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Abstract

c-Chart was frequently used to monitor wafer defects during IC manufacturing. The clustering degree of defect on a wafer will
increase along with the area of wafer gradually enlarging. The defect clustering causes the Poisson-based c-chart to exhibit many false
alarms. Although several revised control charts have been developed to reduce the number of false alarms, those control charts still have
some disadvantages in practical use. This study proposes a control chart that applies fuzzy theory and engineering experience to monitor
wafer defects with the consideration of defect clustering. The proposed control chart is simpler and more rational than those revised
c-charts. Finally, a case study of an IC company, owing to the HsinChu Scientific part at Taiwan, is used to demonstrate and verify

the rationality and effectiveness.
© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The yield has the directly effect on the manufacturing
cost. Hence, it is frequently regarded as an index to evalu-
ate the IC manufacturing performance. Basically, the 1C
manufacturers with the higher yield will represent the
higher competitive power and the better quality. Hence,
how to efficiently manage IC process and rapidly enhance
their IC yield will become an important study issue. Gener-
ally, the yield of IC products can be represented as follow-
ing formula (Albin & Friedman, 1991):

Yoverall = Yline X Ydie X Yassembly X Yﬁnal_lesl X Yquality (1)

where Yoyeran 1S the overall yield of IC product; Yj;, is the
line yield; Yy is the die yield; Y,sembly 1S the assembling
yield; Ynal test 18 the final testing yield; Yqyaiiy is the quality
yield. Among those yields, the die yield ( Yy;e) is more diffi-
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culty to determine than others as for it having a direct
effect on productivity than others. Therefore, Yy, can be
regarded as a primary factor for having direct effect on
manufacturing cost. Reviewing the related researches, Ygic
is frequently mentioned. In this study, the Yy is also the
yield we mentioned. Generally, the yield will be affected
by the defect (or failure) on a wafer in IC manufacturing.
There are many studies to address the defect analysis.
However, in this study, the type of defect is not the major
consideration. The related content about the theory of de-
fect will be explained well in Jun, Hong, Kim, Park, and
Park (1999). The defect count or defect density can be
viewed as another index to evaluate the manufacturing per-
formance. However, the state of the defect clustering is
gradually occurred along with wafer area increasing. The
yield analysis is more complicated since considering the
relationship between the defect clustering and yield.

The c-chart was frequently used to on-line monitor the
defect count on a wafer for most IC manufacturing. How-
ever, the assumption of randomness for defect’s location
on a wafer and the independent relationship for different
defects will be made when the traditional c-chart is used
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to monitor the defect count. That is, the defect count is
assumed to obey the Poisson distribution. The clustering
status of defects on a wafer had led the assumption to be
break. Therefore, if we still use the traditional c-chart to
monitor defect count on a wafer, the false alarm (that is,
the Type I error) will increase. And, it will let the engineers
to ignore the useful information by screening out the con-
trol chart. To address such issue, Albin and Friedman
(1991) provided a revised c-chart based on the Neyman
Type-A distribution to correct the error derived from the
conventional c-chart. The concept of designing the revised
c-chart is to widen the control limit. Although it can
decrease the false alarms comparing with the conventional
c-chart, only the variation of defect count between different
wafers can be detected. The variation of defect count
within a wafer cannot be detected by using it.

Zang (1995) suggested to employ the control chart
derived by Albin and Friedman to monitor the defect count
on a wafer and construct another control chart based on
the clustering index to monitor the defect cluster. The pri-
mary concept is to apply the quadratic method and dis-
tance method to evaluate the degree of defect clustering.
However, the clustering index is difficult to choose and
two control charts must be constructed and detected simul-
taneously. And, it will restrict the applications for Zang’s
method. Wu (2000) employed Hotelling 72 control chart
to monitor the defect count and the degree of defect clus-
tering. Two responses, the first one is the clustering param-
eter « and the second is the defect count derived from the
negative binominal distribution, are used to construct con-
trol chart. However, the assumption of two responses
obeying the binormal distribution will be the primary lim-
itation. It will lead to a complicated operation for the real
application, e.g., the data transformation.

After reviewing the related literatures, we intend to con-
struct a simple and reasonable control chart to monitor the
defect count with the consideration of defect clustering at
the same time. Besides, the primary concept been employed
is the logical inference during the fuzzy theory. Two phases
are designed in our proposed approach: Firstly, the defect
clustering degree and defect count will be fuzzied and an
inferential value can be obtained. Then, we can use the
fuzzy inferential value to construct a control chart to mon-
itor the defect count with the consideration of defect clus-
tering at the same time. Next, we must make the necessary
assumptions and conditions for this study:

1. Each defect will have the effect on IC yield. Hence, the
larger defect count will denote the worst IC process
(the lower yield).

2. No matter the size or the shape of defect, it is regarded
as a defect point on a wafer.

3. Defect count and defect clustering degree are reviewed
as two responses to control.

4. When the defect count is large and the defect clustering
is not significant, the process will be defined as non-nor-
mal process.

5. The process denotes unstable when the defect clustering
degree is significantly large without taking the defect
count into consideration.

This article is organized as five sections: Section 1 will
give the motivation and purpose for this study. The related
literatures about the control chart used in IC industry and
the revised chart are surveyed in Section 2. The proposed
procedure is given as Section 3. An illustrative example
owing to an IC manufacturer at HsinChu Scientific
Park in Taiwan will be employed to demonstrate the ratio-
nality and effectiveness of the proposed procedure. Finally,
the concluding remarks and suggestions are given as
Section 5.

2. Literature review
2.1. Defect clustering index

Stapper (1973, 1985) and Stapper et al. (1983) indicated
that the clustering of defects on a wafer becomes more pro-
nounced as the surface area of the wafer increases. Defect
clustering violates the assumption on which the c-chart is
based: the defects are not independently or randomly scat-
tered on a wafer. Some indices are then developed to mea-
sure the defect clustering. Of these cluster indices, the
cluster index (CI) proposed by Jun et al. (1999), is proven
to be more effective than any others. Moreover, CI does
not require any assumptions to be made about the distribu-
tion of defects.

Assuming there are n defects on a wafer, and the coor-
dinates of each defect in a two-dimensional plane are given
by (X, Y,) fori=1,2,...,n, rearrange X; and Y, in ascend-
ing order to obtain X; and Y{;, where X(; represents the x
coordinate of the ith defect, and Y/; is the y coordinate of
the ith defect. Hence, the intervals V; and W;

VI-ZX(,-)—X(,-_I), i:1,2,...,l’l

(2)
Wi=Yuy—Yio,

i=1,2,...,n

where Xy and Y| are set to zero. CI can now be expressed
as follows:

CI = min{(coefficient of variation of V,)*,

(coefficient of variation of W)} (3)

The mean and variance of ¥; can be written as 7 and S,
respectively. The mean and variance of W; can be written
as W and va, respectively. Then, the CI can be expressed
as follows:

N
CI = min {ﬁ,Wz} (4)

When the defects are uniformly distributed, the CI index
equals one. If CI exceeds one, the defects are clustered. A
larger CI corresponds to more severe clustering.
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2.2. Poisson c-chart

In IC manufacturing, the number of defects will be one
quality characteristic on which the conventional c-chart is
typically based. The number of defects used to construct
the c-chart must be Poisson-distributed, and so have a
probability distribution function given by

-
PN =n) = =F (5)
where n represents the number of defects on the surface and
u represents the average number of defects on a wafer.
According to the properties of Poisson distribution, the
upper control limit (UCL) of the c-chart can be obtained
as follows:

UCL =+ 3(w)'"? (6)

Recently, as the surface area of wafers has increased
from 4 to 12in., the clustering degree of wafer defects
has becomes more apparent. Hence, using the c-chart to
monitor defects will lead to many false alarms.

n!

2.3. Neyman-based c-chart

A modified c-chart based on Neyman Type-A distribu-
tion was developed to reduce the number of false alarms.
The Neyman Type-A distribution is a member of family
for the compound Poisson distributions. Albin and Fried-
man (1991) proposed a Neyman-based c-chart to improve
the traditional c-chart. The Neyman Type-A distribution
assumed that the cluster number of defect follows a Pois-
son distribution with mean A, and that the number of
defects in each cluster is also Poisson-distributed with mean
¢. The probability distribution function of a Neyman
Type-A distribution is as follows:

00 i . Nk
Pt @) = PN =m) = 3 el UO)

= ! n! %
where n represents the number of defects on a wafer’s
surface; A represents the average number of defects on a
wafer, and ¢ represents the average number of defects
per cluster. The expected value and variance of Neyman
Type-A distribution are given as follows:

E(x) =2¢, V(x)=id(1+ ) (8)

The ratio of ¥(x) to E(x) is (1 + ¢), so the Neyman-
based c-chart widens the control limits on the Poisson-
based c-chart. It can therefore effectively reduce the
number of false alarms. However, the method proposed
by Albin and Friedman still has some shortcomings.
They considered the number of defects on a wafer as the
quality characteristic, on which to determine the control
limits of the Neyman-based c-chart. Their method moni-
tors only the variability of defects among wafers. The var-
iability of the number of defects within a wafer cannot be
detected.

Fuzzy rules .
If A1, then B1
If A2, then B2 ’
If A3, then B3

Fig. 1. The process of fuzzy inference.

8

2.4. Fuzzy theory

Defuzzification

Fuzzification

Zadeh (1965, 1973) first developed fuzzy theory, which is
utilized to deal with fuzzy events. This section will roughly
review fuzzy theory. Fuzzy theory is based on fuzzy sets.
The characteristic function of a crisp set is defined to be
either zero or one, and the relationship of the characteristic
function to a fuzzy set is determined with reference to a
dichotomy. However, the concept of dichotomy here differs
from that typically used. The human language includes
many vague words. Therefore, Zadeh used a membership
function to represent the intensity: with which one element
belongs to one set; a stronger intensity corresponds to a
membership function closer to one; a weaker intensity cor-
responds to a function closer to zero.

A fuzzy proposition has two forms; one is the atomic
fuzzy proposition and the other is compound fuzzy propo-
sition. Fuzzy logic is defined as follows:

1. If a compound fuzzy proposition uses “and” to combine
two atomic fuzzy propositions, such as ‘X'is 4’ and ‘y is
B, then the membership function can be defined as
//‘R(xay) = min(ﬂi(x)7/“‘1§(y))7 (x,y) eX xY.

2. If a compound fuzzy proposition uses “or’”’ to combine
two atomic fuzzy propositions, such as ‘X is 4’ or ‘y
is B’, then the membership function is pg(x,y) =
max(ﬂi(x)’//‘i?<y))> (x,y) EX x Y.

3. If a compound fuzzy proposition uses “implies’’ to com-
bine two atomic fuzzy propositions, such as ‘X is A’
implies ‘y is B’, then the membership function is

pp(x) = min(1, 1 — p5(x) + pz(v)), (x,») €X x Y.

Fuzzy inference is similar to inference in binary logic.
The difference between these two inferences is that a fuzzy
inference involves contiguous sets, unlike in binary logics,
wherein sets are defined absolutely and as opposing each
other. A fuzzy inference includes fuzzy steps; many fuzzy
steps are combined in a computable system. Some value
is imagined to be input into this system. Fig. 1 depicts
the process of fuzzy inference. Fuzzy inference provides a
different method of control to compare with the traditional
method. A fuzzy inference system includes experts’ knowl-
edge, operators’ experience, the membership function and
the development of rules; therefore, the fuzzy inference sys-
tem is essentially intelligent.

3. The proposed control chart based on fuzzy theory

To achieve process control is our primary goal in this
study, two factors significantly affect the performance of
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process control: the first one is defect count and the second
is the clustering degree of defects. However, there is no suit-
able rule to define the process’s status when simultaneously
taking these two factors into consideration. Therefore, we
will intend to incorporate the cluster index (CI), defect
count on a wafer and the fuzzy theory to construct a con-
trol chart to monitor them at the same time. Several steps
are developed in the proposed procedure as follows:

Step 1. Get the wafer map of defect

We can capture the wafer map via the particular
machine inspection (e.g., KLA machine). Then, the related
information about the defect count and the defect distribu-
tion on a wafer can be obtained (see Fig. 2).

Step 2. Compute the defect clustering index (CI) for each
wafer

After the related information being got after the Step 1,
we can compute the clustering index (CI) proposed by
Hsieh (2001).

Step 3. Construct the membership function of defect count,
clustering index and fuzzy inference value

O KLA Defect Data

HH EP031 03-APR-S4/11:57:02 CRO334 up
wWW 6 Qo8 150 12887474 14713318 —46050 -14858138
1. 0] 1 5 1 44355 12010200 1642 450
DD 2 -5 2 ©31950 11513248 #14 614 O
DD 3 4 2 1965340 TRTII0 4913 MBI 0
DD 4 -4 3 4831805 2216553 7370 6756 O
DD 5 -3 2 2545874 9836062 6141 4289 ©
DD 8 -3 -3 3883720 2086761 1228 1228 O
DD 7 -2 -2 S68TE4B 5631208 5527 5527 O
DD 8 -1 4 2737017 11017774 06756 5527 0O
DD 9 0 2 1588400 30B4126 6141 5527 O
DD 10 1 -3 3970331 5407269 B141 5527 O
DD 11 1 -3 8138208 10000887 B598 7984 QO
DD 12 2 2 377703 12828841 4943 4013 0
DD 13 3 -2 5556416 037004 2456 1228 O
DD 14 4 -1 3789783  B71284 8588 BSEB
DD 15 4 -1 5216774 040163 3070 1842 O
Fig. 2. The wafer map diagram.

very_low low

u

medium_low medium medium_high high

As we known, the defect count and the defect clustering
are two factors to affect the wafer’s yield. Then, we will
apply the fuzzy inference to incorporating these two
factors. A fuzzy inference value can be obtained. After
discussing with the senior engineers, we divide the defect
count into seven linguistic description (Hsieh, 2001):
very__low, low, medium_low, medium, medium_high, high,
very_high. Next, a triangular function is used to con-
struct the membership function of the above fuzzy sets.
Fig. 3 will graphically depict the membership degree of
each level.

As for the degree of the defect clustering, after dis-
cussing with the senior engineers with their engineering
experience, we divide the CI value into 10 levels: from term
1 to term 10 according to the degree of defect clustering.
Fig. 4 will represent the membership function of defect
CI value.

Due to the defect count and defect clustering index are
combined into an inferential value, we will also set the
fuzzy inferential value into 10 categories with the consider-
ation of the CI index being divided into 10 categories. They
are represented from class 1 to class 10. The corresponding
diagram of fuzzy inferential value and their membership
value is graphically depicted in Fig. 5.

Step 4. Construct the rule base

The concept being used to construct the control chart is
to incorporate the defect count and defect clustering into
the final judgment making. According to the rational
thinking, we can obtain “if there is many defects on a wafer
without the significant defect clustering, it will denote the
process as out-of-control; if there is significant defect clus-
tering on a wafer, it will denote the process to be an unsta-
ble status”. Hence, we can construct the following rules
according to the defect count, defect clustering and fuzzy
inferential value obtained from the former three steps as
follows:

very_high

Defect count

\j

0 10 20 30 40 50 60 70 80 90 100 110 120

Fig. 3. The membership function of defect count.

term1 term2 term3 term4 term5 term6 term7 term8 term9 term 10

u

CI value

0 05 10 15 20 25

3.0 35 4.0 45

Fig. 4. The membership function of defect CI value.
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class1 class2 class3 class4 class 5 class 6 class 7 class 8 class 9 class 10
4

Inferential
value

»

0 10 20 30 40 50 60 70 80 90 100

Fig. 5. The corresponding diagram for inferential value and membership value.

R1: IF Defect is very high AND CI is term 1, THEN  Step 5. Perform the fuzzy inference

Value is class 10. In this step, we will input the inspected defect count and
R2: IF Defect is very high AND CI is term 2, THEN the computed CI value into the constructed control chart.
Value is class 10. Next, the related information about the process will be col-

lected well. For instance, if a wafer had inspected to have
93 defects and CI value was 0.866. When we input
(93,0.866) into the proposed control chart, it will trigger
four rules from the rule base:

Ri: IF Defect is medium AND CI is term 10, THEN
Value is class 2.

R70: IF Defect is very low AND CI is term 10, THEN Rule: IF Defect is medium high AND CI is term 3,

Value is class 1. THEN Value is class 9.
medium_high term  — class 10
medium_high term 3 —> class 9

high term 2 —> class 10
high term 3 —> class

Fig. 6. The inferential process.
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Rule: IF Defect is medium high AND CI is term 2,
THEN Value is class 10.

Rule: IF Defect is high AND Cl is term 2, THEN Value
is class 9.

Rule: IF Defect is high AND Cl is term 3, THEN Value
is class 9.

Next, we will union these fuzzy sets based on the trig-
gered rules to obtain a new fuzzy set (it will denote as the
oblique zone). The defuzzification value of new set can be
computed as 93.65. The judged making diagram is depicted
in Figs. 6 and 7.

Step 6. Compute the control limit and plot the control
chart

After the defect data are collected, the defect data are
transformed into output of the fuzzy inference rules.
Hence, a moving range (X—R,,) control chart can be con-
structed to monitor simultaneously the number of defects
and clustering. If all of the data plotted on the control

/

Fig. 7. The union set of fuzzy set.

chart fall within the control limits, then the process is in-
control; if there are any points lie outside of the control
limits, then the causes must be found and corrected.

Step 7. Making the final judgment

The defect count and defect clustering index are incor-
porated and they must be taken into consideration when
making the final judgment. According to the definition of
these two attributes, we can obtain the useful information
as “Larger defect count and the higher defect CI value will
denote the process to be non-normal status.” When the
process points fall within the control limit, it denotes the
process to be in-control. Oppositely, if the process points
fall outside the control limit, it denotes the process to be
out-of-control. Herein, the judgment criterion will be given
as follows: “Process points exceed the upper control limit
(UCL) will mean that the defect count is larger and the
defect clustering status is not significant; if the process
points exceed the lower control limit (LCL), it will mean
that the defect clustering is significant and the process is
unstable status.” For example, process point 1 and point
2 exceed the UCL in Fig. 8, it will denote the two data sets
to have the lager defect count. As for process point 3— they
exceed the LCL, it will mean that the process is unstable
status with the affection of defect clustering.

4. Illustrative example

There are several processes to manufacture 1C including
deposition, photolithography exposure, etching, doping
and so on. Generally, the engineers will apply equipment
to screening out the status of defects on a wafer when the
critical process is performed. Then, they will use it to judge
the process in-control or out-of-control. In this section, we
will employ an IC data set, owing to an IC manufacturer in
HsinChu Scientific Park at Taiwan, to demonstrate and

Tx: 58.472 (58.472); Sigma: 14.305 (14.305); n: 1.

________________________________________________________________ 1 8=.001
S
o 11 58,472
- -
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Soi_- b ] 34042
20 25 ¢ ¢ 30

Fig. 8. Example for out-of-control.
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verify the proposed procedure step by step. Total of 116
data sets are collected from KLA machine. Herein, we also
use the related package (e.g., STATISTICA 6.0 and Fuzzy-
TECH) to aid our analysis.

4.1. The result by using the proposed control chart

Step 1. Get the wafer map of defect from KLA 2110
wafer inspection system

KLA 2110 machine can provide the inspection function
for wafer’s defect. The information including the defect
count, the size of defect and the coordinate of defect will
be collected by using it. We can capture the wafer map
via KLA 2110 inspection system. There are 116 wafer data
are collected.

Step 2. Compute the defect clustering for each wafer
We will compute the defect clustering degree of the col-
lected wafer data. As for the defect count of each wafer, it

Table 1
The defect count and defect clustering index CI for partial data

Wafer number Defect count Defect clustering index CI

1 44 3.451
2 37 1.316
109 54 3.069
116 108 6.687

can be got via KLA 2110 inspection system. And, the par-
tial results will be given in Table 1.

Step 3. Construct the membership function for defect
count, defect clustering index CI and fuzzy inference value

The membership functions of defect count, defect clus-
tering index CI and the fuzzy inference values are then con-
structed by using FuzzyTECH software. It is given in Figs.
9-11.

=101 x|
T 7 [N [ e | B
Term very_low lowe  medium_low medium medium_high  high very_high
very low 1.0 ; j b
low
medium_low 0.8
medium
medium_high 0.6
high
venghiah IO
0.2
X | 199.39 0.0 b
0.0 150.0 2000
I 0.6375
z Units
Fig. 9. The membership function of defect count.
=101 x|
Term term1 term2 term3 term4  term5 term6  term7?  term@ term10
erm1 - 1.0 A A o
erm2 / I
erm3 08 / \\ 1 "\\
erm4 v/
erm5 0.6 ‘V'J "\
erm6 i A
erm? —| 04 / s \
erm8 / f \ Y
oz Am R
1y L1
X | 3.681 00 B \ 4
0.0 1.6 3.0 44 6.0
I 0.09374
x Unitg

Fig. 10. The membership function of defect clustering index CI.
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NN EENAEEERE
Term term1 term2 term3 termd terms termé term? term8 term10
term1 a] 10 \ r
term?2 y
term3 0.8 “.\
term4 y
fterm5 0.6 5
termb \3
term7 || \,
term8 L
x| oz \
3
X I 61.97 0l ! al
v 0.02516 0.0 250 500 75.0 100.0
. Units

Fig. 11. The membership function of fuzzy inference values.

Step 4. Construct the rule base

The status of Defect count will be divided into seven cat-
egories and defect clustering degree will be divided into 10
categories depending on the engineering’s experience. That
is, there are 70 combinations with the consideration of
defect count and defect clustering degree. Then, we will

inference value of each wafer will be computed and the par-
tial result will be given in Table 2.

Table 2

The fuzzy inference value and the related information for the partial data

Wafer number  Yield (%) Defect ~ CI value  Fuzzy inference
use the package FuzzyTECH to construct the rule base count value
and it is given in Fig. 12. 1 97.980 9 0.434 61.29
Step.5. Perform the fuzzy inference . § 33:?33 1;}‘ gg;g 83'58

Firstly, a fuzzy control system will be formed by com- 4 93.182 30 0.939 51.51
bining the membership function in Step 3 and the rule base 5 93.939 31 1.041 59.75
in Step 4. Next, we will input the defect count and CI value 5 5 : 5 :
of each wafer into the fuzzy control system. Finally, a fuzzy 116 94.192 >4 3.069 31.6

et Rule Editor - RE1 ] P =T |
| w IF THEN [+
L [ defect cl DoS value

7 very low term?7 1.00 |terml

8 wvery_low term8B 1.00 |terml _I

9 wvery_low term9 1.00 |terml

10 |very_low term10 1.00 |terml

1 low term1 1.00 |term8

12 |low term2 1.00 |term?

13 |low term3 1.00 |termb

14 |low term4 1.00 |termb

15 |low termb 1.00 |term4

16 |low termb 1.00 |term3

17 |low term7 1.00 |term2

18 |low termB 1.00 |terml

19  |low term3 1.00 |terml

20 |low term10 1.00 |terml

21 mediura_low term1 1.00 |term9

22 |medium_low term2 1.00 |term8

:_!Z-] mediura_low term3 1 .l_]l] termi_f &

Fig. 12. The part of constructed rule base.
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X: 51.602 (51.602); Sigma: 16.307 (16.307); n: 1.

/\ \ A\/—;é’/'\'\.\é’\flh'h' [ : RAY I 'I\/\-\l ! P ’ \\ U\ I/\ I“i\ A /I\VA 551.602
W R

20 40

60

80 100

Fig. 13. The constructed control chart.

Step 6. Compute the control limit and plot the control
chart

Then, we will use the STATISTICA 6.0 to plot the
X—R,, control chart. Herein, the UCL is 78.424 and the
LCL is 24.780. After reviewing the control chart, we can
find out that six inference values of wafers exceed the
UCL and 12 inference value exceed the LCL (marked as
e in Fig. 13).

Step 7. Making judgment

After screening out the control chart, we must judge the
cause for those out-of-control points. According to the rule
of the proposed control chart, the point exceed the UCL
will denote the affection from the larger defect count. Com-
paratively, the point exceed the LCL will denote the affec-
tion from the defect clustering. Then, we listed the final
judgment for the out-of-control points in Table 3.

From the above result, we can find out that the wafer
number of 3, 9, 64, 78, 79 and 80 are detected to out-of-

control with the reason of the larger defect count via
the proposed procedure (they are listed in Fig. 14). Then,
the engineers should recheck the machine to eliminate the
non-normal cause. Besides, we can also detect the unstable
status with the reason of defect clustering via the proposed
procedure (they are listed in Fig. 15). And, from Fig. 14(6),
we can find out the latter part of those wafers are
significantly out-of-control. That is, the engineers should
find out the particular cause by tracing the machine and
take the necessary action to prevent it occurring again.

4.2. The comparison with the traditional c-chart

In this section, we will use the same data to plot the tra-
ditional c-chart (in Fig. 16). Firstly, the UCL can be com-
puted by software package as 62.8063. Next, we can find
out that there are 23 data to exceed UCL. After reviewing
the related information, we find out that there are many

Table 3
The cause for each out of control point
Wafer number Defect count CI value Yield (%) Inference value Judgment Cause
3 184 2.077 70.707 90 U Larger defect count
9 73 0.866 83.586 87.14
64 135 2.063 80.556 90
78 72 1.127 84.848 78.63
79 169 1.976 76.768 90.06
80 93 1.080 83.081 90.48
13 79 4.867 94.697 18.45 L Larger CI value
31 44 3.452 93.939 21
45 27 3.379 96.717 8.28
61 28 3.031 97.222 18.92
68 68 6.422 94.444 4.45
76 79 5.401 95.202 18.45
77 47 3.898 95.455 7.94
86 40 5.253 97.222 4.54
98 56 7.467 96.717 4.54
99 39 4.360 96.465 4.54
101 61 5.81 96.465 4.54
102 15 2.76 97.727 16.74

Note: U will denote the point that exceeds the upper control limit, L will denote the point that exceeds the lower control limit.
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NO. 3 (yield=0.707)

NO. 9 (yield=0.836)

NO.64 (vield=0.806)

NO.79 (yield=0.768)

NO.80 (yield=0.831)

NO.78 (yield=0.849)

Fig. 14. The wafer map with the number 3, 9, 64, 78, 79 and 80.

WO 68 (defects=68) MO 76 | defects=T9)

WO 98 (defects=56) N 101 { defectz=61)

Fig. 15. The wafer map with the number 68, 76, 98 and 101.

false alarms. Those false alarms are occurred due to the
defect clustering characteristic. And, the defect clustering
characteristic cannot be taken into consideration by using
the traditional c-chart.

Comparing with the traditional c-chart, six non-normal
wafers can be effectively detected by using the proposed
control chart. The rationality and effectiveness of the pro-
posed approach can be verified.

4.3. The comparison with the Albin and Fridman's defect
control chart

In this section, we will use the same data to plot the
revised defect control chart proposed by Albin and Frid-

man. Firstly, the average and deviation of the data set will
be computed via the following proposed formula:

¢

= — 5 }v:
¢ X

~ = ©)

Then, two estimated parameters of Neyman Type-A can be
computed as A = 1.49047, ¢ = 30.05461. Finally, the prob-
ability density function of Neyman Type-A can also be de-
rived. If we take three times of standard deviation to be the
control limit, we can compute it as about 180 and the con-
trol chart can be depicted in Fig. 17.

From Fig. 17, we can find out that the revised defect
control chart widens the control limit. Hence, only one
data point exceeds the control limit. After reviewing the
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Fig. 16. The traditional c-chart.

C: 43109 (43 .109); Siama: 5.5658 (6.5658)

180.00

{43109

0.0000

20 40

[=1n]

=1n} 100

Fig. 17. The revised defect control chart of Albin and Friedman.

yield information, we can find out that the yields of wafer
number 3, 9, 64, 78 and 80 are significant low. No any non-
normal signals can be detected by the revised defect control
chart. Although the false alarms can be reduced by this
control chart, the judgment of non-normal status will not
be effectively monitored. It also limits the application of
the revised defect control chart.

5. Concluding remarks and suggestions

The defects on a wafer are frequently occurred when the
area of wafer is gradually enlarged. Not only the IC yield

will be affected, but the false alarms will be also increased
by using the traditional control charts. It will lead the true
variation not to be efficiently controlled. Albin and Fried-
man had proposed a revised defect control chart based on
the distribution of Neyman Type-A to replace it. Although
the control limitation can be widened and the false alarms
can be decreased, the defect degree on a wafer still cannot
be judged well. Then, researchers had suggested to control-
ling two quality responses. However, the effectiveness of
control chart is still limited after being surveyed in the for-
mer section. In this study, we apply the fuzzy theory into
constructing a control chart to simultaneously control
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two responses: defect count and defect clustering degree.
Besides, we will use a real IC data set to verify the rational-
ity and application of our approach. Several concluding
remarks can be made in this article:

1. The expertise’s knowledge and engineer’s experience can
be included via the proposed fuzzy system. One control
chart can be efficiently monitor defect count and defect
clustering degree at the same time. It can reduce the
amount of actions.

2. The proposed approach does not need complicated for-
mulas, that is, the engineers can be easily construct the
control chart without any statistical training.

3. The judgment of the proposed control chart can be eas-
ily determined according to whether the process data fall
within the control limit or not. If the point falls outside
the UCL, it denotes the possible cause to be too many
defects. If the point falls outside the LCL, it will denote
the possible cause to be the defect clustering.

4. After reviewing the comparison of results, the proposed
control chart can demonstrate the better effectiveness
than other methods.

5. It will provide an opportunity to packaging the pro-
posed control chart, and it will aid the manufacturers
to achieve the on-line control well.
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