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Abstract

This paper addresses a three-machine assembly-type flowshop scheduling problem, which frequently arises from manufac-
turing process management as well as from supply chain management. Machines one and two are arranged in parallel for
producing component parts individually, and machine three is an assembly line arranged as the second stage of a flowshop for
processing the component parts in batches. Whenever a batch is formed on the second-stage machine, a constant setup time is
required. The objective is to minimize the makespan. In this study we establish the strong NP-hardness of the problem for the
case where all the jobs have the same processing time on the second-stage machine. We then explore a useful property, based
upon which a special case can be optimally solved in polynomial time. We also study several heuristic algorithms to generate
quality approximate solutions for the general problem. Computational experiments are conducted to evaluate the effectiveness
of the algorithms.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

In this paper we study an assembly-type production
scheduling problem, which can be used to model the
coordination of production scheduling between coopera-
tive parties in a supply chain. Consider a set of jobs (or
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products) to be processed from time zero onwards in a
two-stage flowshop with three machines (or party firms in a
supply chain). In the machine configuration, the first stage
has two parallel machines whose outputs, i.e., components
or parts, will be transferred to the second-stage machine,
which is dedicated to assembly operations. Each job has
three specific operations to be performed on the three ma-
chines, respectively. Each machine can process at most one
operation at a time. No preemption is allowed. Operations
on the second-stage machine are processed in batches and a
constant setup time is needed whenever a batch is formed.
The setup is non-anticipatory, i.e., a setup can commence
only when all the parts of the jobs in the same batch are
transferred to and available on the assembly machine. Batch
availability is assumed for the batch process, i.e., a job is
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finished when the batch it belongs to is completed as a
whole. The objective is to sequence, as well as to group,
the jobs to minimize the makespan, i.e., the maximum com-
pletion time of all the jobs. Notice that centralized decision
making is assumed. That is, the sequencing and batching
policies are determined for the assembly machine and ap-
plied to the other two machines.

The problem under consideration is related to two well-
studied scheduling problems, namely the hybrid flowshop
scheduling problem and the batch scheduling problem. John-
son [1] first introduced the flowshop scheduling model and
proposed a solution algorithm to minimize the makespan
in a two-machine environment. In the past few decades,
this seminal work has inspired numerous research endeav-
ors in the scheduling literature [2,3]. As a generalization
of Johnson’s two-machine flowshop, the three-machine as-
sembly flowshop problem motivated by the manufacture of
fire engines was studied by Lee et al. [4]. Like the three-
machine flowshop problem [5], the problem to minimize the
makespan in an assembly flowshop becomes computation-
ally intractable. This kind of production setting is not only
common in individual manufacturing organizations but also
prevalent in supply chains where a manufacturer receives
parts or materials from its upstream suppliers for final as-
sembly or packaging. The incorporation of batch consider-
ations into the scheduling model is motivated by the ob-
servation that components or parts are usually delivered to
a downstream party in batches, such as in full truck loads
(FTL). In supply chain management, either centralized or
decentralized decision making can be assumed to reflect real
situations [6]. In the problem under consideration, we as-
sume that the assembly organization is dominant in the in-
dustry and therefore decides the production policies for op-
timizing the objectives. Also, we assume that the two-part
suppliers begin their processing at the same time and their
production processes dedicated to the n jobs (orders) must
be continuous and cannot be interrupted by any other orders
or requests. For heuristic algorithms for the three-machine
assembly-type production scheduling, the reader is referred
to Sun et al. [7].

Batching is one of the major characteristics of the studied
problem. The major advantage of batching is the achieve-
ment of gains in operational efficiency that results from setup
reductions. Over the past few decades, combining schedul-
ing with batching has received significant research attention.
Interest in batch scheduling is due to its relevance to real-
world manufacturing and its theoretical challenges. Potts
and Van Wassenhove [8], and Webster and Baker [9] have
reviewed different batching models. In three recent survey
papers by Allahverdi et al. [10], Cheng et al. [11], and Potts
and Kovalyov [12], concise and comprehensive reviews on
scheduling problems with batching and setup times/costs
were presented. Amongst the different models, Lee et al.
[13] studied the so-called “burn-in” operations in the semi-
conductor industry. In the burn-in model, the processing
time of a batch is defined as the longest processing time of

the jobs contained in the batch. Ahmadi et al. [14] consid-
ered a batch-scheduling problem in a two-machine flowshop,
where the processing time of a batch is constant regardless
of the number and type of jobs it contains. The batching
model considered in this study was previously studied by
Albers and Brucker [15], Coffman et al. [16] and Santos and
Magazine [17]. In this model the jobs assigned in the same
batch require a common setup and their processing is con-
tinuous on the machine. Therefore, the processing time of a
batch is the setup time plus the total processing times of the
jobs belonging to the batch. Following the continuous batch-
ing model, Cheng and Wang [18] studied a two-machine
flowshop in which the operations on the first machine are
processed individually while the operations on the second
machine are processed in batches. They showed that the
problem is NP-hard and identified some polynomially solv-
able cases. Cheng et al. [19] considered the same configura-
tion except that both machines process the jobs in batches.
They presented strong NP-hardness proofs and developed
efficient algorithms for several special cases. Glass et al.
[20] studied a scheduling model similar to that of Cheng et
al. [19] with anticipatory machine-dependent setup times.
Theoretically, the problem we study in this paper concerns
a combination of the models presented by Lee et al. [4] and
Cheng and Wang [18]. The general case with multiple ma-
chines in stage one has been studied by Kovalyov et al. [21].
They proposed a lower bound and a heuristic algorithm, and
presented a performance ratio analysis of the heuristic.

This paper is organized into six sections. In Section 2 we
present the notation used in this paper and give an example
to illustrate the problem definition. In Section 3 we show the
strong NP-hardness of the problem. Section 4 is dedicated
to studying a special case that is polynomially solvable. In
Section 5 we investigate several heuristics for finding ap-
proximate solutions. The results of the computational exper-
iments conducted to evaluate the performance of proposed
algorithms are discussed. Finally, we give some concluding
remarks in Section 6.

2. Notation and example

In this section we introduce the notation that will be used
in this paper. Also, we give a numerical example to illustrate
the problem definition.

Notation:
N = {1, 2, . . . n} job set to be processed
Ma , Mb: two first-stage machines
M2: second-stage machine
pia : processing time of job i on machine Ma

pib: processing time of job i on machine Mb

pi2: processing time of job i on machine M2
s: batch setup time
S: schedule for the job set N

Z(S): makespan of schedule S

Z∗(N): optimal makespan for job set N
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The problem under consideration can be formulated as
follows: there is a set of jobs N = {1, 2, . . . , n} simultane-
ously available at time zero for processing in a two-stage
flowshop, in which two independent dedicated machines Ma

and Mb are deployed in stage one and one assembly machine
M2 in stage 2. Each job i in N consists of three operations
that are processed on the three machines. The processing
times are pia, pib, and pi2, respectively. For job i, when its
two operations on the stage-one machines are completed,
the two parts will be transferred to the stage-two machine
for assembling. While the stage-one machines process the
jobs individually, the stage-two machine processes the jobs
in batches with a constant setup time s whenever a batch is
formed. The problem seeks to sequence, as well as to group,
the jobs to minimize the makespan, i.e., the maximum com-
pletion time amongst the jobs.

To simplify presentation and to denote the problem
under study, we will use the three-field notation intro-
duced by Lawler et al. [22] with some extensions. In
this extended notation the problem will be denoted by
3MAF|(�, �) → �|Cmax, where MAF signifies “machine
assembly flowshop”. The second field (�, �) → � indicates
that the manufacturing environment contains two discrete
processors at stage one and a batch processor at stage two.
Next, we give an example as an illustration of the problem
definition. A set of six jobs is given as follows:

Job 1 2 3 4 5 6

pia 1 2 2 5 3 1
pib 2 3 3 4 1 4
pi2 3 4 1 2 2 2

The batch setup time is 1. Let S1={{1, 2}, {3, 4}, {5, 6}} and
S2 = {{2, 4, 6}, {1, 3, 5}} be two schedules for the given job
set. Indices enclosed within inner braces are jobs grouped
in the same batch. Schedules S1 and S2 have three and two
batches, respectively. The Gantt charts of the two schedules
are shown in Fig. 1 . Schedule S1 has a smaller makespan
than schedule S2, although it has one more setup.

3. NP-hardness

The F2|� → �|Cmax problem, where a discrete proces-
sor and a batch processor are arranged into a two-machine
flowshop, is known to be NP-hard [18]. Therefore, the
3MAF|(�, �) → �|Cmax problem, as a generalization of
F2|� → �|Cmax, is naturally NP-hard, even if either ma-
chine Ma or machine Mb is ignored. The special case
where all the jobs have the same processing time on the
second-stage machine is polynomially solvable for both
the F2|� → �|Cmax problem [18] and the 3MAF‖Cmax
problem [4]. In this section we shall show that the special
case of the later problem 3MAF|(�, �) → �, pi2 = p|Cmax
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Fig. 1. Two example schedules.

becomes strongly NP-hard when batching is considered.
The proof is based upon a reduction from the 3-Partition
problem, which is known to be strongly NP-complete [23].

3-Partition. A number m ∈ Z+, a bound E ∈ Z+ and a
finite set A of 3m non-negative integers {x1, x2, . . . , x3m}
with E/4 < xi < E/2 for all i and

∑3m
i=1 xi =mE are given.

Can A be partitioned into m disjoint sets A1, A2, . . . , Am

such that
∑

xi ∈Aj
xi = E for 1�j �m?

Theorem 1. The decision version of the 3MAF|(�, �) → �,
pi2 = p|Cmax problem is strongly NP-complete.

Proof. The decision version of the special case 3MAF|
(�, �) → �, pi2 = p|Cmax is clearly in NP. Without loss
of generality, we assume that for the given instance of 3-
Partition, E > 3m + 3 and for all i, xi is a multiple of 3. If
this is not the case, we can adjust the values by multiplying
them by 3. An instance of 3MAF|(�, �) → �, pi2 =p|Cmax
with 3m + 3 jobs is constructed as follows:

N = {1, 2, . . . , 3m + 3};
pia = (E + xi)�, pib = (2E − 2xi)�, and

pi2 = 4�E/3 − 1, for i = 1, 2, . . . , 3m,

pia = 0, pib = 0, and pi2 = 4�E/3 − 1

for i = 3m + 1, 3m + 2, 3m + 3,

where � = 10E2, and setup time s = 3.
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Recall that E is divisible by 3 because any element in A is a
multiple of 3. We claim that a partition of the given instance
of 3-Partition exists if and only if there is an optimal sched-
ule for the instance of the 3MAF|(�, �) → �, pi2 =p|Cmax
problem with makespan no greater than 4(m + 1)�E. For
details of the remaining part of the proof, the reader is re-
ferred to the appendix. �

The theorem indicates that the 3MAF|(�, �) → �|Cmax
problem remains intractable even if all the jobs have the
same processing time on the batch processor. As a conse-
quence, it is very unlikely that efficient algorithms can be
devised to optimally solve the general problem. In the fol-
lowing sections we first investigate some further restricted
special cases that can be solved in polynomial time. Based
on these studied special cases, we then propose heuristics
that can produce quality approximate solutions to the gen-
eral problem.

4. Polynomially solvable case

In this section we deal with a property concerning the
polynomial solvability of the problem. Based on the de-
rived results, we further explore a property that is useful
for computing a lower bound for optimal solutions. As
discussed before, to optimally compose a solution to the
3MAF|(�, �) → �|Cmax problem we need to take batch-
ing and sequencing issues into account simultaneously.
In this section we assume that for an input instance, a
job sequence is given and fixed. Then, we show that
an optimal batching scheme is attainable in polynomial
time.

For simplicity of presentation, we assume that the jobs
follow the sequence 1, 2, . . . , n for processing. For any
two schedules S1 and S2, i.e., they are batch compositions
of the first i jobs, 1, 2, . . . , i, that have the same com-
pletion time on the stage-one machines. If Z(S1)�Z(S2),
then

Z(S1 ∪ Bk)�Z(S2 ∪ Bk),

where Bk is the batch consisting of the remaining jobs,
i + 1, i + 2, . . . , n, must hold. That is, if the last batch,
denoted by Bk , is confined to containing jobs i + 1, i +
2, . . . , n only, then to find an optimal schedule for N, we
can first determine an optimal schedule for jobs 1, 2, . . . , i,
and then append the last batch Bk to this prefix schedule.
The above observations lead to the development of a recur-
sive formulation for an optimal composition scheme. Let
F(i) be the optimum completion time among all the sched-
ules for the first i jobs. We have the following recursive
algorithm.

Algorithm DP
Initial conditions: F(0) = 0; F(i) = ∞, if i �= 0.

Recursive formula:

F(i) = min
�=1,2,...,i

⎧⎨
⎩max

⎧⎨
⎩F(i − �),

i∑
j=1

Pja,

i∑
j=1

Pjb

⎫⎬
⎭ + s +

i∑
j=i−�+1

Pj2

⎫⎬
⎭ .

Goal : Z∗(N) = F(n).

The algorithm is easy to justify by the above observations.
In the recursive formula, variable � denotes the number of
jobs to be included in the last batch. The recursive function
F() has O(n) states, each of which takes O(n) time to
determine its optimal value. Therefore, the time complexity
of Algorithm DP is O(n2). There holds the following result.

Theorem 2. For a fixed job sequence for the 3MAF |(�, �)

→�|Cmax problem, an optimal batch composition can be
determined in O(n2) time.

Next, we consider a special case that satisfies the follow-
ing condition C1: For any jobs i and j in N, pia �pja ⇔
pib �pjb ⇔ pi2 �pj2.

Lemma 1. For the special case satisfying condition C1,
there exists an optimal schedule S in which for any two jobs
i and j, if pia �pja, pib �pjb and pi2 �pj2, then either
jobs i and j are in the same batch or the batch containing
job i precedes the batch containing job j.

Proof. Assume that there is an optimal schedule where jobs
i and j are not in the same batch and the batch containing
job j precedes the batch containing job i. It is easy to see
that swapping the positions of the two jobs will not increase
the makespan. Continuing the job interchange arguments, if
necessary, will finally lead to an optimal schedule possessing
the characteristics specified in the lemma. �

This result indicates that for the special case, the jobs
can be arranged according to the relations specified in the
lemma. Combining Theorem 2 and Lemma 1, we have the
following result.

Corollary 1. The special case satisfying condition C1 can
be optimally solved in O(n2) time.

The above results not only provide exact solutions for a
special case but also shed light on the development of an esti-
mate of the optimal solution for the general 3MAF|(�, �) →
�|Cmax problem. As the general problem is strongly NP-
hard, it is very unlikely to come up with a fast algorithm to
produce optimal solutions for large-scale problems. There-
fore, estimations of the optimal solutions are needed. Next,
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we derive a lower bound for the problem. The idea follows
from Cheng et al. [18].

For job set N, we first remove the associations among
pia, pib and pi2 for all jobs i, and then create an ideal job set
N ′ such that job i′ consists of parameters p′

ia
, p′

ib
and p′

i2,
where p′

ia
is the ith smallest value in {p1a, p2a, . . . , pna},

p′
ib

is the ith smallest value in {p1b, p2b, . . . , pnb} and p′
i2

is the ith largest value in {p12, p22, . . . , pn2}. Revising the
data set used in Section 2 in this manner, we have the derived
instance as follows:

Job 1′ 2′ 3′ 4′ 5′ 6′

p′
ia

1 1 2 2 3 5
p′

ib
1 2 3 3 4 4

p′
i2 4 3 2 2 2 1

It is clear that the derived instance N ′ satisfies condition C1
and thus an optimal schedule for N ′ is attainable in O(n2)

time. In the following lemma, a relationship is established
between the solutions for sets N and N ′.

Theorem 3. For the job set N and the derived job set N ′,
Z∗(N ′)�Z∗(N).

Proof. Given schedule S optimal for set N, we have the fol-
lowing transformation process to derive schedule S′ such
that Z(S′)�Z(S) = Z∗(N). For any two consecutive jobs
i and j in schedule S, if job i precedes job j and pja < pia ,
we swap operations pja and pia and retain pib, pjb, pi2
and pj2 in their original positions. The makespan will not
increase by this swapping operation. Continue the swapping
process until there are no such jobs as i and j. In the derived
schedule, all the operations on machine Ma are arranged
in non-decreasing order of their processing times, and the
makespan is no greater than that of schedule S. With this
derived new schedule, rearranging the processing times on
Mb in non-decreasing order will not increase the makespan
either. Then, we rearrange the processing times on machine
M2 in a non-increasing order. Similarly, the makespan will
not increase due to the transformation. After the above trans-
formations, we obtain schedule S′ in which the makespan
Z(S′) is no greater than Z(S) and the jobs satisfy the def-
inition of the job set N ′. By the definition of Z∗(N ′), we
have Z∗(N ′)�Z(S′). �

Summarizing the above results, we have come up with
a two-step procedure for deriving a lower bound on the
optimal solution for the original job set. The first step
is to transform the job set N into N ′, and the second
step applies Algorithm DP to find an optimal sched-
ule for N ′. The derived solution, by Theorem 3, is a
lower bound on the optimal solution value of set N.
Therefore, a lower bound can be computed in O(n2)

time.

5. Heuristic algorithms and computational
experiments

The strong NP-hardness result presented in Section 2 hints
that it is very unlikely to design efficient algorithms to opti-
mally solve the 3MAF|(�, �) → �|Cmax problem. Further-
more, it is difficult to devise a branching tree for branch-
and- bound algorithms due to the fact that the scheduling
decisions consist of deciding jointly on how to batch the
jobs and how to sequence the batches. Similarly, the de-
sign of heuristic and meta-heuristic algorithms may be based
upon the theme of considering the two decisions at the
same time. The results of Theorem 2, however, suggest an
alternative—determining a job sequence and applying Algo-
rithm DP to the job sequence to optimally assign the jobs
into batches. In this section we follow this line of design
and develop four heuristic algorithms to obtain approximate
solutions in a reasonable time.

In our study we divide the problem-solving strategy into
two phases, namely job sequencing and batch composition.
The first three sequencing procedures H1, H2 and H3 were
proposed by Lee et al. [4] for obtaining job sequences as
approximate solutions.

Algorithm H1
Step 1: Let pi1 = max{pia, pib}, for i = 1, 2, . . . , n.
Step 2: Apply Johnson’s algorithm to the job instance

with job i defined by pi1 and pi2.
Step 3: Apply Algorithm DP to generate an optimal batch-

ing policy for the sequence determined in Step 2.
Algorithm H2
Step 1: If

∑
i=1,...,n pia �

∑
i=1,...,n pib, then pi1 =pia ;

otherwise, pi1 = pib.
Steps 2 and 3: Same as Algorithm H1.
Algorithm H3
Step 1: Let pi1 = (pia + pib)/2.
Steps 2 and 3: Same as Algorithm H1.
We propose the following heuristic for the problem.
Algorithm H4
Step 1: Let pi1 = (pia + pib)/pi2 for i = 1, 2, . . . , n.
Step 2: Arrange the jobs in non-decreasing order of pi1.
Step 3: Apply Algorithm DP to the sequence determined

in Step 2.
As for the time complexity, all of the above algorithms

take O(n log n) time to determine a job sequence and O(n2)

time to apply Algorithm DP. Therefore, the algorithms all
have a time complexity of O(n2).

To study the effectiveness of the above algorithms, we
conducted a series of computational experiments. The pro-
grams were coded in Visual C++ 6.0 and run on a personal
computer. The lower-bound concept was deployed to serve
as the baseline for comparisons. Let ZH be the schedule
derived by algorithm H and Zlb the schedule determined by
the lower bound introduced in Section 4. The relative error
ratio of algorithm H is defined as (ZH −Zlb)/Zlb × 100%.

As regards the data set preparation, the processing times
pia, pib and pi2 were randomly drawn from the interval
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Fig. 2. Relative errors of the four heuristics with s = 50.
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Fig. 3. Relative error ratios of Algorithm H4.

[1,100]. The number of jobs n was 10, 50, 100, 150, 200,
250, 300, 350 or 400. The batch setup time s was 10, 30,
50, 150 or 500 to study the effects of different setup times
on the solution quality. For each combination of n and s,
all the heuristic algorithms were run over ten job sets that
were generated in random. The average relative error ratios
of the ten job sets for each heuristic are tabulated in Table 1.
By and large, the relative error ratios are no more than 5%.
From the numerical results, it is obvious that Algorithm H4
outperforms all the other methods, and that Algorithm H2
has a relatively inferior performance. Using the computa-
tional results of Algorithm H4 as an example, we observe
two significant trends. First, the relative error ratios of the
heuristics decrease as the number of jobs increases (see
Fig. 2). This observation suggests the practical significance
of our heuristics in dealing with large-scale problems. Sec-
ond, the relative error ratios of the heuristics deteriorate as
the setup time becomes longer (see Fig. 3). In real-world ap-
plications, setup times are usually required to be relatively
small, due to, e.g., the concept of single-digit change-over
time. Therefore, our heuristic approaches should be of prac-
tical use to handle the 3MAF/(�, �) → �/Cmax problem in
real-life situations.
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The above results also reveal the tightness of the derived
lower bounds. By transforming an instance into an ideal one
that exhibits structural properties for the existence of poly-
nomial time algorithms, we can attain a lower bound with
a small deviation from the optimal solution in a reasonable
time. This approach is of potential use for facilitating the de-
velopment of branch-and-bound algorithms to tackle other
similar combinatorial optimization problems.

6. Concluding remarks

This paper addressed the three-machine assembly-type
flowshop scheduling problem with batching considerations
to minimize the makespan. We first showed that the problem
remains NP-hard in the strong sense even when all the jobs
have the same processing time on the second-stage machine.
We developed an O(n2) algorithm for optimally grouping
jobs in a fixed sequence into batches. A lower bound was
established through the use of a data transformation scheme
and the above algorithm. To find approximate solutions to
the general problem, we presented four heuristics that deter-
mine the job sequences for use in the optimal batch compo-
sition process. The computational results demonstrate the ef-
fectiveness of the heuristic algorithms and the lower bound.

For further research, it would be interesting to study the
situations with more suppliers and more stages, or hybrid
flowshops. To better reflect realistic supply chains, we may
incorporate the transportation time/cost required to transfer
a batch of parts into the model. Furthermore, centralized de-
cision making usually calls for some sort of compensations
for the parties who follow the predetermined policies. There-
fore, it is worth considering rewards/compensations for
coordinated production planning and scheduling as studied
by Li and Xiao [24].
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Appendix

Proof of Theorem 1. (⇒) Let A1, A2, . . . , and Am con-
stitute a partition of set A. We construct a schedule of m+1
batches B1, B2, . . . , Bm+1 as follows: the first batch B1
contains only jobs 3m + 1, 3m + 2 and 3m + 3, and batch
Bi+1, 1� i �m, contains the jobs corresponding to the el-
ements in Ai . It is easy to verify that the makespan of the
schedule is 4(m + 1)�E.

(⇐) Suppose that there is an optimal schedule S for the
constructed instance of 3MAF|(�, �) → �, pi2 = p|Cmax
with makespan no greater than 4(m+ 1)�E. Since the total

processing times of all the jobs on machine M2 is 4(m +
1)�E − 3(m + 1), in schedule S, the sum of idle times and
setup times on machine M2 cannot be greater than 3(m+1).
That is, schedule S can have at most m + 1 batches. We
first show that the first batch B1 contains only jobs 3m +
1, 3m+2 and 3m+3. If the first batch B1 contains some job
i, 1� i �3m, then on machine M2 before job i there will be
an idle time of at least �E, which is greater than 3(m+1), a
contradiction. Furthermore, if any of the jobs 3m+1, 3m+2
and 3m+3 is contained in some other batch Bk with k �= 1,
we can transfer this job into batch B1 without increasing
the makespan. Therefore, jobs 3m + 1, 3m + 2 and 3m + 3
constitute the first batch.

As the multiplier � is a number much larger than 3(m+1),
any idle time caused by delayed completion on machine Ma

or Mb will lead to a contradiction to the allowable idle time
of 3(m + 1). Therefore, in the following, we must ensure
that no idle time is incurred. Notice that the completion
times of the first batch on the three machines are 0, 0, and
3+3(4�E/3−1)=4�E, respectively. It is clear that batch
B2 cannot contain more than three jobs, for otherwise an
idle time

∑
i∈B2

�(E + pia) − 4�E, which is greater than
3(m + 1), will be incurred. If batch B2 is not the last batch
and contains only one job, then we can transfer a job from
any successor batch into batch B2 without increasing the
makespan. The same line of reasoning can be applied to any
successor batch. Let k, 1 < k�m + 1, be the smallest index
such that |Bk |�3 and |Bk | = 2 for k = 2, 3, . . . , k − 1. For
simplicity in presentation, we assume |Bk | = 3. The other
case where Bk has more than three jobs can be similarly
analyzed. We examine the following three completion times
to show that index k must be 2.

1. Completion time of batch Bk on Ma :

�

⎛
⎝

⎛
⎝2(k − 2)E +

∑
i∈B2∪···Bk−1

pia

⎞
⎠

+
⎛
⎝3E +

∑
i∈Bk

pia

⎞
⎠

⎞
⎠

= �

⎛
⎝(2k − 1)E +

∑
i∈B2∪···Bk

pia

⎞
⎠ . (1)

2. Completion time of batch Bk on Mb:

�

⎛
⎝

⎛
⎝4(k − 2)E − 2

∑
i∈B2∪···Bk−1

pia

⎞
⎠

+
⎛
⎝6E − 2

∑
i∈Bk

pia

⎞
⎠

⎞
⎠

= �

⎛
⎝(4k − 2)E − 2

∑
i∈B2∪···Bk

pia

⎞
⎠ . (2)
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3. Completion time of batch Bk−1 on M2:

4�E + (k − 2)(4�E/3 − 1) = 4(k + 1)�E/3 − (k − 2).

(3)

To avoid incurring idle time before batch Bk on machine
M2:

4(k + 1)�E/3 − (k − 2)

− �

⎛
⎝(2k − 1)E +

∑
i∈B2∪···Bk

pia

⎞
⎠ �0

and

4(k + 1)�E/3 − (k − 2)

− �

⎛
⎝(4k − 2)E − 2

∑
i∈B2∪···Bk

pia

⎞
⎠ �0

must be simultaneously satisfied. The inequality

4(k + 1)�E/3 − (k − 2)

− �

⎛
⎝(2k − 1)E +

∑
i∈B2∪···Bk

pia

⎞
⎠ �0

can be simplified to

�

⎛
⎝7E/3 − 2kE/3 −

∑
i∈B2∪···Bk

pia

⎞
⎠ − (k − 2)�0.

Because � is much larger than k − 2, we have

7E/3 − 2kE/3 −
∑

i∈B2∪···Bk

pia > 0,

or

7E/3 − 2kE/3 −
∑

i∈B2∪···Bk

pia = 0 and k�2.

If it is the latter case, then we have shown that k =2. There-
fore, we assume that

7E/3 − 2kE/3 −
∑

i∈B2∪···Bk

pia > 0. (4)

Similarly, the inequality

4(k + 1)�E/3 − (k − 2)

− �

⎛
⎝(4k − 2)E − 2

∑
i∈B2∪···Bk

pia

⎞
⎠ �0

implies

10E/3 − 8kE/3 + 2
∑

i∈B2∪···Bk

pia > 0,

or

10E/3 − 8kE/3 + 2
∑

i∈B2∪···Bk

pia = 0 and k�2.

We similarly assume that

10E/3 − 8kE/3 + 2
∑

i∈B2∪···Bk

pia > 0. (5)

Combining (4) and (5), we have 10E/3−8kE/3+14E/3−
4kE/3 > 0, which leads to k < 2. But the premise of the
above derivation is that k > 1, a contradiction. So, we have
obtained the fact that the second batch B2 must contain
exactly three jobs. Next, we examine the constituent jobs in
batch B2. If

∑
i∈B2

pia = (3E + ∑
i∈B2

xi)� > 4�E, then
the completion time on Ma will lead to a non-zero idle time
on machine M2. On the other hand, if

∑
i∈B2

pib = (6E −
2
∑

i∈B2
xi) > 4�E, then the completion time on Mb will

also lead to a non-zero idle time on machine M2. Therefore,
to avoid idle time, the equality

∑
i∈B2

pia = 4�E must
hold, i.e., the elements corresponding to the three jobs of
batch B2 must sum to exactly E. Let the three elements form
subset A1. The completion times of batch B2 on the three
machines are 4�E, 4�E and 8�E, respectively. Therefore,
we can apply the same analysis process and successively
construct subsets A2, A3, . . . , and Am. �
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