo oo 2
¢’(x’y) = 2 2 Amn_ sin
a

m=1 n=1 a

where the coefficients A,,, can be obtained by the orthogo-
nality relations

2 a a
An = —f f l(x,y) sin 27 sin mdxdy. (5)
alo Jo a a

For the separate points (x;,y;), the continuing integral would
be transformed into a summation form with the field point
matrix (x;,y;):
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FIG. 4. Distribution of the coefficients |A,,,| obtained by Fourier
analysis in Eq. (6) for the patterns in Fig. 1: (a) |A,,,| of pattern A
and (b) |A,,,| of pattern B.
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Our method is similar to the study of the deformed half-
circular microwave rough billiard in Ref. [19].

Figure 4 depicts the magnitude of the coefficient |A,,,| for
pattern A and pattern B in Figs. 1(a) and 1(b), respectively, in
which white color represents the highest value of |A,,,| in the
gray level. Figure 4 can be looked as the momentum-space
representation of the wave functions, since (p,,p,) = (k,,k,)
=2(m,n). As mentioned in Ref. [13], Fig. 4 would also be
the far-field intensity in the optical phenomenon, because the
far-field intensity is essentially the spatial two-dimensional
Fourier transform of the near-field pattern. The distribution
of |A,,,| in Fig. 4(a) is concentrated on a smaller ring area

with the mean value k*=60.927r/a and standard deviation
o}=1.357/a, while |A,,,| in Fig. 4(b) is spreading on a wider
area with k#=60.147/a and o}=1.627/a. Here we have cal-
culated the mean value and standard deviation of k by k
=Em,nA12nnkmn and O-k=[2m,nAy2nn(kmn_];)2]1/2 with Em,nAin
=1. These ring areas signify the random directional distribu-
tions of the wave vectors k. In contrast with the chaotic wave
function, the k-space distribution of the wave function with
localization on the periodic orbit is further focused on the
disk area on the ring [13].

Strictly speaking, the coherent wave function obtained
from Eq. (4) is not a stationary state because the eigenstate
components are not exactly degenerate for the Hamiltonian
H. Nevertheless, the results shown in Fig. 4 demonstrate that
the dominative eigenstates for patterns A and B are nearly
degenerate. In other words, as dominative eigenstates satisfy
AH/{H)—0—i.e., o,—0 from the distribution of |A,,,| as-
sociated with k,,,, in Eq. (3)—the wave function in Eq. (4) is
guaranteed to be a stationary state in the classical limit.
Hence, the distribution of |A,,,| is associated with the con-
straint of the minimum-energy uncertainty.

The reconstructed coherent optical wave functions ¢(x,y)
are obtained by substituting the coefficients A,,, into Eq. (3),
which are shown in Figs. 5(a) and 5(b) for pattern A and
pattern B in Figs. 1(a) and 1(b), with the indices m and n
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FIG. 5. Density plots of reconstructed coherent optical wave
functions obtained by Eq. (4) with A,,, from Eq. (6) for (a) pattern
A and (b) pattern B in Fig. 1 with indices m and n being summed up
from 1 to 90. The dashed lines are depicted to indicate the bound-
aries of the cavities.

being summed up from 1 to 90, respectively. It is very suc-
cessful in reconstructing the experimentally observed pat-
terns such that one will be very hard to distinguish the dif-
ference between Figs. 1 and 5.

The participating eigenstates and their weights as in Eq.
(4) determine the appearance and stability of the experimen-
tal near-field patterns. As stated above, the k-space distribu-
tions in Fig. 4 suggest to us that the eigenstates contributing
to the experimental pattern are concentrated on a ring, nearly
degenerate to a single frequency. In other words, the number
of the dominative states for the wave function is rather small
compared to the entire range of k space (m=1,...,90,... and
n=1,...,90,...). It is intriguing that if we reduce the number
of superposing eigenstates for the reconstructed wave func-
tions, the density plots will still look similar. As an instance,
if we choose eigenstates with higher values of |A,,,|, 327
(411) eigenstates for pattern A (pattern B), to reconstruct
wave functions, most pattern information is still retained.
The smaller the magnitude of oy is, the fewer the dominant
eigenstates of the reconstructed wave function will be. As
discussed in previous studies [20,21], the wave function ob-
tained as a superposition of a few nearly degenerate eigen-
states may provide a more physical description of phenom-
ena than the true eigenstates in real mesoscopic systems. The
experimental results also show that the selection of the
nearly degenerate eigenstates is as the process of transverse
mode locking, which makes the wave functions have the
minimum-mode volume for the lowest lasing threshold.

The statistical properties of the chaotic behavior of the
measured wave functions can be studied by evaluating the
amplitude and intensity distributions and the spatial correla-
tions. According to the Berry conjecture, the chaotic wave
functions in a billiard should be statistically indistinguishable
from a superposition of plane waves of fixed wave-vector
magnitude with random amplitude, phase, and direction [5].
As an immediate consequence of the central limit theorem
one obtains chaotic waves in the form of a Gaussian distri-
bution for the amplitude [1-4],

1
27

P() = exp(— 71207), (7)
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FIG. 6. (Color online) Statistical features of the reconstructed
coherent optical wave functions for experimental pattern A and pat-
tern B in Fig. 1 with the amplitude [intensity] distributions (solid
step line) compared to the Gaussian [Porter-Thomas] distributions
(dashed line) with (a) 0=0.92 and (b) o=1.05.

where o is the standard deviation and the form of the Porter-
Thomas distribution for the intensity reads

P(yf) = m exp(= |4f12). (8)

The amplitude distributions of the reconstructed wave
functions are illustrated in Figs. 6(a) and 6(b), and their in-
tensity distributions are shown in Figs. 6(c) and 6(d) for
experimental pattern A and pattern B, respectively, where the
dashed lines are the theoretical expectations. The amplitude
distribution of the reconstructed pattern A in Fig. 6(a) com-
pared to that of pattern B in Fig. 6(b) is more fitted to the
Gaussian line, because of its smaller standard deviation 0.
Similarly, the intensity distribution in Figs. 6(c) and 6(d) has
the same phenomenon.

The definitions for field and intensity correlations are
given as [5]

F(r) = (¢(x)(x + 1)), 9)
I(r) = () Plx + 1)), (10)

where the angular brackets ( ) represent spatial average over
the position x=(x,y) and the direction of the vector r, and
r=|r| is the separation distance. Figure 7 shows the correla-
tions of the field in (a) and (b) and the intensity in (c) and (d)
for reconstructed pattern A and pattern B in Fig. 5 compared
to the theoretical expectations. As the wave functions have
been normalized with {[(x)]*)=1, the inverse participation
ratios (IPRs), defined by I,=([¢(x)]*) [10,22], are obtained
to be 3.238 and 3.385 for pattern A and pattern B, respec-
tively. For chaotic systems the IPRs can be immediately ob-
tained from a Porter-Thomas distribution—i.e., IPR
= [{PPpr(I)dI=3.0, which is a universal value. Based on the
Berry conjecture, for a high-order chaotic wave function, the
field correlation is Jy(ksr), and its intensity correlation is 1
+2J§(kfr). Here k; is the fixed (governing) wave number and
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FIG. 7. (Color online) Correlations of the fields in (a) and (b)
and intensity in (c) and (d) for pattern A and pattern B, respectively.
The dashed lines represent the theoretical values and the solid lines
are the correlations computing from the reconstructed coherent op-
tical wave functions as shown in Fig. 3.

we substitute it by the mean wave numbers k,,=60.927/a

and l;fm=60.1477/ a for pattern A and pattern B, respectively.

Microwave cavities have been manifested statistical re-
sults that show very good agreement with the Berry conjec-
ture in chaotic billiards [10]. However, the inadequacy of the
conjecture occurs in some other experimental systems as
they are more complicated than the scalar billiard [23-25].
For example, in the aluminum plate [23] one has to consider
the longitudinal and transverse wave vectors because of the
plate thickness, and in the multimode fiber [24] the correla-
tion is contributed by multifrequencies. The former depicts
the average intensity correlation from several intensity mea-

r (b)
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10* . . . . . . 0
0

1 2 3 4 5 6 7 0 é ; é é 1b 12
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FIG. 8. (Color online) The partial coherent state with N=52,
M=1, and ¢=m/2: (a) density plot, (b) amplitude distribution, (c)
intensity distribution, and (d) intensity correlation.
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FIG. 9. (Color online) Same as Fig. 8 but for M=5.

surements of in-plane standing waves, while the latter ob-
tains results in the field correlation from its far-field intensity.
Our statistical results are not fitted to the theoretical conjec-
ture either. The most important reason is that the existence of
the standard deviation oy, the width of the nearly degener-
ated modes in experiments, causes a deviation from the the-
oretical line. Especially, in pattern B the field correlation is
slightly deviant, while the intensity correlation represents
a large deviation. The intensity correlation is no more than
142[2,, A2 To(kyr) P=1 +2J(2)(kfr), but one has to consider
the contribution of the interference between different partici-
pating eigenstates.

On the other hand, we may also compare the above sta-
tistical characteristics to that of the wave functions in the
square billiard. According to Refs. [13,20], wave functions
with localizations on the high-order periodic orbits can be
expressed by the partially coherent states

- 1420k

FIG. 10. (Color online) Same as Fig. 8 but for M=9.
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Ny h) = N-J 12
E <N>cos2 K¢
k=1 \K
N-J 172
X > (N) (cos K¢)sin[(K+ 1)7T—x:|
k=1 \K a
><sin|:(N—K+1)2:|, (11)
a

where N is the order of the states, ¢ is related to the wall
positions of specular reflection points, and the index M =N
—2J+1 represents the number of eigenstates used in the
wave function. We show the density plots and statistical re-
sults for N=52, ¢=/2, and M=1, 5, and 9 in Figs. 8-10,
respectively. The mean values and standard deviations of the
wave numbers are k=38.187/a, 38.25w/a, and 38.357/a
and 03,=0, 0.050@/a, and 0.164m/a, respectively. Their
characteristics of the amplitude distributions, intensity distri-
butions, and intensity correlations of these wave functions
are all dissimilar and also different from those in chaotic
wave functions, while the field correlations are all very near
the Bessel function as well as that of the chaotic systems,
among which the case of M =1 is composed of only a single
eigenstate, which is equal to Eq. (2) with m=26 and n=26.
The cases of 5<M <9 have been verified in Ref. [20] that
their density distributions coincide with the experimentally
observed patterns. The IPR values for the wave patterns in
Figs. 8(a), 9(a), and 10(a) are 2.250, 3.097, and 4.113, re-
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spectively. The intensity correlation can be compared with
the result of 1+2J(2)(kfr) to identify the extra contribution to
be the long-range correlation. It can be found that wave func-
tions with broader spreading of wave vector distributions
(larger o) will get a higher IPR and higher contribution from
long-range correlation as well as the chaotic cases in Fig. 7.
A similar phenomenon can be also observed in the transmis-
sion of microwaves and light in random media [26,27].

IV. CONCLUSION

In summary, we have successfully used a microcavity la-
ser to perform an analogous study of the chaotic wave func-
tions in quantum billiards. To explore the experimental co-
herent waves, high-order chaotic optical waves have been
well reconstructed with the eigenstate expansion method and
used to study the statistical properties. It has been found that
the amplitudes of the experimental high-order chaotic pat-
terns behavior like a Gaussian distribution and their intensi-
ties obey the Porter-Thomas distribution. Moreover, we have
found that the spreading of the k-space distribution of a co-
herent optical wave function, in both chaotic and square bil-
liards, results in not only a spatial localization but also an
enhancement of its long-range intensity correlation.
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