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Abstract

The hypercube Qn is one of the most popular networks. In this paper, we first prove that the n-dimensional hypercube is
2n � 5 conditional fault-bipancyclic. That is, an injured hypercube with up to 2n � 5 faulty links has a cycle of length l for
every even 4 6 l 6 2n when each node of the hypercube is incident with at least two healthy links. In addition, if a certain
node is incident with less than two healthy links, we show that an injured hypercube contains cycles of all even lengths
except hamiltonian cycles with up to 2n � 3 faulty links. Furthermore, the above two results are optimal. In conclusion,
we find cycles of all possible lengths in injured hypercubes with up to 2n � 5 faulty links under all possible fault
distributions.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Processors of a multiprocessor system are con-
nected according to a given interconnection net-
work. Many interconnection networks have been
proposed with their superb merits demonstrated.
Among them, the hypercube network is one of the
most popular candidates when choosing an inter-
connection network. Newly proposed properties or
measures with respect to interconnection networks
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are usually studied first on the hypercube because
of its symmetric structure and popularity.

In order to speed up computations, a number of
processors are grouped together to run a given par-
allel algorithm. A cycle is a preferred structure for a
group of processors to carry out an algorithm
because it is branch-free and has low degree. In
addition, a ring structure can be used as a control
or data flow structure for distributed computations.
For more benefits and applications of cycles, refer
to [4,10,15]. Many researchers have studied the exis-
tence of cycle structures in various interconnection
networks, for example, [2,4,8,10,12,17,18].

Failures of interconnection network components
are inevitable. Accordingly, various fault-tolerant
measures have been proposed in the literature,
.
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including fault diameter [14], fault hamiltonicity [8],
fault pancyclicity [7,18], fault bipancyclicity [12],
and fault hamiltonian laceability [16]. Specifically,
there have been many works on pancyclicity con-
ducted in recent years. They aim to find cycles of
as many lengths as possible in a variety of intercon-
nection networks. Precisely, a network N is pancy-
clic if it contains cycles of all lengths from 3 to the
number of vertices in N. Researches related to pan-
cyclicity can be found in [1,3,5–7,9,18]. However,
since the hypercube is bipartite, it has no odd cycles.
Another definition, bipancyclicity, was revealed
accordingly. A network or a graph G is bipancyclic
if G has cycles of all even lengths ranging from 4 to
the number of vertices in G. Tsai et al. [12] studied
the fault-tolerant bipancyclic property on hyper-
cube. They found that an injured hypercube Qn with
up to n � 2 faulty links is bipancyclic. However, this
measure underestimates the fault-tolerant capability
of an interconnection network. Although there is no
hamiltonian cycle in an injured hypercube if there
are n � 1 faulty links incident to a single node, this
is the unique case.

For making sure the usability of a particular
interconnection network, it is good to know that
this network can tolerate many faults. In this paper,
we show that the degree of fault-tolerance of the
hypercube is almost twice as many as the degree
of the hypercube while almost preserving the bipan-
cyclicity property. This goal is achieved by going
through two steps. Firstly, we study a kind of
fault-tolerant measure, the conditional fault-toler-
ant bipancyclicity, on the hypercube. By restricting
fault distributions, an injured hypercube is still
bipancyclic with a large amount of faulty links.
We show that an injured hypercube is bipancyclic
with up to 2n � 5 faulty links under the condition
that every node is incident with at least two healthy
links. Some other conditional properties concerning
with connectivity [11], diameter [13], and hamilto-
nian cycle embeddings [2] have been studied. These
networks come out to tolerate more faults than
expected while preserving the desired properties.
Secondly, as mentioned above, there is no hamilto-
nian cycle with n � 1 faulty links in the worst case.
When the condition is not satisfied, i.e., a certain
node is incident with less than two healthy links,
an injured hypercube has cycles of all even lengths
except hamiltonian cycles with up to 2n � 3 faulty
links. The above two results are optimal, and for
details, refer to Section 3. Finally, based on these
results, we conclude that we can find cycles of all
possible lengths in an injured hypercube with up
to arbitrary 2n � 5 faulty links.

The rest of this paper is organized as follows.
Section 2 introduces definitions and notation. In
Section 3, the highly fault-tolerant bipancyclic prop-
erty is discussed on hypercube. Section 4 concludes
our result.
2. Definitions and notation

In this paper, we represent an interconnection
network as an undirected simple graph G. We
denote the vertex set and the edge set of a graph G

as V(G) and E(G), respectively. The hypercube Qn

is a graph with jV(Qn)j = 2n and jE(Qn)j = n2n�1.
Vertices are assigned binary strings of length n rang-
ing from 0 to 2n � 1. Two vertices are adjacent if
they differ only in one bit position.

A path, denoted by hv1,v2, . . .,vki, is a sequence of
adjacent vertices where all the vertices are distinct
except possibly v1 = vk. We say that a path is a ham-

iltonian path if it traverses all the vertices of G

exactly once. A cycle is a path that begins and ends
with the same vertex. A hamiltonian cycle is a cycle
which walks through all the vertices of G. A graph is
hamiltonian if it has a hamiltonian cycle. A bipartite
graph is hamiltonian laceable if, for two arbitrary
vertices x and y in different partite sets, there is a
hamiltonian path connecting x and y. A bipartite
graph G is bipancyclic if, for every even integer l

with 4 6 l 6 jV(G)j, G has a cycle of length l.
Let F � E(G) be a faulty set containing edges of G.

G � F denotes the subgraph of G obtained by delet-
ing the edges in F from G. Let k be a positive integer.
A bipartite graph G is k edge fault-tolerant hamilto-

nian laceable (abbreviated as k fault-hamiltonian lace-
able in this paper) if G � F is hamiltonian laceable
for every F with jFj 6 k. A bipartite graph G is k edge
fault-tolerant bipancyclic (abbreviated as k fault-

bipancyclic) if G � F is bipancyclic for every F with
jFj 6 k. A bipartite graph G is k conditional edge

fault-tolerant bipancyclic (abbreviated as k condi-

tional fault-bipancyclic) if G � F is bipancyclic for
every F with jFj 6 k under the condition that every
vertex is incident with at least two non-faulty edges.
3. Main result

The following lemma is proved in [16].

Theorem 1 [16]. Qn is (n � 2) edge fault-tolerant

hamiltonian laceable for n P 2.
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For convenience of further discussion, we say that
Qn is divided into Q0

n�1 and Q1
n�1 along dimension k

for 0 6 k 6 n � 1 if Qi
n�1 is an (n � 1)-dimensional

hypercube which is a subgraph of Qn induced by
the vertices labeled by xn�1, . . .,xk+1ixk�1, . . .,x0.
We say that (x,y) 2 E(Qn) is a k-dimensional edge if
x differs from y in the kth position for 0 6 k 6 n � 1.
In addition, let F � E(Qn) be the set of faulty edges,
F 0 ¼ F

T
EðQ0

n�1Þ, and F 1 ¼ F
T

EðQ1
n�1Þ.

The following theorem states that, under the con-
dition that each node of Qn is incident with at least
two healthy links, an injured Qn is still bipancyclic
with F 6 2n � 5 for n P 3. We note that this condi-
tion implies that the number of faulty edges incident
to any vertex is at most n � 2.

Theorem 2. The hypercube Qn is (2n � 5) conditional
fault-bipancyclic for n P 3.

Proof. We prove this by induction on n. It is
straightforward to see that Q3 is 1 edge fault-toler-
ant bipancyclic. Since 2 · 3 � 5 = 1, the theorem
holds for n = 3. Assume that Qn�1 is 2(n � 1) �
5 = 2n � 7 conditional fault-bipancyclic for some
n P 4. We shall prove that Qn is (2n � 5) condi-
tional fault-bipancyclic. There are three possible
fault distributions:

(1) There is only one vertex incident with n � 2
faulty edges. Without loss of generality, we
may assume that one of these n � 2 faulty
edges is an (n � 1)-dimensional edge.

(2) There are two vertices which share a faulty
edge and are both incident with n � 2 faulty
edges. Without loss of generality, we may
assume that the faulty edge they share is an
(n � 1)-dimensional edge.

(3) Every vertex is incident with less than n � 2
faulty edges. We may assume without loss of
generality that one of them is an (n � 1)-
dimensional edge.

Note that there cannot be more than two vertices
which are incident with n � 2 faulty edges for n P 3.
Then, we can divide Qn into Q0

n�1 and Q0
n�1 along

dimension n � 1. So both of Q0
n�1 and Q1

n�1 satisfy
the condition that every vertex is incident with at
least two non-faulty edges. Furthermore, we may
assume without loss of generality that jF0jP jF1j.
Since ð2n�5Þ�1

2 ¼ n� 3, jF1j 6 n � 3. We discuss the
existence of cycles of all even lengths from 4 to 2n in
the following two cases.
Case 1. Cycles of even lengths from 4 to 2n�1.
Note that jF1j 6 n � 3 6 2n � 7 for n P 4. By
induction hypothesis, Q1

n�1 is (2n � 7) conditional
fault-bipancyclic, so Q1 � F1 contains cycles of all
even lengths from 4 to 2n�1.

Case 2. Cycles of even lengths from 2n�1 + 2 to
2n. We divide this case further into two subcases.

Case 2.1. jF0j = 2n � 6 (see Fig. 1(a)). Hence,
there is only one (n � 1)-dimensional faulty edge,
say e. Let x 2 V ðQ0

n�1Þ be the vertex incident with e.
Notice that there are at most n � 3 faulty edges
incident with x in Q0

n�1. Since 2n � 6 > n � 3 for
n P 4, there must be a faulty edge in Q0

n�1, say e 0,
such that it is not incident to x. Let F 0 = F0 � e 0.
Clearly, jF 0j = 2n � 7. By induction hypothesis,

Q0
n�1 is (2n � 7) conditional fault-bipancyclic, so

Q0
n�1 � F 0 contains a hamiltonian cycle, say C.

Then, Q0
n�1 � F 0 contains a hamiltonian path on

C, say P = hu1; u2; . . . ; u2n�1i, such that u1 5 x and
u2n�1 6¼ x. Let 2 6 l 6 2n�1 be an even integer. We
construct a cycle of length 2n�1 + l as follows.Since
the edge e is the only faulty edge in (n � 1)-
dimension, there must exist two vertices ui and uj

such that the two (n � 1)-dimensional edges incident
to ui and uj, respectively, are non-faulty and
j � i = l � 1. Let vi and vj be the neighbors of ui

and uj in Q1
n�1, respectively. Since j � i is odd, ui and

uj are in different partite sets, and then vi and vj are
also in different partite sets. By Theorem 1, Q1

n�1 is
(n � 3) fault-hamiltonian laceable. Since jF1j
6 n � 3, Q1

n�1 � F 1 contains a hamiltonian path,
say Q. Then, hui,ui+1, . . .,uj,vj,Q,vi,uii is a cycle of
length 2n�1 + l in Qn � F.

Case 2.2. jF0j 6 2n � 7 (see Fig. 1(b)). By induc-
tion hypothesis, Q0

n�1 is (2n � 7) conditional
fault-bipancyclic. Therefore, Q0

n�1 � F 0 contains a
hamiltonian cycle, say C ¼ hu1; u2; . . . ; u2n�1 ; u1i. Let
l be an even integer for 2 6 l 6 2n�1. We construct a
cycle of length 2n�1 + l as follows: First, we claim
that there exist two vertices ui and uj on C such
that the two (n � 1)-dimensional edges incident to ui

and uj, respectively are non-faulty, and (j � i) =
l � 1(mod 2n�1). Suppose on the contrary that there
do not exist such ui and uj. Then there are at least
2n�1

2 ¼ 2n�2 (n � 1)-dimensional faulty edges. How-
ever, 2n�2 > 2n � 5 for n P 4. We obtain a contra-
diction. Thus, there exist such ui and uj. By Theorem
1, Q1

n�1 is (n � 3) fault-hamiltonian laceable. Since
jF1j 6 n � 3, Q1

n�1 � F 1 is still hamiltonian laceable.
Let vi and vj be the neighbors of ui and uj in Q1

n�1,
respectively. Since ui and uj are in different partite
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Fig. 1. Case 2.1 and Case 2.2 of Theorem 2.
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sets, vi and vj are also in different partite sets. There
is a hamiltonian path P in Q1

n�1 � F 1 between vi and
vj. Then hui,ui+1, . . .,uj,vj,P,vi,uii forms a cycle of
length 2n�1 + l. h
The above result is optimal in the sense that if
there are more than 2n � 5 faulty edges, there is
no guarantee to have a fault-free cycle in an injured
hypercube. For example, let ha,b,c,d,ai be a 4-cycle
in Qn (see Fig. 2). Assume that all the edges incident
to b are faulty except (a,b) and (b,c), and all the
edges incident to d are faulty except (a,d) and
(d,c). Then, there are (n � 2) + (n � 2) = 2n � 4
faulty edges, and there is no hamiltonian cycle in
the injured hypercube.

In addition, if the condition is not satisfied, i.e.,
there are more than n � 2 faulty edges incident to
a certain vertex, there cannot be a hamiltonian cycle
in an injured hypercube. But what about the other
cycles of even lengths? The following two theorems
address this problem. Our finding is that the hamil-
tonian cycle is the only missing cycle.
Fig. 2. There are n � 2 fault edges incident to b and d,
respectively, and the injured hypercube has no hamiltonian cycle.
Theorem 3. If there are 2 or 3 faulty edges incident to

some vertex in Q3, then Q3 � F contains cycles of

lengths 4 and 6 with jFj 6 3.

Proof. Since Q3 is vertex symmetric (see Fig. 3), we
may assume that 000 is incident with 2 or 3 faulty
edges. First, suppose that there are two faulty edges
incident to 000, and the other faulty edge, say e, is
not. We observe that e is not on one of the 4-cycles
(see Fig. 3(a)–(c)): h100,101,111,110,100i, h001,
101,111,011,001i, and h010,011,111,110,010i. Also,
e is not on one of the 6-cycles (see Fig. 3(d)–(f)):
h010,011,001,101,111,110,010i, h001,101,100,110,
111,011,001i, and h010,011,111,101,100,110,010i.
Therefore, we have cycles of lengths 4 and 6 in
Q3 � F. Second, suppose that there are three faulty
edges incident to 000. Since 000 is not on all the
above cycles, Q3 � F contains all the above cycles.
The proof is complete. h

Theorem 4. If there are more than n � 2 faulty edges

incident to some vertex in Qn, then Qn � F contains
cycles of all even lengths from 4 to 2n � 2 with

jFj 6 2n � 3 for n P 3.

Proof. This theorem is proved by induction on n.
By Theorem 3, the theorem holds for n = 3. Assume
that theorem is true for Qn�1 with some n P 4. We
shall prove that Qn � F contains cycles of all even
lengths from 4 to 2n � 2 with jFj 6 2n � 3. Note
that we only need to consider the case jFj = 2n � 3.
There is only one vertex, say a which is incident with
at least n � 1 faulty edges. Since (2n � 3) � n =
n � 3 P 1 for n P 4, there is a faulty edge which
is not incident to a. Without loss of generality, we
may assume that it is an (n � 1)-dimensional edge.
Then, we divide Qn into Q0

n�1 and Q0
n�1 along dimen-

sion n � 1. Without loss of generality, assume that
a 2 V ðQ0

n�1Þ. Then, jF1j 6 (2n � 3) � (n � 1) � 1 =



Fig. 3. 4-Cycles and 6-cycles in Q3 � F.
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n � 3. By Theorem 1, Q1
n�1 is (n � 3) fault-hamilto-

nian laceable, so Q1
n�1 � F 1 is still hamiltonian lace-

able. We discuss the existence of cycles of all even
lengths from 4 to 2n � 2 as follows.

Case 1. Cycles of even lengths from 4 to 2n�1. By
Theorem 2, Q1

n�1 is (2n � 7) conditional fault-
bipancyclic, Since jF1j 6 n � 3, we have cycles of
all even lengths from 4 to 2n�1 in Q1 � F1.

Case 2. Cycles of even lengths from 2n�1 + 2 to
2n � 2. The proof is similar to the one in Case 2.2 of
Theorem 2. First, if jF0j 6 2n � 5, by induction
hypothesis, Q0

n�1 � F 0 contains a cycle of length
2n�1 � 2. Second, if jF0j = 2n � 4, there is only one
(n � 1)-dimensional faulty edge, and the (n � 1)-
dimensional edge incident to a is non-faulty. Hence,
all the n � 1 edges incident to a in Q0

n�1 is faulty. Let
e 0 be one of this n � 1 faulty edges. Let F 0 = F0 � e 0.
Then, jF 0j = 2n � 5. By inductionhypothesis, Q0

n�1�
F 0 contains a cycle of length 2n�1 � 2. Since a is not
on this cycle, Q0

n�1 � F 0 also contains this cycle. Let
l be an even integer for 2 6 l 6 2n�1 � 2. Repeating
the argument in the proof of Case 2.2 of Theorem 2,
if (n � 1)-dimensional faulty edges are less than
2n�1�2

2 ¼ 2n�2 � 1, we have a cycle of length 2n�1 + l

in Qn � F. 2n�2 � 1 P (2n � 3) � (n � 2) (a is inci-
dent with at least n � 2 faulty edges in Q0

n�1) for
n P 4, and the equality holds only when n = 4, i.e.,
Q4 contains three (n � 1)-dimensional faulty edges.
In this situation, there are three faulty edges
incident to a, and the other two faulty edges, say
e1 and e2, are (n � 1)-dimensional. We can divide Q4
into Q0
3 and Q1

3 along a dimension k, 0 6 k 6 3, such
that e1 and e2 are in different (n � 1)-dimensional
subcubes. Hence, jF1j = 1, and there are at most 2 k-
dimensional faulty edges. And either jF0j 6 3, or a is
incident with 3 faulty edges in Q0

3. Hence, this
theorem is proved. h

Let x, y 2 V(Qn) be two vertices in the same par-
tite set. Suppose that there are n � 1 faulty edges
incident to x and y, respectively. There cannot be
a cycle of length 2n � 2 in Qn � F. Therefore, the
number of faulty edges, 2n � 3, provided in the
above theorem is maximum.

In fact, we have found cycles of all possible
lengths in Qn � F with jFj 6 2n � 5 under all possi-
ble fault distributions. By Theorems 2 and 4, the fol-
lowing theorem follows.

Theorem 5. Suppose that jFj 6 2n � 5 and n P 4. If

the condition that every vertex in Qn has at least two

non-faulty edges is satisfied, Qn � F contains cycles
of all even lengths from 4 to 2n. Otherwise, Qn � F

contains cycles of all even lengths from 4 to 2n � 2.
4. Conclusion

In this paper, we extend the result of [12] by
restricting fault distributions to increase the degree
of fault tolerance, and we prove that the hypercube
is 2n � 5 conditional fault-bipancyclic. Therefore,
the degree of fault tolerance doubles that of [12].
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Then, we show that with up to 2n � 3 faulty edges if
a certain vertex is incident with less than two non-
faulty edges, an injured Qn has a cycle of length l

for every even l, 4 6 l 6 2n � 2.
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