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Abstract

Single crystal structures of ZnO nanocrystals were prepared on quartz and polyimide (PI) film substrates by using a thermal
coater to promote thermal evaporation, followed by air circulation at 350 °C for 2 h to effect oxidation. HRTEM and TEM images
show the individual ZnO nanocrystals have regular lattice order without stacking faults. After dispersion by an ultrasonic bath, ZnO
deposited on PI film substrates can consist of individual and well-distributed nanocrystals with an average crystal size of 20–
30 nm. In photoluminescence, the nanocrystalline ZnO exhibits strong UV emission at 395 nm, with no emission in the visible
spectrum. The synthetic method described in this paper provides a simple and efficient method to fabricate ZnO nanocrystals on a
large scale.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Semiconductor nanocrystals have wide application
for electronic and optoelectronic devices because of their
unique quantum confinement effects. In recent years,
zinc oxide (ZnO) has attracted much attention due to its
excellent physical properties, such as a wide band gap
(3.37 eV) at room temperature and large exciton bonding
energy (60 meV). It can be applied to ultraviolet light-
emitting diodes, transparent electrodes and piezoelectric
devices, etc. Many different methods have been reported
for the fabrication of ZnO nanocrystals: sol–gel
techniques [1], chemical vapor deposition (CVD) [2],
thermal decomposition [3], spray pyrolysis [4] and RF
plasma deposition [5]. Thermal evaporation is one of the
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simpler ways to prepare ZnO nanostructures. Many
researchers have reported using horizontal high-temper-
ature tube furnaces to fabricate different morphological
ZnO nanostructures [6–11]. Yu et al. [6] have prepared
ultraviolet-emitting ZnO nanowires by thermal evapo-
ration of zinc powder mixed with selenium powder.
Wang et al. [7] successfully synthesized ZnO nanowires,
nanoribbons, and needle-like rods via thermal evapora-
tion of a mixture of ZnO powder and graphite. A
nanoribbon junction of ZnO has been fabricated by using
a mixture of ZnO and SnO2 powders as the source
materials. Roy's group [8] has reported the morphology
and luminescent properties of ZnO nanostructures
prepared by thermal evaporation of Zn under various
conditions.

However, most of the preparation of ZnO nanostruc-
tures by thermal evaporation is restricted to fabricating
small amounts in a high temperature horizontal furnace. In
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this paper, we report using a convenient thermal coater to
effect thermal evaporation, followed by air circulation to
cause oxidation to successfully fabricate ZnO nanocrys-
tals at low temperature on quartz and flexible polyimide
(PI) film substrates. The structure and photoluminescence
properties have been studied in this paper.

2. Experimental procedure

Appropriate amounts of pure ZnO powder (99.99%
purity) was placed in a tungsten boat and thermally
evaporated on the quartz or PI substrates in a vacuum
chamber at 5×10−6 Torr. The deposition rate was con-
trolled by the boat temperature and stabilized at 1 Å/s.
We further oxidized the as-deposited ZnO products at
350 °C for 2 h under air-circulation. The fabricated
products were analyzed by a X-ray powder diffraction
(XRD) with CuKα radiation (MacScience, MXP), a
field-emission scanning electron microscope (FE-SEM)
(Hitachi, JSM-6500F), a transmission electron micro-
scope (TEM) (Philips, Jecnai 20), and a high resolution
TEM (HRTEM) (Philips, Jecnai 20). The specimens for
TEM and HRTEM were prepared by dispersing the
products in methanol using an ultrasonic bath, and
depositing the suspension onto carbon film-coated
copper grids. The photoluminescence (PL) characteristic
was measured by Hitachi F4500 spectrofluorophot-
ometer with the excitation wavelength at 325 nm.

3. Results and discussion

Fig. 1 shows the XRD patterns of the sample, as-
deposited and after oxidization. The as-deposited
Fig. 1. XRD pattern of ZnO samples as-deposited and after oxidation
at 350 °C for 2 h.
product displays the main diffraction peaks for metallic
zinc at 2θ=36.3°, 39.1° and 43.3°, which correspond to
the (002), (100) and (101) planes of hexagonal Zn; no
diffraction peaks of ZnO are observed. We believe that
Zn–O bonding of the source materials is damaged by the
thermal evaporation process. On the basis of stoichi-
ometry, the probability for zinc and oxygen atoms to
react to form ZnO would be relatively low in a large
vacuum chamber. Moreover, oxygen atoms have a lower
atomic weight than zinc atoms and could be easily
removed by the vacuum treatment. Also in Fig. 1, after
oxidation at 350 °C for 2 h, diffraction peaks of metallic
zinc were not detected. Instead, the main diffraction
peaks corresponding to (100), (002) and (101) planes of
ZnO with a hexagonal wurtzite structure were detected.
This means that metallic zinc products are rapidly trans-
formed into ZnO crystals at low temperature by using air
circulation.

Fig. 2 shows top view and side view FE-SEM images
of the samples deposited on quartz substrates for
deposition times of 2 min, 5 min and 10 min, respec-
tively, and then oxidized at 350 °C for 2 h. From Fig. 2
(a)–(c), it can be seen that the ZnO products consist of
nanocrystals, and crystal aggregation becomes more
prominent with increasing deposition time. The average
sizes of the crystal aggregates increase from 20–40 nm
at the 2 min deposition, to 60–80 nm at 5 min, and 120–
150 nm at 10 min. In addition, we can observe clearly
the morphology transformation of the fabricated ZnO
nanostructures by the side view FE-SEM images pre-
sented in Fig. 2(d)–(f). When the deposition time is
increased from 2 min to 5 min, the morphology of ZnO
nanostructures transform from an “island shape” to
densely aggregated nanoparticles. Rod-like nanostruc-
tures were observed after the 10 min deposition.

Some literature has commented upon the mechanism
of crystal growth. Matijevic et al. [12] reported a two-
stage growth, in which primary particles are formed first
via nucleation and growth, and continue to aggregate
with time to develop secondary particles. Oliveira et al.
[13] mentioned that particle aggregation would favor a
c-axis orientation, probably because of crystal polarity.
In the present case, we suggest that the morphology of
ZnO nanostructures are formed before the oxidization
process although the main composition of as-deposited
products is metallic zinc. Metallic zinc and ZnO have
the same hexagonal structure. After oxidization, oxygen
atoms occupy one-half of the tetrahedral sites in the
hexagonal zinc structure, and then develop into ZnO
with the wurtzite hexagonal structure. Hence, only the
lattice volume is increased after oxidization because of
oxygen incorporation [14].



Fig. 2. Top view (a–c) and side view (d–e) FE-SEM images of ZnO samples fabricated on quartz substrates at three different deposition times: 2 min,
5 min and 10 min, respectively, and then oxidized at 350 °C for 2 h.

Fig. 3. (a) Low magnification TEM image of the ZnO nanocrystals and high magnification TEM images (inset); (b) HRTEM image and the SAED
pattern (inset).
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Fig. 4. (a) FE-SEM images of the ZnO samples fabricated on PI substrates; (b) TEM image of the same sample.
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The detailed microstructural features of ZnO nano-
crystals which were deposited for 10 min on quartz
substrates were further studied by TEM. As shown in
Fig. 3(a), the sample shows partial aggregation and the
aggregate distribution is not uniform, but the average
sizes of the crystal aggregates were smaller than those
observed by FE-SEM, and no rod-like structures were
found. This suggests that the ultrasonic bath scatters the
agglomerated ZnO nanocrystals to cause loose struc-
tures. From the high magnified image (inset in Fig. 3(a))
and the selected area electron diffraction pattern (inset
in Fig. 3(b)), the individual ZnO nanocrystal presents
a regular hexagonal shape and clear lattice fringes,
indicating that it is a single crystalline structure. The
HRTEM images are shown in Fig. 3(b). It can be seen
that the ZnO nanocrystal exhibits regular lattice order
without stacking faults, and the spacing between ad-
jacent lattice planes is about 2.6 Å, which corresponds to
the (002) plane.
Fig. 5. Room temperature PL spectra of the ZnO nanocrystals
deposited for 10 min on quartz substrates.
Because the process occurs at relatively low
temperature, we further prepared ZnO nanocrystals on
PI film substrates. Fig. 4 shows the FE-SEM and TEM
images of ZnO nanocrystals which were deposited for
10 min. From Fig. 4(a), it is seen that the sizes of the
crystal aggregates are smaller than those on quartz
substrates, Fig. 2(c). Also, after ultrasonic dispersion for
10 min, the TEM image, Fig. 4(b), shows individual and
well distributed 20–30 nm nanocrystals. This may sug-
gest that ZnO deposits “harder” on organic PI film
substrates than on quartz substrates and results in lower
adsorbability, and less significant crystal aggregation.
Because PI films are flexible and thermally stable, this
method offers the means for mass production of ZnO
nanocrystals on roll-type PI films.

Published literature reports that two emission band
characteristics of ZnO nanostructures arise from differ-
ent processes: the ultraviolet (UV) band emission results
from near band-edge emission, while the green band
emission has been attributed to structural defects such as
oxygen vacancies [15,16]. Fig. 5 shows the room tem-
perature photoluminescence spectra of the ZnO nano-
crystals deposited 10 min on a quartz substrate. The
resulting ZnO nanocrystals exhibit strong UV emission
at 395 nm; no emission in the visible spectrum, which
might be attributable to oxygen defects, was detected.
Conversely, the air-circulating oxidation environment
results in nearly defect-free ZnO nanocrystals.

4. Conclusions

We have successfully prepared ZnO nanocrystals by
using a thermal coating process followed by air circu-
lation to effect oxidation. Air circulation provides a mild
and rapid means for producing ZnO crystals, so flexible
and thermally stable PI films, as an alternate to quartz
substrates, can be used for the substrate. HRTEM and
photoluminescence measurements show the resulting
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ZnO nanocrystals are nearly defect-free single crys-
talline structures. In addition, the ZnO deposited on PI
film substrates are present as individual and well distri-
buted nanocrystals after dispersion by an ultrasonic
bath. Because a roll-type of PI film can be used as a
substrate for the continuous deposition of the ZnO, it
can be a simple and efficient method for the large-scale
fabrication of ZnO nanocrystals.
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