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Abstract

In this paper, the chaotic behaviors of a nonlinear damped Mathieu system and of a nonlinear nano resonator sys-
tem with integral orders and with fractional orders are studied. By applying numerical analyses such as phase portraits,
Poincaré maps and bifurcation diagrams, the periodic and chaotic motions are observed. It is found that chaos exists
both in the nonlinear damped Mathieu system and in the integral order and fractional order nano resonator systems.
� 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Chaos and chaotic systems have received a flurry of research effort in the past few decades. Such systems are non-
linear by nature, can occur in various natural and man-made systems, and are characterized by great sensitivity to initial
conditions [1]. Besides the theoretical interest in the analysis of such nonlinear systems, there is another dimension to
that interest; namely, utilizing such systems for useful practical applications [2–9]. Many researchers have devoted
themselves to finding new ways to control chaos more efficiently [10–13]. Chaotic phenomena are quite useful in many
applications such as fluid mixing [14], human brain dynamics [15], and heart beat regulation [16], information process-
ing, etc. Therefore, making a periodic dynamical system chaotic, or preserving chaos of a chaotic dynamical system, is
very meaningful and worthy to be investigated [17,18].

Fractional calculus is a 300-year-old mathematical topic [19–22]. Although it has a long history, for many years it
was not used in physics and engineering. However, during the last 10 years or so, fractional calculus starts to attract
increasing attention of physicists and engineers from an application point of view [23,24]. It was found that many sys-
tems in interdisciplinary fields can be elegantly described with the help of fractional derivatives. Many systems are
known to display fractional-order dynamics, such as viscoelastic systems [25], dielectric polarization [26], electrode–
electrolyte polarization [27], electromagnetic waves [28], quantitative finance [29], and quantum evolution of complex
systems [30].
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It is well known that chaos cannot occur in autonomous continuous time systems of integer-order less than three
according to the Poincare–Bendixon theorem [31,32]. A recent example of a continuous time third order system that
exhibits chaos is the Chen system [33]. The order of a system can be defined as the sum of the orders of all involved
derivatives. However, in autonomous fractional order systems, it is not the case. For example, it has been shown that
the fractional order Chua’s circuit with an appropriate cubic nonlinearity and with order as low as 2.7 can produce a
chaotic attractor [34]. In [35,36], the bifurcation and the chaotic dynamics of fractional order cellular neural networks
are studied. In [37], chaotic behaviors of a fractional order ‘‘jerk’’ model is studied, in which a chaotic attractor can be
Fig. 1. The phase portraits, bifurcation diagram and the Lyapunov exponent for the nonlinear damped Mathieu system.
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generated with the system order as low as 2.1 and a conjecture is presented that third order chaotic systems can still
produce chaotic behavior with a total system order of 2 + e, 0 < e < 1. In [38], chaotic behavior of the fractional order
Lorenz system is studied, but unfortunately, the results presented in this paper are not correct as pointed out by [39].
Also in [39], chaos and hyperchaos in fractional order Rössler equations are discussed, in which, it is shown that chaos
can exist in the fractional order Rössler equation with order as low as 2.4, and hyperchaos can also exist in the frac-
tional order Rössler hyperchaotic system with order as low as 3.8. In [40–43], chaotic behaviors in the fractional order
Fig. 2. The phase portraits, bifurcation diagram and the Lyapunov exponent for the nano resonator system with order a = 1 and
b = 1.



Table 1
Relation between orders of derivatives and existence of chaos

Total order 2 Total order 1.9

Cases Orders Existence of chaos Fig. no. Cases Orders Existence of chaos Fig. no.

1 a = 1.1, b = 0.9 Yes 3 20 a = 1.1, b = 0.8 No
2 a = 0.9, b = 1.1 Yes 4 21 a = 0.8, b = 1.1 No
3 a = 1.2, b = 0.8 Yes 5 22 a = 1.2, b = 0.7 No
4 a = 0.8, b = 1.2 Yes 6 23 a = 0.7, b = 1.2 Yes 16
5 a = 1.3, b = 0.7 No 24 a = 1.3, b = 0.6 No
6 a = 0.7, b = 1.3 No 25 a = 0.6, b = 1.3 Yes 17
7 a = 1.4, b = 0.6 No 26 a = 1.4, b = 0.5 No
8 a = 0.6, b = 1.4 No 27 a = 0.5, b = 1.4 No
9 a = 1.5, b = 0.5 No 28 a = 1.5, b = 0.4 No

10 a = 0.5, b = 1.5 Yes 10 29 a = 0.4, b = 1.5 No
11 a = 1.6, b = 0.4 Yes 7 30 a = 1.6, b = 0.3 No
12 a = 0.4, b = 1.6 Yes 8 31 a = 0.3, b = 1.6 Yes 18
13 a = 1.7, b = 0.3 Yes 9 32 a = 1.7, b = 0.2 No
14 a = 0.3, b = 1.7 No 33 a = 0.2, b = 1.7 Yes 19
15 a = 1.8, b = 0.2 Yes 11 34 a = 1.8, b = 0.1 Yes 15
16 a = 0.2, b = 1.8 Yes 12 35 a = 0.1, b = 1.8 No
17 a = 1.9, b = 0.1 Yes 13
18 a = 0.1, b = 1.9 Yes 14
19 a = 1, b = 1 Yes 2
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Chen system are studied and the lowest order to have chaos in this fractional order Chen system is shown to be 2.1 and
2.92, respectively.

This paper is organized as follows. In Section 2, a method for the approximation of the fractional derivative is given.
In Section 3, the nano resonator system and its fractional order form are presented. In Section 4, numerical simulations,
phase portraits and bifurcation diagrams, for various different fractional order nano resonator systems are described. In
Section 5, conclusions are drawn.
2. Method for the approximation of the fractional derivative

The idea of fractional integrals and derivatives has been known since the development of the regular calculus, with
the first reference probably being associated with Leibniz in 1695 [44].

Two commonly used definitions for the general fractional differintegral are the Grunwald definition and the Rie-
mann–Liouville definition. The latter is given here
dqf ðtÞ
dtq

¼ 1

Cðn� qÞ
dn

dtn

Z t

0

f ðsÞ
ðt � sÞq�nþ1

ds ð1Þ
where n � 1 6 q < n and C( Æ ) is an Euler’s gamma function.
The Laplace transformation of the Riemann–Liouville fractional derivative (1) is
L
dqf ðtÞ

dtq

� �
¼ sqLff ðtÞg �

Xn�1

k¼0

sk dq�1�kf ðtÞ
dtq�1�k

� �
t¼0

for n� 1 6 q < n ð2Þ
By considering the initial conditions to be zero, this formula reduces to the more expected and comforting form
L
dqf ðtÞ

dtq

� �
¼ sqLff ðtÞg ð3Þ
and the fractional integral of order q can be described as F ðsÞ ¼ 1
sq in the frequency domain.

The standard definitions of the fractional differintegral do not allow direct implementation of the operator in time
domain simulations of complicated systems with fractional elements. Using the standard integer order operators to
approximate the fractional operators is an effective method to analyze such systems.
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The approximation approach taken here is to approximate the system behavior in the frequency domain [45]. By
utilizing frequency domain techniques based in Bode diagrams, one can obtain a linear approximation of a fractional
order integrator. Thus an approximation of any desired accuracy over any frequency band can be achieved.

Table 1 of Ref. [34] gives approximations for 1
sq with q = 0.1–0.9 in steps of 0.1 with errors of approximately 2 dB

from x = 10�2 to 102 rad/s. These approximations will be used in the following numerical simulations.
Fig. 3. The phase portraits and the bifurcation diagram for the nano resonator system with order a = 1.1 and b = 0.9.
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3. The chaos of the nonlinear damped Mathieu system and of the nano resonator system with its fractional order form

Mechanical resonance is widely applied in high-precision oscillators for a multitude of time-keeping and frequency
reference applications. In all such cases, the high-precision resonating element consists of an off-chip passive compo-
nent, such as a quartz crystal. Major drawback of these off-chip resonator technologies is that they are bulky and must
interface with transistor chips at the boards, posing a bottleneck against the ultimate miniaturization of e.g., wireless
Fig. 4. The phase portraits and the bifurcation diagram for the nano resonator system with order a = 0.9 and b = 1.1.
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devices. The extraordinary small size and high level of integration that can be achieved with nano resonators appear to
open exceptional possibilities for creating miniature-scale precision oscillators to be used in e.g., mobile communication
and navigation devices.

Nano resonator system studied in this paper is a modified form of nonlinear damped Mathieu system. The nonlinear
damped Mathieu system is a nonautonomous system with two states x and y:
Fig. 5. The phase portraits and the bifurcation diagram for the nano resonator system with order a = 1.2 and b = 0.8.
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dx
dt
¼ y

dy
dt
¼ �ðaþ b sin x1tÞx� ðaþ b sin x1tÞx3 � cy þ d sin x2t

8>><
>>: ð4Þ
where a, b, c, d are constant parameters, and x1, x2 are circular frequencies. The phase portraits, Poincaré maps, bifur-
cation diagram and the Lyapunov exponent for system (4) are showed in Fig. 1 where a = 0.2, b = 0.2, c = 0.4,
Fig. 6. The phase portraits and the bifurcation diagram for the nano resonator system with order a = 0.8 and b = 1.2.
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x1 = x2 = x = 1. Let x1 = x2 = x, and replace sinxt by z which is the periodic time function solution of the nonlinear
oscillator
dz
dt ¼ w
dw
dt ¼ �ez� fz3

(
ð5Þ
where e, f are constant parameters. Then we have the modified nonlinear damped Mathieu system:
Fig. 7. The phase portraits and the bifurcation diagram for the nano resonator system with order a = 1.6 and b = 0.4.



Fig. 8. The phase portraits and the bifurcation diagram for the nano resonator system with order a = 0.4 and b = 1.6.

Fig. 9. The phase portraits and the bifurcation diagram for the nano resonator system with order a = 1.7 and b = 0.3.
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dx
dt
¼ y

dy
dt
¼ �ðaþ bzÞx� ðaþ bzÞx3 � cy þ dz

dz
dt
¼ w

dw
dt
¼ �ez� fz3

8>>>>>>>>>><
>>>>>>>>>>:

ð6Þ
ig. 10. The phase portraits and the bifurcation diagram for the nano resonator system with order a = 0.5 and b = 1.5.
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It becomes an autonomous system with four states where a, b, c, d, e and f are constant parameters of the system.
System (4) consists of two parts:
F

dx
dt
¼ y

dy
dt
¼ �ðaþ bzÞx� ðaþ bzÞx3 � cy þ dz

8>><
>>: ð7Þ
ig. 11. The phase portraits and the bifurcation diagram for the nano resonator system with order a = 1.8 and b = 0.2.



Fig. 12. The phase portraits and the bifurcation diagram for the nano resonator system with order a = 0.2 and b = 1.8.

Fig. 13. The phase portraits and the bifurcation diagram for the nano resonator system with order a = 1.9 and b = 0.1.
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Fig. 14. The phase portraits and the bifurcation diagram for the nano resonator system with order a = 0.1 and b = 1.9.

Fig. 15. The phase portraits and the bifurcation diagram for the nano resonator system with order a = 1.8 and b = 0.1.

Z.-M. Ge, C.-X. Yi / Chaos, Solitons and Fractals 32 (2007) 42–61 55



56 Z.-M. Ge, C.-X. Yi / Chaos, Solitons and Fractals 32 (2007) 42–61
and
F

dz
dt
¼ w

dw
dt
¼ �ez� fz3

8>><
>>: ð8Þ
ig. 16. The phase portraits and the bifurcation diagram for the nano resonator system with order a = 0.7 and b = 1.2.
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Eq. (8) affords the periodic time function solution to system (7) as an excitation which induces the chaos in system
(7). As a result, Eq. (7) can be considered as a nonautonomous system with two states, while Eqs. (7) and (8) together
can be considered as an autonomous system with four states. Our main interest devotes to Eq. (7), while Eq. (8) remains
an integral order system. The phase portraits, Poincaré maps, bifurcation diagram and the Lyapunov exponent for Eq.
(6) are showed in Fig. 2. Obviously, phase portraits of the nonlinear damped Mathieu system and the nano resonator
system are similar, but chaos in the damped Mathieu system is more than that in the nano resonator system.
Fig. 17. The phase portraits and the bifurcation diagram for the nano resonator system with order a = 0.6 and b = 1.3.
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The corresponding modified nonlinear fractional order damped Mathieu system, the fractional order nano resonator
system, is
F

dax
dta
¼ y

dby
dtb
¼ �ðaþ bzÞx� ðaþ bzÞx3 � cy þ dz

dz
dt
¼ w

dw
dt
¼ �ez� fz

8>>>>>>>>>><
>>>>>>>>>>:

ð9Þ
where a and b are the fractional orders.
4. Numerical simulations for the fractional order systems

We vary the derivative orders a, b and the system parameter d, the other system parameters are fixed. Simulations
are performed under a + b = 2, a + b = 1.9 where a, b are not integers. In our numerical simulations, five parameters
a = 0.2, b = 0.2, c = 0.4, e = 1 and f = 0.3 are fixed and d is varied. The initial states of the nano resonator system are
x(0) = 3, y(0) = 4, z(0) = 1 and w(0) = 0. The numerical simulations are carried out by MATLAB, and are summarized
in Table 1.
ig. 18. The phase portraits and the bifurcation diagram for the nano resonator system with order a = 0.3 and b = 1.6.
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The phase portraits, Poincaré maps and the bifurcation diagrams of Case 1, 2, 3, 4, 10, 11, 12, 13, 15, 16, 17, 18, 19,
23, 25, 31, 33 and 34 for nano resonator system are showed in Figs. 3–6, 10, 7–9, 11–14, 2, 16–19 and 15, respectively.
Case 1, 2, 3 and 19 have similar shapes in their phase portraits and Poincaré maps, chaos in Case 3 is only distributed
over the parameter d = 40 � 50, relatively, chaos in Case 1, 2 and 19 are distributed more wide than that of Case 3. Case
4, 23 and 25 have similar shapes in their phase portraits. Case 11, 13, 15, 17 and 34 have similar shapes in their phase
portraits. Case 17 has the largest range of y among Case 11, 13, 15, 17 and 34, even beyond 3000, chaos in Case 13 and
17 are distributed over all varied parameter region, but in Case 15, chaos is distributed over about the parameter d > 50.
Case 10, 12, 16, 18, 31 and 33 have similar shapes in their phase portraits.
Fig. 19. The phase portraits and the bifurcation diagram for the nano resonator system with order a = 0.2 and b = 1.7.
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The results from simulation verified that chaos indeed exists in the system with total fractional orders a + b = 2 and
a + b = 1.9, which are summarized in Table 1.
5. Conclusions

In this paper, the chaotic behaviors of a nonlinear damped Mathieu system and of nano resonator systems with inte-
gral order and with fractional order are investigated by means of phase portraits, Poincaré maps and bifurcation
diagrams.

In Section 2, the approximation method of the fractional derivative with the Riemann–Liouville algorithm is given.
In Section 3, the chaos of the nonlinear damped Mathieu system and of the nano resonator system with its fractional
order form are obtained. In Section 4, the phase portraits, Poincaré maps and bifurcation diagrams for various different
fractional order nano resonator systems are represented.
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[40] Li CG, Chen G. Chaos in the fractional order Chen system and its control. Chaos, Solitons & Fractals 2004;22:549–54.
[41] Li CP, Peng GJ. Chaos in Chen’s system with a fractional order. Chaos Solitons & Fractals 2004;22:443–50.
[42] Lu JG, Chen G. A note on the fractional-order Chen system. Chaos, Solitons & Fractals 2006;27:685–8.
[43] Ahmad WM. Hyperchaos in fractional order nonlinear systems. Chaos, Solitons & Fractals 2005;26:1459–65.
[44] Oldham KB, Spanier J. The Fractional Calculus. San Diego, CA: Academic; 1974.
[45] Charef A, Sun HH, Tsao YY, Onaral B. Fractal system as represented by singularity function. IEEE Trans Automat Contr

1992;37(September):1465–70.


	Chaos in a nonlinear damped Mathieu system, in a nano resonator system and in its fractional order systems
	Introduction
	Method for the approximation of the fractional derivative
	The chaos of the nonlinear damped Mathieu system and of the nano resonator system with its fractional order form
	Numerical simulations for the fractional order systems
	Conclusions
	Acknowledgements
	References


