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Blind Identification of MIMO Channels Using
Optimal Periodic Precoding

Ching-An Lin and Yi-Sheng Chen

Abstract—We propose a method for blind identification of
multiple-input mutiple-out (MIMO) finite-impulse response (FIR)
channels that exploits cyclostationarity of the received data
induced at the transmitters by periodic precoding. It is shown
that, by properly choosing the precoding sequence, the MIMO
FIR transfer functions, with inputs and outputs, can be
identified up to a unitary matrix ambiguity. The transfer functions
need not be irreducible or column reduced, and there can be more
outputs ( ) or more inputs ( ). The method
exploits the linear relation between the covariance matrix of the
received data and the “channel product matrices”. The method
is shown to be robust with respect to channel-order overestima-
tion. The proposed algorithm requires solving linear equations
and computing the nonzero eigenvalues and eigenvectors of a
Hermitian positive semidefinite matrix. The performance of the
algorithm, and indeed the identifiability, depends on the choice
of the precoding sequence. We propose a method for optimal
selection of the precoding sequence which takes into account the
effect of additive channel noise and numerical error in covariance
matrix estimation. Simulation results are used to demonstrate the
performance of the algorithm.

Index Terms—Blind identification, multiple-input mutiple-out
(MIMO) channel, periodic precoding, transmitter induced cyclo-
stationarity.

I. INTRODUCTION

BLIND-channel identification is a technique that alleviates
the need for training sequences to identify the unknown

channel-impulse response from the received signal. Since the re-
quirement of extra bandwidth for training overhead is reduced,
this technique has received great research interest and many
blind identification algorithms have been proposed (see [1]–[3]
for a detailed review).

Blind identification of single-input single-output (SISO) fre-
quency selective channels exploiting transmitter induced cyclo-
stationarity of the second-order statistics of the received data
is first proposed in [4], [5]. Since then, various schemes have
been proposed to induce cyclostationarity at the transmitter and
to blindly identify SISO [6]-[11] and multiple-input mutiple-out
(MIMO) channels [12]–[14], [17]. One way to induce cyclosta-
tionarity at the transmitter is by periodic precoding, i.e., mul-
tiplying the source symbols with a periodic sequence before
transmission [5], [8], [9], [11]–[14], [17]. For SISO channels,
blind identification methods based on periodic precoding are
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shown to be robust with respective to channel-order overestima-
tion and impose no restriction on the locations of channel zeros
[5], [8], [9], [11].

In the MIMO context, Chevreuil and Loubaton [12] proposes
a scheme that multiplies the input sequence by a constant mod-
ulus complex exponential precoding sequence to induce conju-
gate cyclostationarity at the transmitter. The scheme reduces the
MIMO channel identification problem to several SIMO ones,
which are then solved by the subspace method [18]. Each SIMO
channel is required to be free from common zeros and only real
symbols can be used. Bölcskei et al. [13] proposes a method for
identifying each of the scalar channels individually up to a phase
ambiguity using non-constant modulus periodic precoding se-
quences. The method imposes no restriction on channel zeros
and is insensitivity to channel-order overestimation. However,
no general procedure for the design of the precoding sequences
is given. The method is extended to the multicarrier case in [14].
In [17], Ding and Ward regard the precoding sequences applied
at the transmitters as a special kind of GSTBCs and they propose
a subspace method for identification and equalization. Each el-
ement in the precoding sequences is random with modulus 1.

In this paper, we propose a method for blind identification of
MIMO finite-impulse response (FIR) channels using periodic
precoding as a means to induce cyclostationarity. We show that,
by properly choosing the precoding sequence, the MIMO FIR
transfer functions, with inputs and outputs, can be iden-
tified up to a unitary matrix ambiguity. The transfer functions
need not be irreducible or column reduced [15], [16], and there
can be more outputs or more inputs .
The method exploits the linear relation between the covariance
matrix of the received data and the “channel product matrices”.
The method is shown to be robust with respect to channel-order
overestimation. The proposed algorithm requires solving linear
equations and computing the nonzero eigenvalues and eigen-
vectors of a Hermitian positive semidefinite matrix. The perfor-
mance of the algorithm, and indeed the identifiability, depends
on the choice of the precoding sequence. We propose a method
for optimal selection of the precoding sequence which takes into
account the effect of additive channel noise and numerical error
in covariance matrix estimation. Simulation results are used to
demonstrate the performance of the algorithm. The paper gen-
eralizes the results for the SISO case discussed in [11].

The paper is organized as follows. Section II is problem state-
ment and formulation. In Section III, we derive the identifica-
tion method and propose the blind identification algorithm. In
Section IV, we discuss optimal selection of the precoding se-
quence. Simulation results are given in Section V. Section VI
concludes the paper.

Notations used in this paper are quite standard. Bold upper-
case is used for matrices, and bold lowercase is used for vectors.

1549-8328/$25.00 © 2007 IEEE



902 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 54, NO. 4, APRIL 2007

Fig. 1. MIMO channel model.

represents transpose of the matrix , and represents
conjugate transpose of the matrix . is the Kronecker
product of and . is the zero matrix of dimension

, and is the identity matrix of dimension .
The symbols and stand for the set of real number and the
set of complex number, respectively.

II. PROBLEM STATEMENT AND FORMULATION

We consider the linear MIMO baseband model of a commu-
nication channel with transmitters and receivers shown
in Fig. 1, where each source symbol sequence is multiplied by
an -periodic sequence, , before transmission. The trans-
mitted signal is

(2.1)

where . The discrete time model describing
the relation between the transmitted signal and the re-
ceived signal has the form of an MIMO FIR filter with
additive noise

(2.2)

where , are the impulse responses
of the channel between the th transmitter and the th receiver,
and is the channel noise seen at the input of the th re-
ceiver. The (2.1) and (2.2) can be written more compactly as

(2.3)

where , and are vector
signals formed by stacking the respective scalar signals together,
e.g., . The th element of

is , and is the order of
the MIMO channel. Thus, . We assume that
the receivers are synchronized with the transmitters. In addition,
the following assumptions are made throughout the paper.

A1) and are white zero-mean vector sequences,
and and are temporally and spatially uncor-
related. More precisely,

, where
is the Kronecker delta function.

A2) An upper bound of the channel order is known and
the period .

A3) .
Due to periodic precoding, the input–output relation be-

tween the source and the received signal , described

by (2.3), is periodically time-varying. In order to obtain
a time-invariant representation, we consider input–output
relation between block input and block output of size
[19]. Define block signal

, and let be
similarly defined. Since is periodic, for
all , where

is a diagonal matrix. In terms of block signals,
(2.3) can be written as

(2.4)

where is an block
lower triangular Toeplitz matrix with

as its first block column (i.e., the
first columns), and is an
block upper triangular Toeplitz matrix with

as its first block row (i.e., the first rows).
The problem we study in this paper is blind identification of

the MIMO channel matrix
using second-order statistics of the received data. We define the
following operations that will be used in the derivation of the
main result. First, for any matrix ,
define for

, i.e., is the vector formed from the th su-
perdiagonal of . Second, for any matrix

, where is a block matrix of dimension
, define

for , i.e., is the matrix formed from the
th block superdiagonal of .

III. CHANNEL IDENTIFICATION

We study channel identification in this section. In
Section III-A, we derive the proposed method assuming
the channel order is known and the noise is absent. We show
that by appropriately selecting the periodic precoding sequence,
any MIMO channel satisfying is identifiable up to an

unitary matrix ambiguity. In Section III-B, we show
that the proposed method is robust with respect to channel-order
overestimation and we propose an identification algorithm in
Section III-C. The effect of noise and optimal selection of the
precoding sequence are discussed in Section IV.

A. The Identification Method

When the noise is absent and the channel order is known,
the (2.4) now becomes

(3.1)

By assumption , the covariance matrix of can be
written as

(3.2)
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Let be the matrix whose first sub-diagonal are
all one, i.e., , and all re-
maining entries are zero. The block Toeplitz structures of

and allow us to write and
, respectively. Besides, we

define . Hence,
can be written as

(3.3)

where we have used the identities and
[22, , p. 190]. Similarly,

can be written as

(3.4)

The following proposition shows that the matrices
and have special structures

that allow decomposition of (3.2) into a group of decoupled
equations. Roughly speaking, the th block superdiagonal part
of (3.2) involves only the unknown “channel product matrices,”

. For example, the equa-
tions corresponding to the diagonal blocks involve only

. In the proposed identification
algorithm, these “channel product matrices” are computed first

by solving linear equations, and then the channel-impulse re-
sponse matrices are computed via eigenvalue-eigenvector
decomposition.

Proposition 3.1: Let be two non-negative inte-
gers. Then, the following are true.

a) For , where , both
and are upper triangular matrices with
only the respective th upper diagonals nonzero, as shown
in (3.5) and (3.6) at the bottom of the page.

b) For , both and
are lower triangular with

zero diagonal matrices.
Proof: See [11].

It follows from (3.5) and (3.6) that (3.7), shown at the bottom
of the page, is true. Since

(3.8)

(3.9)

it follows from (3.2)–(3.4) and (3.7)–(3.9) that can
be derived as shown in (3.10), at the bottom of the next page.

The right-hand side of (3.10) is a linear combination of block
columns with the channel product matrices as
coefficients. If we define , shown in (3.11), at
the bottom of the next page, then (3.10) can be written in a more
compact form as

(3.12)

where is defined as (3.13), shown
at the bottom of the next page. We note that , is
obtained from by deleting its last rows and last
columns.

(3.5)

(3.6)

(3.7)
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Since , the equations in (3.12) are overde-
termined and for the noise-free case, these equations are consis-
tent. If is full column rank, then the solution can be obtained
as

(3.14)

If , are computed from (3.14), then we have
the channel product matrices for .
We now consider the computation required to determine the
channel-impulse response matrices
from .

Let be the Hermitian matrix defined by
for , and let the channel matrix

. Clearly we have

(3.15)

Since by assumption has rank .
Since is Hermitian and positive semidefinite, has pos-
itive eigenvalues, say, . We can expand as

(3.16)

where is a unit norm eigenvector of associated with
. We can thus choose the channel matrix to be

(3.17)

We note can only be identified up to a unitary matrix ambi-
guity [15], [16], i.e., , since

. The ambiguity matrix is intrinsic to methods
for blind identification of multiple input systems using only
second-order statistics [15], [16].

We note that the matrix , is completely
determined by the precoding sequence. By appropriately se-
lecting the precoding sequence, we can make each full
column rank.

We summarize what we have so far.
a) If the MIMO channel described by (2.3) satisfies

and and the channel order is known, then the
channel matrix can be identified up to a unitary matrix
ambiguity.

b) The proposed identification method use the covariance
matrix of the received signal as data, and the
computations involved are solving linear (3.12) and
performing eigenvalue-eigenvector decomposition of the
Hermitian matrix in (3.16).

We note that in the proposed method, the channel matrix is
only assumed to be full column rank . Hence, the channel

(3.10)

(3.11)

...
...

...
... (3.13)
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needs not be irreducible or column reduced. If (more
outputs), then is generically satisfied [20, ch. 7]. If

(more inputs), then is generically satisfied provided
. We note that if the channel has more inputs

than outputs, channel equalization and source separation may
be difficult even if accurate channel estimate is available.

B. Channel-Order Overestimation

So far, we have assumed that the channel order is known.
If only an upper bound is available with

, then following the same process given in Section III-A, the
corresponding matrix can be similarly
constructed as in (3.15). The last block columns (i.e.,

columns) of are zero, so are its last
block rows. Hence, again, is of rank and has positive
eigenvalues with the associated eigenvectors all of the form

where . Thus,
we can determine impulse response matrices, up to a unitary
matrix ambiguity, from the eigenvectors associated with the

positive eigenvalues of . In the noise-free case, we can, in
theory, also determine the actual channel order.

C. Identification Algorithm

We summarize the proposed method as the following algo-
rithm.

1) Select the precoding sequence such that each matrix
defined in (3.13) is full column rank.

2) Estimate the covariance matrix via the time average

(3.18)

where is the number of data block (i.e., is the
number of samples for each transmitter).

3) Compute , formed by the channel product matrices, for
, using (3.14).

4) Form the matrix as in (3.15), and obtain the channel-im-
pulse response (3.17) by computing the largest eigen-
values and the associated eigenvectors of .

IV. OPTIMAL SELECTION OF PRECODING SEQUENCE

In Section III, we see that in order to identify the channel, the
precoding sequence must be selected so that the resulting matrix

is full column rank such that can be exactly solved as
(3.14). However, when noise is present, the covariance matrix

contains the contribution of noise and numerical error is
present in the estimation of by (3.18). This implies that
(3.12) usually has no solution and (3.14) becomes a least squares

approximate solution. The choice of will affect error in
the computation of since different in (3.14) usually
have different condition numbers. In this section, we discuss the
optimal selection of the precoding sequence, which takes into
account the effect of noise and numerical error in estimating

, so as to increase the accuracy of and thus reduce the
channel estimation error.

A. Optimality Criterion

Now we consider the general case that noise is present and
discuss the design of the precoding sequence . From (2.4)
and assumption , the covariance matrix of the received
signal is

(4.1)

From (4.1) and (3.2), we see that noise has only contribution to
the diagonal entries of . Therefore, the decoupled
groups of equations in (3.12) remain unchanged, except for the

group, which becomes

(4.2)

where . Thus, from
(3.14), , the least squares approximation of , can be written
by

(4.3)

which is plus a perturbation term due to noise. The per-
turbation term is the least squares solution of the equation

. We note that if every column of is orthogonal
to every column of , then , which implies .
But that is impossible since the entries of are positive and
those of are nonnegative. Therefore, we seek to appropriately
choose the precoding sequence such that every column of

is as close to being orthogonal to that of as possible. To
this end, we first define and shown below as the columns
of and , respectively, in (4.4) and (4.5), at the bottom of
the next page. Then, due to the special structure of the block
matrix and , it is easy to check that is orthogonal
to , i.e., for , (e.g., shown in

(4.4)

(4.5)
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the second equation at the bottom of this page), and each
assumes the same value , for

, (e.g., shown in the
last equation at the bottom of the this page). Thus, we only need
to consider the relation between columns of and (the case
of and ). Define the correlation coefficient

(4.6)

Since is nonnegative and by Cauchy–Schwarz inequality,
. In order to make the perturbation term small, we

choose so that the correlation coefficient is as small as
possible. Based on this point of view, we formulate the optimal
selection problem as minimizing subject to

(4.7)

(4.8)

Roughly, constraint (4.7) normalizes the power gain of the pre-
coding sequence of each transmitter to 1; constraint (4.8) re-
quires that at each instant, the power gain is no less than . Note
that the problem of selecting the precoding sequence is identical
to the SISO case considered in [11]. Thus, the optimal precoding
sequence is a two-level sequence with a single peak in one
period [11]. More specifically, for each

(4.9)
is an optimal precoding sequence. Because the precoding
sequence is periodic with period , the single peak can be
placed at any one of the positions which yield the same

. Note that decreases as
decreases, which implies that the noise effect in the estimation
of covariance matrix is minimized and thus identifica-
tion performance improves. However the peak location does
significantly affect the numerical condition of the linear (3.12).
We discuss the selection of next.

B. On Selection of

We now consider the selection of . We know that different
choices of result in different matrix and affect the

numerical computation of , in (3.14) and
in (4.3), since different may have different condition
number. If the condition number is large, then the matrix

is ill-conditioned and the computations in (3.14) and
(4.3) are sensitive to data error. Let

(4.10)

where is the condition number of . Our goal is to choose
so as to minimize the largest condition number of the cor-

responding matrices . Since the peak
appears at one of the possible positions in the periodic pre-
coding sequence, there are precoding sequences which may
result in different . The following result shows that some
choices of are to be avoided since they result in some
being rank deficient and thus .

Proposition 4.1: At least one , is not full
column rank if and only if .

Proof: See Appendix A.
Hence if we choose, either or ,

then each is full column rank and the channel is identifiable.
The following result shows that we can classify the remaining
choices into 2 groups that are relevant to the optimal choice of

.
Proposition 4.2:
a) Each of the choices,

, results in the same denoted by .
b) The two choices and result in

the same denoted by . Also .
Proof: See Appendix A.

From Proposition 4.2, we know if , then we choose
case (a); if , we proceed to compare the second largest
condition numbers of the set of matrices for these
two cases and choose the case whose value is smaller. If they
are again equal, the same procedure can be done by comparing
the third largest condition numbers and so on. Moreover, for

[case (a)], since the condition numbers
of are the same for each fixed , (see
Appendix A), we can use to represent case (a). Similarly,

can be used to represent case (b). Hence, the optimal
selection of reduces to one of two cases: or

. In other words, the optimal precoding sequence has a
peak either at the beginning or at the end.
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V. SIMULATION RESULTS

In this section, we use several examples to demonstrate the
performance of the proposed method. The channel normalized
root-mean-square error (NRMSE) is defined as

(5.1)

where denotes the Frobenius norm.
is the estimate of

channel-impulse response matrix after removing the
unitary matrix ambiguity by the least squares method
[16]. is the number of Monte Carlo runs. The
input source symbols are i.i.d. quadrature phase shift key
(QPSK) signals. The channel noises are white Gaussian.
The signal-to-noise ratio (SNR) at the output is defined as

, where
is the signal component of the

received signal (see Fig. 1).
1) Simulation 1—Optimal Selection of Precoding Sequences:

In this simulation, we use the following model

(5.2)

to demonstrate the effect of different precoding sequences on
the performance of the proposed method. In experiment 1, the
first sequence is chosen as , which satis-
fies (4.7) and (4.8). The second and third sequences are chosen
based on (4.9) for and with the two pos-
sible peak positions: and . By computation, the
corresponding for the three cases are 40.0, 4.66, and 22.1, re-
spectively. Thus, is the optimal selection. Fig. 2 shows
that for dB, there are about 5–7 dB and 5–9 dB dif-
ference in NRMSE between the optimal one and two others.

In experiment 2, we use the precoding sequences that satisfy
(4.9) with , but with different to test the effect of
on the identification performance. Fig. 3 shows that for each
sequence, when the number of samples (for each transmitter)
is fixed at 1000, the NRMSE decreases as SNR increases
and is roughly constant for dB. A possible ex-
planation is that for sufficiently large SNR, the NRMSE is
contributed mainly by numerical error rather than by channel
noise. Fig. 3 also shows that the identification performs better
for smaller , which is consistent with the conclusion at the end
of Section IV-A.

Fig. 2. Channel NRMSE versus number of samples.

Fig. 3. Channel NRMSE versus output SNR.

2) Simulation 2—Robustness to Channel-Order Overestima-
tion: In this simulation, we use the following channel model:

(5.3)

given in [14]. For each upper bound , we
choose dB, and samples (for
each transmitter) for simulation. The precoding sequences are
chosen as (4.9) with and , and .
Fig. 4 shows the NRMSE increases with increasing channel-
order overestimation. We see the proposed method is quite ro-
bust to channel-order overestimation when is small. For ex-
ample, with , when increases from 0 to 3, the
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Fig. 4. Channel NRMSE versus (L̂ � L).

Fig. 5. 3-input 2-output model: Channel NRMSE versus number of samples.

NRMSE increases from dB to dB, which is still a
low value.

3) Simulation 3—A 3-Input 2-Output Channel: In this simu-
lation, we use the 3-input 2-output model

(5.4)

to illustrate the performance of the proposed method for channel
with more inputs than outputs. Note that is full column rank,
but the channel is not irreducible [16] because is not full
rank, and it is not column reduced [16] either because is
not full rank. In experiment 1, the precoding sequences
are given as in (4.9) with and , respectively. Fig. 5
shows that the NRMSE decreases as the number of data samples

Fig. 6. 3-input 2-output model: Channel NRMSE versus output SNR.

Fig. 7. Symbol error rate versus output SNR.

increases for dB. As expected, case (the
optimal selection) is better than case.

In experiment 2, we use the precoding sequences that satisfy
(4.9) with , but with different to test the effect of
on the identification performance. Fig. 6 shows that for each
sequence, when the number of samples (for each transmitter)
is fixed at 1000, the NRMSE decreases as SNR increases and
is roughly constant for dB due to numerical error.
Fig. 6 also shows the identification performs better for smaller

.
4) Simulation 4—Channel Equalization Performance: In

this simulation, we use the channel model given in (5.3) to
demonstrate the performance of the proposed method for
channel equalization. We use the precoding sequences that
satisfy (4.9) with , but with different to test the effect
of on the equalization performance. For simplicity, we use the
minimum mean square error (MMSE) equalizer. The equalizer
is a 17-tap Wiener filter with 12-tap reconstruction delay whose
th output is an estimate of for .

Since the precoding scheme is applied at the transmitter, we
need to multiply by the corresponding to obtain
an estimate of for . The number of
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Fig. 8. Comparison of NRMSE and symbol error rate, number of
input samples = 1200. (a) Channel NRMSE versus output SNR. (b)
Symbol error rate versus output SNR.

samples is 1200. We first identify the channel using the first 400
samples and then do equalization. To obtain smoother curves,
we use as the number of Monte Carlo runs rather than
100.

Fig. 7 shows that under low SNR, the proposed method per-
forms better when is large; however, under high SNR, the pro-
posed method performs better when is low. A possible expla-
nation is as follows.

Channel estimates become more accurate as becomes
smaller, but the gains
become larger and result in larger noise amplification at the
receiver. Both channel-estimation error and channel noise con-
tribute to the (maximum likelihood) detection performance, i.e.,
the symbol error rate. In the low SNR region, the detrimental
effect of noise amplification outweighs the benefit of small
estimation error; whereas in the high SNR region, accurate
channel estimation weighs more than the noise amplification
effect. Hence, we choose a small when SNR is high and a
large when SNR is low.

5) Simulation 5—Comparisons With Other Methods: In
this simulation, we generate 100 2-input 4-output random
channels with order ; each element in the channel-im-
pulse response matrix is a complex circular Gaussian random
variable with unit variance. We compare the proposed method
with a generalized space time block codes (GSTBCs) [17]
based method. Both methods require periodic precoding se-
quences. For the proposed method, the precoding sequence is
chosen as ; whereas the entries
in the precoding sequence for the GSTBC method is chosen
as random entries with modulus 1 for each random channel
simulation [17]. The performance of the proposed method
is also compared with a linear prediction (LP) ([3], chap. 6)
based method, and an outer product decomposition algorithm
(OPDA) [15]. Both methods do not require a periodic pre-
coder. MMSE equalizers are used for the proposed method, LP
method, and OPDA method. For the GSTBC method, we use
the customized equalizer proposed in [17]. Fig. 8(a) shows that
when the number of samples is 1200 (for each transmitter),
the identification performance of the proposed method is better
than those of the other three methods excepting the GSTBC
method for dB. However, Fig. 8(b) shows the
equalization performance of the proposed method is only better
than those of the LP and OPDA methods and worse than the
GSTBC method. The inconsistency of the channel estimation
and equalization performance of the proposed method and the
GSTBC method for dB may be due to the different
precoding sequences and equalizers used. Fig. 9 shows that
when the number of samples is 200 (for each transmitter), the
identification and equalization performance of the proposed
method is better than that of the GSTBC method for
dB. Fig. 9 shows that when the number of samples is small,
the proposed method has better performance than the GSTBC
method under low SNR.

VI. CONCLUSION

We propose a method for blind identification of FIR
MIMO channels using periodic precoding sequence. Since
the cyclostationarity is induced at the transmitter, the iden-
tifiability condition imposed on the channel is minimum:
it only requires that channel-impulse response matrix

is full column rank.
The channel transfer matrix is not required to be irreducible
or column reduced. The channel can have more outputs or
more inputs. The method is shown to be robust with respect
to channel-order overestimation. The performance of the algo-
rithm depends on the precoding sequence which is optimally
designed to reduce the effect of noise and error in estimating
the covariance matrix of the received data. Simulation results
show that the method yields good performance.

APPENDIX

A. Proof of Proposition 4.1 and 4.2

Preliminary: For each , let
be similarly defined as (3.13), except that is re-
placed by 1. It can be easily check that there exists
permutation matrices and

such that
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Fig. 9. Comparison of NRMSE and symbol error rate, number of
input samples = 200. (a) Channel NRMSE versus output SNR. (b)
Symbol error rate versus output SNR.

is a block diagonal matrix with each block of dimension
. Since and

[21, p. 110], we have . Hence, is
full column rank if and only if is full column rank for

.
Also,

. Let
denote the spectrum of [21, p. 310], that is, the set of

eigenvalues of . Then .

Proof of Proposition 4.1: If at , it can
be checked that is not of full column
rank since it has two columns both equal to which
implies that at least one is rank deficient and vice versa.

Proof of Proposition 4.2: From the Preliminary, since
, the condition number of

is identical to that of , i.e., .
Thus, we need only compute the condition number of .

Case (a): For , and , we
know

(A.1)

where .
Hence, the maximum and minimum eigenvalues are

and respectively. Thus, the condition number
of is which is a decreasing
function of . Therefore, the corresponding is equal to

.
Case (b): For and , we consider

the case and case for separately. For
with or , direct multiplication of

gives the same matrix as (A.1), and the condition
number of is . For with ,
direct multiplication of yields (A.2), shown at
the bottom of the page. The eigenvalues of in
ascending order, are , where has a multiplicity

, and

. All
of the eigenvalues are positive and real. (A proof is given in
Appendix B). It can be similarly shown that for with

has the same eigenvalues .
Hence, for and the
condition number is

(A.3)

where . Since is also
a decreasing function of , then the maximum value is .
Therefore, combining the two cases , the corre-
sponding is .

...
...

. . .
...

...
... (A.2)
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B. Eigenvalues of for

Proof: Let defined in (A.2),
then is positive definite since is full column
rank. It can be checked that the eigenvectors
corresponding to multiple eigenvalue are

. The remaining eigenvectors are
. Hence,

...
...

... (B.1)

which implies the following two equations

(B.2)

(B.3)

Substitute (B.2) into (B.3), we can get an second-order equation
of . Solving this equation can lead to two solutions of . Bring
these two into (B.2) and we can obtain the two eigenvalues

. In addition, because of (B.4)

(B.4)

and because of the interlacing property [21, p. 396].
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