
ARTICLE IN PRESS
0378-4371/$ - se

doi:10.1016/j.ph

�Correspond
E-mail addr

gis91572@cs.nc
Physica A 377 (2007) 340–350

www.elsevier.com/locate/physa
Bridge and brick motifs in complex networks

Chung-Yuan Huanga,�, Chuen-Tsai Sunb, Chia-Ying Chengb, Ji-Lung Hsiehb

aDepartment of Computer Science and Information Engineering, Chang Gung University, 259 Wen Hwa 1st Road,

Taoyuan 333, Taiwan, Republic of China
bDepartment of Computer Science, National Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu 300, Taiwan, Republic of China

Received 2 September 2006; received in revised form 31 October 2006

Available online 1 December 2006
Abstract

Acknowledging the expanding role of complex networks in numerous scientific contexts, we examine significant

functional and topological differences between bridge and brick motifs for predicting network behaviors and functions.

After observing similarities between social networks and their genetic, ecological, and engineering counterparts, we identify

a larger number of brick motifs in social networks and bridge motifs in the other three types. We conclude that bridge and

brick motif content analysis can assist researchers in understanding the small-world and clustering properties of network

structures when investigating network functions and behaviors.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Three global features in complex networks have been identified and investigated: highly clustered
connections in which nodes have many mutual neighbors [1,3,6]; the small-world properties of short paths
between any two nodes [2–6]; and long-tailed (power-law) degree distributions in which many nodes have only
one or very few connections and a few nodes have a much larger than mean number of connections [1,7–9].
Some local structural motifs reveal their own statistically significant patterns when compared with motifs in
random [7,8,10–15], biological [7,11,15,16], food web [7,17], and electronic circuit networks [7,16,18]—all of
which are thought to contain important information. It is necessary to identify functionally and statistically
important motifs for exploring and predicting network behaviors and functions [1–3,6–8,15,19,20]. Instead of
analyzing functions according to their real network features and effects [10], researchers have shown a
tendency to analyze them in terms of their theoretical pattern structures [7,12,15,21,22]. Here we propose an
algorithm to perform two tasks: to simultaneously detect global features and local structures in complex
networks, and locate functionally and statistically significant network motifs.
e front matter r 2006 Elsevier B.V. All rights reserved.
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When considering the global features and local structures of complex networks, it is worth noting that link
properties (or weights) strongly impact network functions and behaviors [1,17,23,24]. Examples include the
role of weak links in the ‘‘six degrees of separation’’ (i.e., small-world) effect of interpersonal networks [23,24]
and the strength of predator–prey interactions that determine the stability of ecological communities [17].
Network researchers have reported that a weighted value representing interaction strength can be assigned to
each link (edge) in a real network [1,25–27]. We believe network motifs can be separated into two categories:
bridge motifs (composed of weak links only or at least one weak link and multiple strong links) and brick
motifs (composed of strong links only) (Table 1, Fig. 1). Whereas bridge motifs connect clusters and reduce
the average degree of separation (network diameter), brick motifs reveal the local clustering phenomenon in
complex networks [1].

2. Backgrounds: simple network motifs and superfamilies

Although small-world properties and long-tailed degree distributions are common statistical features of
complex networks, at times they have very different local structures. It is therefore important to understand
the local structures of real networks and the design principles and evolutionary mechanisms that generate
them. Taking gene regulation networks as an example, recent studies have shown that gene biochemical
functions operate in a highly modular manner [28–30], with independent tasks performed by modules
consisting of single groups of physically or functionally connected nodes [28]. Many real networks contain
large numbers of modules—for instance, groups of coworkers in a corporation or World Wide Web
hyperlinks on similar topics.

Understanding complex network modularity requires appropriate measurement tools and the identification
of modular relationships within a given real network. However, module identification is considered difficult
due to contradictions between the power-law degree distributions of small-world networks and modularity
concepts. According to the definition of a module, their presence infers isolated clusters of nodes within a
network [28]. However, most nodes in scale-free networks are connected to central or core nodes, which affects
the appearance of isolated modules.

Recent studies suggest that motifs can serve as basic modular elements in complex networks [7,12,31]. The
clustering degrees of most real networks are much higher than those of randomized networks with the same
number of nodes and edges, indicating that real networks can contain multiple subgraphs composed
of strongly connected nodes. From a micro-viewpoint, each subgraph denotes a special mutual con-
nection pattern in a given network. However, multiple subgraphs in real networks may not hold equal
Table 1

Thirteen directed three-node subgraphs without weighted values (i.e., simple network motifs)

Fig. 1. The three-point chain motif can be divided into two categories: a three-point chain brick motif composed of two strong links (left

box) and three-point chain bridge motifs composed of at least one weak link and a maximum of one strong link (middle box).
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importance—for instance, some subgraphs appear much more frequently than others in complex networks.
These statistically significant subgraphs are called motifs [7].

Randomized networks must be generated for purposes of comparison in order to determine if a subgraph i

in a real network is a motif [7,32]. Using a directed network as an example, an algorithm for generating
randomized networks takes real networks and repeatedly switches selected connection pairs until the entire
network is sufficiently randomized (e.g., the connections X 1! Y 1 and X 2! Y 2 are replaced by X 1! Y 2

and X 2! Y 1). No further changes are made if at least one of the resulting connections already exists in the
network. Each node in the randomized network has the same out-degree and in-degree values as those of its
corresponding node in the real network.

Based on the motif detection algorithm proposed by Milo et al. [7], three conditions must be met in order to
identify a subgraph i as a motif:
1.
 It is highly unlikely that the average number of appearances of subgraph i in the corresponding random
network ensemble exceeds that of the real network. The possibility should be below a threshold of P ¼ 0:01.
2.
 The number of appearances of subgraph i in the real network NrealðSubgraphiÞ should be greater than or
equal to a lower bound U ¼ 4.
3.
 The NrealðSubgraphiÞ number of appearances of subgraph i in the real network should exceed the average
hNrandomðSubgraphiÞi number of appearances of subgraph i in the random network ensemble. This
requirement is expressed as NrealðSubgraphiÞ41:1� hNrandomðSubgraphiÞi.

As shown in Fig. 2, a feed-forward motif ðID ¼ 5Þ in a given real network consisting of 16 nodes and 19
edges can be identified via comparisons with four corresponding randomized networks. It should be noted that
the number of different motifs is exponential to the number of nodes in a motif. Using directed subgraphs as
an example, there are 13 possible three-node subgraphs (Table 1) and 199 possible four-node subgraphs. When
dealing with large subgraphs, researchers must take care to avoid problems associated with combination
explosions. One way to avoid such problems is to extract clusters of highly connected nodes from the real
network and combine each cluster with its corresponding functionality.

Since small-world properties and long-tailed degree distributions are common global features of most real
networks, it may be possible that different networks share similar local structures. Network motifs can help
people understand the design principles and evolutionary mechanisms of complex networks from a local
structure point of view. Based on the original simple motif concept, Milo et al. proposed a method for
comparing local structures among different complex networks according to their significance profiles (SPs)
Fig. 2. Network motif detection example from [7].
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Fig. 3. Triad significance profile (TSP) for networks from various disciplines [32].
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[32]. Eq. (1) is used to compute the statistical importance of a subgraph i in a given real network

ZScoreðSubgraphiÞ ¼
NrealðSubgraphiÞ � hNrandomðSubgraphiÞi

STDðNrandomðSubgraphiÞÞ
, (1)

where NrealðSubgraphiÞ and NrandomðSubgraphiÞ represent the number of appearances of subgraph i in the real
and randomized networks, respectively, and hNrandomðSubgraphiÞi and STDðNrandomðSubgraphiÞÞ represent the
mean and standard deviation of NrandomðSubgraphiÞ. As shown in Eq. (2), SPðSubgraphiÞ can be calculated by
normalizing ZScoreðSubgraphiÞ:

SPðSubgraphiÞ ¼
ZScoreðSubgraphiÞ

ð
P

ZScoreðSubgraphiÞ
2
Þ
1=2

. (2)

The purpose of normalization is to emphasize the relative significance of each subgraph. Since motifs in large
networks usually have higher ZScore values than those in small networks, normalization is an important operation
for networks with different scales. The method can be used to classify real networks in which similar SP vector
values belong to the same superfamily (Fig. 3). There is evidence indicating that similar types of real networks not
only have similar network motifs, but also have similar relative significance within real networks [7,32]. At the
same time, a network superfamily may contain networks with vastly different scales and functions.

3. Bridge and brick motifs detecting methods

As shown in Eq. (3), a link-weighted value dependent on the number of all possible paths between two linked
nodes equals the summation of the reciprocal values of all possible path lengths except for the link itself.

weightða; bÞ ¼
X

i

1

lengthðpathiða; bÞÞ
, (3)

where pathiða; bÞaedgeða; bÞ and lengthðpathiða; bÞÞpaverage network diameter. The length of one path
represents its total number of nodes. The average network diameter and ShortestPathða; bÞ can be expressed as

average network diameter ¼

P
a;b2N^aabShortestPathða; bÞ

jNj � ðjNj � 1Þ=2
, (4)

ShortestPathða; bÞ ¼Minðlengthðpathiða; bÞÞÞ. (5)
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This definition implies clustering, with any increase in the number of possible paths resulting in an increase in
the clustering degree between two linked nodes. This definition is similar to that of betweenness—that is, effects
resulting from the removal of a link from a network. Furthermore, the concepts and algorithms discussed in this
paper are generalizable to non-directed networks.

We used a switching algorithm (i.e., A! B, C! D becomes A! D, C! B if A! D and C ! B do not
exist) to create random networks according to any given degree sequence [7,32]. Results from previous studies
indicate that these random networks have the same number of nodes and edges and identical node in-degrees
(incoming edges) and out-degrees (outgoing edges) as real networks. Furthermore, the randomized networks
preserve the same number of appearances of all ðn� 1Þ node subgraphs as in the real network [7]. The
threshold that determines the strength of an edge (link) is the mean weighted value of all edges in 1000 random
networks. Accordingly, we generated 1000 random networks to serve as a control. When the weighted value of
an edge in these or real networks was smaller than the threshold plus a double standard deviation, the edge
was labeled ‘‘weak’’; all other edges were labeled ‘‘strong.’’ Researchers can define criteria for strong and weak
links according to their own needs. Finally, we located all possible motifs and compared their distributions in
real and random networks.

We expanded Milo et al.’s methodology [7] for identifying bridge and brick motifs in complex networks to
include the following steps:
1.
 Calculate the weighted value of each link in a network of interest and an ensemble of random networks to
calculate the significance of n-node subgraphs. The purpose is to maintain the same number of appearances
for all ðn� 1Þ node subgraphs as in the original network.
2.
 Label all weighted links in the network of interest and random network ensemble as strong or weak
according to a benchmark of two standard deviations from the mean weighted value of all links in random
network ensemble. Links with weighted values below the benchmark are labeled as weak.
3.
 Identify all n-node bridge/brick subgraph types in the network of interest and random network
ensemble.
4.
 Mark all n-node bridge/brick subgraph types by calculating their numbers in the network of interest and
random network ensemble. Each n-node bridge/brick subgraph type is selected as a representative motif
only if its frequency in the network of interest far exceeds the frequency in the ensemble.

Motif frequency can be used to measure the similarity of two networks of interest. In addition, it is possible
to calculate the Zscore for all bridge/brick motifs and SPs in a network by expanding Milo et al.’s [7,32]
methods. In Eq. (6), ZscoreðBridgeiÞ represents the statistical significance of the ith kind of bridge motif in a
network:

ZScoreðBridgeiÞ ¼
NrealðBridgeiÞ � hNrandomðBridgeiÞi

STDðNrandomðBridgeiÞÞ
, (6)

where NrealðBridgeiÞ represents the time of appearance of the ith type of bridge motif in a network and
hNrandomðBridgeiÞi and STDðNrandomðBridgeiÞ, respectively, represent the mean and standard deviation of the
time of appearance of the ith type of bridge motif in a randomized network ensemble. In Eq. (7), the
SPðBridgeiÞ is the vector of ZscoreðBridgeiÞ normalized to a length of 1. The normalization emphasizes the
relative significance of the ith type of bridge motif rather than the absolute significance. As shown in Eqs. (8)
and (9), ZscoreðBrickiÞ and SPðBrickiÞ can be derived in the same manner.

SPðBridgeiÞ ¼
ZScoreðBridgeiÞ

ð
P

ZScoreðBridgeiÞ
2
Þ
1=2

, (7)

ZScoreðBrickiÞ ¼
NrealðBrickiÞ � hNrandomðBrickiÞi

STDðNrandomðBrickiÞÞ
, (8)

SPðBrickiÞ ¼
ZScoreðBrickiÞ

ð
P

ZScoreðBrickiÞ
2
Þ
1=2

. (9)



ARTICLE IN PRESS
C.-Y. Huang et al. / Physica A 377 (2007) 340–350 345
Since it is more difficult to replace a weak link than a strong one, removing all bridge motif types will result
in a significant increase in the average degree of separation. In other words, bridge motifs contribute to
reducing a network’s average degree of separation and revealing its small-world properties. Bridge motifs also
connect high-density clusters or low-density clusters that serve as a network’s foundation. Since brick motifs
consist of strong links only, removing them has little effect on the average degree of separation.

4. Results

We applied our proposed method to several biochemistry (transcriptional gene regulation), ecology
(food webs), engineering (electronic circuits) and social networks to identify network bridges and brick motifs
(Table 2). All networks and sources are listed in Table 3. All data and programs (including source code) are
available at ftp://www.csie.cgu.edu.tw/�gis89802/bridge_and_brick_motifs/data_and_programs.zip.

In gene regulation networks for one bacteria (Escherichia coli) and one eukaryote (the yeast Saccharomyces

cerevisiae) [32], each node represents a gene and each edge connects a gene that encodes a transcription factor
protein to a gene that is transcriptionally regulated by that factor. Our algorithm-generated results indicate
that the two transcription networks have the same feed-forward bridge motif ðID ¼ 5Þ (Fig. 4 and Table 3),
the appearance of which indicates that the transcription networks have at minimum non-replaceable
interactions without intermediate interactions with other genes. We suggest that the weak-tie link that
provides a unique path for controlling the signal exerts a significant impact on the signal processing function
of transcription networks [13,32].

In electronic circuits consisting of digital fractional multipliers (data from an ISCA89 benchmark) [32],
nodes represent logic gates and flip-flops and edges represent directed electronic transmission paths.
Experimental results indicate that s208, s420, and s838 electronic circuit networks contain significant numbers
of bridge motifs. Here the low degree of clustering is considered trivial because designers often try to simplify
Table 2

Descriptions of 14 complex networks, including edge and node definitions, network sizes, and references

Network type Common feature Directed network Nodes Edges Description

Gene Directed graph in which nodes

represent genes

E. coli 424 519 Escherichia coli [12]

regulation and edges are directed from one gene to

another,

(transcription) regulated by the transcription factor. Yeast 685 1052 Saccaromyces

cerevisiae [33]

Social Directed graph in which nodes

represent people

Leader 32 96 College students [34]

and edges indicate friendships between

two persons.

Prisoner 67 182 Prisoners [35]

Food webs Directed graph in which nodes

represent groups

Little Rock 92 984 Seven different

ecosystems [36]

of species and edges connect predator

and prey nodes.

Ythan 83 391

St. Martin 42 205

Chesapeake 31 67

Coachella 29 243

Skipwith 25 189

B. Brook 25 104

Electrical networks Directed graph in which nodes

represent logic

s208 122 189 ISCAS89 benchmark

set of

gates and flip-flops. s420 252 399 sequential logic

electronic

s838 512 819 circuits [4]

ftp://www.csie.cgu.edu.tw/~gis89802/bridge_and_brick_motifs/data_and_programs.zip
ftp://www.csie.cgu.edu.tw/~gis89802/bridge_and_brick_motifs/data_and_programs.zip
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Table 3

Brick and bridge motifs in fourteen real networks

Category Network Nodes Links Motif type ID NReal NRandom � STD ZScore

Biochemistry E. coli 424 519 Bridge 5 42 7.573.1 11.14

Yeast 688 1079 Bridge 5 67 13.873.8 14.04

Social network Leader 32 96 Brick 11 5 1.571.3 2.59

Brick 7 38 22.179.5 1.67

Prisoner 67 182 Bridge 6 11 2.071.4 6.42

Brick 12 7 1.571.2 4.53

Food webs Little Rock 92 984 Bridge 11 93 41.376.2 8.33

Ythan 83 391 Bridge 2 1182 850.1786.0 3.86

St. Martin 42 205 Bridge 5 244 180.4720.0 3.18

Chesapeake 31 67 Bridge 5 21 11.274.0 2.42

Coachella 29 243 Bridge 2 275 192.5714.1 5.57

Bridge 4 252 110.3715.1 9.38

Bridge 6 110 68.175.3 7.84

Brick 13 10 6.271.4 2.83

Skipwith 25 189 Bridge 2 181 140.1711.2 3.63

Bridge 4 234 115.2733.4 3.56

B. Brook 25 104 Bridge 2 181 103.1723.2 3.37

Bridge 6 266 123.5731.2 4.57

Electrical circuits s208 122 189 Bridge 9 10 1.071.0 8.73

s420 252 399 Bridge 9 20 0.970.9 20.13

s838 512 819 Bridge 9 40 0.971.3 30.2

Fig. 4. Brick-bridge motif ratio profiles for two regulation networks (one bacteria and one eukaryote).

Fig. 5. Bridge motif ratio profiles for three engineering networks (s208, s420 and s838).
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the connection structure and number of electronic components [4]. The feedback bridge motif we identified
(consisting of weak-tie links only) fulfills this requirement as described by Kundu et al. [37] ðID ¼ 9Þ (Fig. 5,
Table 3). However, the over-simplification of electronic circuits can result in large numbers of errors [4] and
complete system breakdowns when one component fails. Accordingly, it is necessary to add an appropriate
level of redundancy as a means of bypassing failed components or substituting for the original path [4,37].
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Fig. 6. Bridge motif ratio profiles for seven food webs.

Fig. 7. Brick motif ratio profiles for two social networks.
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The strong-tie links represent alternative paths and the weak-tie links represent simplified electronic circuits.
Combined, the simplification and duplication helps prevent unexpected system breakdowns.

In the seven food webs we analyzed [36], nodes represent groups of species and edges connect predator and
prey nodes. Recent studies have shown that strong interactions between two consecutive levels of a trophic
chain have a significant effect on food web stability and dynamics [17,38]. A strong interaction indicates a
strong predator preference for one prey species and a low potential for intermediate species—a phenomenon
that supports our claim that weak-tie links exert certain impacts on food webs. Also in the seven food webs,
the numbers of bridge motifs were significantly higher than the numbers of brick motifs, especially feedback
ðID ¼ 5Þ and three-point chains ðID ¼ 2Þ (Fig. 6 and Table 3). This result confirms Jordi’s [8] claim that these
two motifs exert significant impacts on ecosystem food webs. We believe the reason why ecosystems
containing these two kinds of bridge motifs easily lose their balance is because they have many weak links—in
other words, it is difficult to find substitute nodes or links for the purpose of preserving ecosystem stability.

In the two social networks we analyzed, nodes represent individuals in a group and edges represent positive
sentiments directed from one group member to another based on responses to questionnaire items. We found
similar characteristics between the two networks, one consisting of prison inmates (N ¼ 67 nodes and E ¼ 110
edges) and the other college students in a leadership course (N ¼ 32 and E ¼ 96). The inmates responded to the
question ‘‘Who are your closest friends on the tier?’’ The students identified three classmates they would want to
have serve on a committee (correlation coefficient c ¼ 0:92 to 0.96 [34,35]). According to Milo et al.’s [7,32]
methods, both social networks belong to the same superfamily. Strong similarities between the two networks were
also identified according to the triad significance profile (TSP) of bridge motifs ðc ¼ 0:92Þ, but not according to
the TSP of brick motifs ðc ¼ 0:6Þ (Fig. 7 and Table 3). We also found a significantly higher number of bridge
motifs (i.e., more ‘‘nodding acquaintances’’) in the prisoner network. The significantly larger number of brick
motifs in the leadership class network indicates that small and strong groups are easily formed. The bridge and
brick motifs can be used to further analyze network topological structures, functions, and differences.

5. Validation

Due to the links’ non-directional characteristic, only two kinds of motifs ðID ¼ 8; 13Þ were identified for the
three-node scenarios. We looked at four types of theoretical complex networks with specific topological
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properties to validate our network motif detection algorithm: regular, scale-free, random, and Watts and
Strogatz’s small-world (Table 4) [3]. Due to their small-world properties, we found more bridge than brick
motifs in scale-free and random networks. Regular networks with a Moore neighborhood structure only
contain brick motifs due to the structure’s high clustering property (minus any shortcuts). Watts and
Strogatz’s small-world networks are formed by rewiring 1% of the links of regular networks containing only a
few bridge motifs; when more than 5% of the links are rewired, bridge motifs outnumber brick motifs (Fig. 8).
We therefore conclude that bridge motifs indicate the presence of small-world properties and brick motifs the
presence of local clustering properties as follows:
1.
Ta

Bri

Ca

Re

Sca

Ra
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WS

(re

WS

(re
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#4(
Regular: We applied the Moore neighborhood concept on a two-dimensional lattice, with each node linked
to its eight adjacent cells. For this type of network we found brick motifs only. To maintain the same in-
and out-degree distributions in random and regular networks, individual nodes in random networks can
link with any other cell except its eight adjacent cells. As clustering in a random network decreases, the
threshold of the weighted value of its links also decreases. Therefore, all links in regular networks turn out
to be strong (exclusively brick motifs).
ble 4

dge and brick motif frequencies in four complex network categories (for validation purposes)

tegory Nodes Edges Motif type ID NReal NRandom � STD ZScore

gular 900 7200 Bridge 8 0 24983:2��39:0 �640.61

Brick 8 14400 40.8717.4 824.81

Bridge 13 0 0.070.0 0.00

Brick 13 3600 58.678.2 430.13

le-free 900 1800 Bridge 8 4355 4099.7753.7 4.75

Brick 8 45 258.9747.1 �4.54

Bridge 13 2 7.072.6 �1.95

Brick 13 0 8.873.5 �2.54

ndom 900 1800 Bridge 8 1229 1226.1727.9 0.11

Brick 8 537 536.9727.8 0.01

Bridge 13 0 0.470.7 �0.64

Brick 13 0 0.670.7 �0.81

Small-world #1

wiring % ¼ 0:01)
900 7200 Bridge 8 2399 25029.7738.0 �595.92

Brick 8 12573 58.3718.6 674.60

Bridge 13 320 7.672.8 113.47

Brick 13 3111 51.577.1 430.65

Small-world #2

wiring % ¼ 0:05)
900 7200 Bridge 8 9434 24713.2773.5 �207.80

Brick 8 8100 656.3764.5 115.49

Bridge 13 991 25.175.3 182.65

Brick 13 1681 35.076.1 268.59

Small-world #3

wiring % ¼ 0.1)

900 7200 Bridge 8 13386 24047.07111.4 �95.69

Brick 8 6089 1519.0799.9 45.73

Bridge 13 1063 30.974.9 209.23

Brick 13 1029 30.775.6 179.17

Small-world

rewiring % ¼ 0.5)

900 7200 Bridge 8 22649 22935.47148.5 �1.93

Brick 8 3973 4244.97153.7 �1.77

Bridge 13 213 56.278.9 17.64

Brick 13 47 17.774.1 7.11
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Fig. 8. Percentages of bridge and brick motifs in small-world networks according to different rewiring ratios.
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2.
 Scale-free: Here the degree of distribution (i.e., the number of edges per node) obeys a long-tailed power-
law distribution in which the majority of nodes have only a few links, but a small number of nodes have
many links. We found that scale-free networks are composed of many bridge motifs and very few brick
motifs consisting of nodes with high degrees of separation. Brick motifs appear to play an important role in
reducing the degree of separation and increasing the degree of clustering in scale-free networks.
3.
 Random: As we predicted, we failed to find a dominant motif during our comparison of 1000 random
networks. Accordingly, random networks served as a successful null hypothesis for our algorithm.
4.
 Small-world: We rewired links in two-dimensional regular networks with Moore neighborhood structure
using rewiring percentages of 0.01, 0.05, 0.1, and 0.5 of all links. In the 0.01 trial we found that some of the
brick motifs became bridge motifs. As the rewiring percentage increased, the number of bridge motifs
increased and number of brick motifs decreased. At a rewiring ratio of 1, small-world networks change into
random networks.

6. Conclusion

We believe our detection algorithm can help researchers find clusters between bridge motifs and within the
brick motifs of complex networks for the purpose of identifying real network functions, behaviors, and
similarities. Most network motif functions can be identified via network topological structures. Combining a
motif structure with its function can help identify complex network properties. Motifs with special topological
structures reveal the global features of real networks and significant local structural patterns. This information
can help researchers in their work with design principles and network evolution.
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