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Translational selection, including gene expression, protein abundance, and codon usage bias, has been suggested as the
single dominant determinant of protein evolutionary rate in yeast. Here, we show that protein structure is also an important
determinant. Buried residues, which are responsible for maintaining protein structure or are located on a stable interaction
surface between 2 subunits, are usually under stronger evolutionary constraints than solvent-exposed residues. Our partial
correlation analysis shows that, when whole proteins are included, the variance of evolutionary rate explained by the
proportion of solvent-exposed residues (Pexposed) can reach two-thirds of that explained by translational selection, indi-
cating that Pexposed is the most important determinant of protein evolutionary rate next only to translational selection. Our
result suggests that proteins with many residues under selective constraint (e.g., maintaining structure or intermolecular
interaction) tend to evolve slowly, supporting the ‘‘fitness (functional) density’’ hypothesis.

Introduction

The issue of what factors determine the rate of protein
evolution has drawn much attention in recent years (for re-
view, see McInerney 2006; Pal et al. 2006; Rocha 2006).
Three major hypotheses have been proposed to explain
large variation in protein evolutionary rate. One is that func-
tionally less important proteins evolve faster than more im-
portant ones (Ohta 1973; Kimura and Ohta 1974; Wilson
et al. 1977). This hypothesis was claimed to be supported
by a weak but significant correlation between gene dispens-
ability and protein evolutionary rate (Hirsh and Fraser 2001;
Yang et al. 2003; Wall et al. 2005; Zhang and He 2005), but
it is still controversial (Pal et al. 2003). The second hypoth-
esis is that the rate is primarily determined by the proportion
of residues involved in specific functions, that is, the ‘‘func-
tional density’’ hypothesis (Zuckerkandl 1976) or the ‘‘fit-
ness density’’ hypothesis (Drummond et al. 2005; Pal et al.
2006). In this vein, Fraser et al. (2002) claimed that proteins
with more interaction partners evolve more slowly because
they have a higher functional density. However, this claim
was questioned because the level of gene expression was
not controlled (Bloom and Adami 2003), but gene expres-
sion level has been found to be a major determinant of pro-
tein evolutionary rate (Pal et al. 2001; Rocha and Danchin
2004; Wall et al. 2005). Recently, a third hypothesis was
proposed by Drummond et al. (2006) that translational se-
lection is the single dominant determinant, that is, the num-
ber of translation events a gene experiences determines its
evolutionary rate. An explanation for why gene or protein
expression level governs the evolutionary rate was provided
by Drummond et al. (2005).

Here, instead of considering the protein as a whole as in
the studies reviewed above, we look into differences in evo-
lutionary constraints among residues to examine the fitness
(functional) density hypothesis. Dickerson (1971) found
that surface residues that interact with other proteins tend
to be highly conserved. Later, Kimura and Ohta (1973)
found that the rate of amino acid substitution at surface res-

idues of the a and b globins evolve 10 times faster than res-
idues in the heme pocket. Similarly, it has been found that
residues in the interfaces of obligate protein complexes
are more conserved than residues in transient interactions
(Mintseris and Weng 2005) and that the solvent-inaccessible
core of a protein is better conserved than solvent-accessible
residues in a protein (Overington et al. 1992; Goldman et al.
1998; Bustamante et al. 2000). Moreover, residues in the
buried core and residues on the solvent-exposed surfaces
were shown to have different substitution patterns due to dif-
ferent selection pressures (Tseng and Liang 2006). From
these findings, it is reasonable to speculate that a protein with
a small proportion of solvent-exposed residues (Pexposed)
should evolve slowly. However, a contradictory result was
found recently (Bloom, Drummond, et al. 2006). It is there-
fore interesting to investigate whether the structure of a pro-
tein, especially the solvent accessibility of the residues, is an
important determinant of protein evolutionary rate.

Materials and Methods
Genomic Data

We studied genes in the Saccharomyces cerevisiae ge-
nome and obtained nonsynonymous rates (KA) from Wall
et al. (2005), protein interaction modules from Han et al.
(2004), mRNA expression level data from Holstege et al.
(1998), protein abundance data from Ghaemmaghami
et al. (2003), and codon adaptation index (CAI) values from
Drummond et al. (2006); CAI indicates the strength of co-
don usage bias (Sharp and Li 1987). We obtained protein
subunit data and gene dispensability data following Lin
et al. (2007). Those open reading frames (ORF) without
gene names were excluded. Principal component regression
was performed using R with the package ‘‘pls’’ (Ihaka and
Gentleman 1996). Protein abundance and mRNA expres-
sion level were log transformed.

Solvent Accessibility Prediction Using the Homology
Model

Although using the three-dimensional (3D) structures
of yeast proteins to estimate the proportion of exposed
amino acids in a protein (Pexposed) is the best choice, com-
pletely determined 3D structures are available for only
about 100 yeast proteins. For yeast proteins without 3D
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structure, we have therefore used the (Protein Data Bank)
homologues for yeast ORFs in the Saccharomyces Genome
Database (SGD; http://www.yeastgenome.org/). The PDB
homologues are protein structures from various species (in-
cluding S. cerevisiae) homologous to yeast ORFs, and we
used them to estimate Pexposed, assuming that the 3D struc-
tures for the homologues are identical.

For each yeast ORF, the PDB homologue with the
lowest divergence to the yeast ORF sequence was chosen.
The solvent accessible surface areas (ACCs) for each res-
idue of the PDB homologue were obtained from DSSP (da-
tabase of secondary structure assignments for all protein
entries in the PDB; http://swift.cmbi.ru.nl/gv/dssp/)
(Kabsch and Sander 1983). Both the core residues of a pro-
tein, which are important in maintaining protein structure,
and the residues on the stable interaction surface between 2
subunits can be regarded as buried because in the native 3D
structure of a protein complex they are indeed not solvent
exposed. Therefore, for protein structures including more
than 1 chain, the interchain contacts were included to cal-
culate the ACC values for these residues. Relative solvent
accessibility (RelACC) was the ACC value for each residue
divided by the maximum value of ACC for the amino
acid (represented in percentage), which is estimated from a
Gly-X-Gly extended tripeptide conformation. We define re-
sidues with RelACC higher than 25% as exposed residues
and the others as buried. The exposed and buried residues
defined using this threshold have approximately equal num-
bers. The Pexposed value for each PDB homologue was thus
calculated. We have also tried 2 other RelACC values (0%
and 50%) as the threshold, but the conclusions were essen-
tially the same.

Note that there are a number of problems with the
PDB data. First, even for a yeast protein with the 3D struc-
ture completely determined, Pexposed is not known but
must be estimated. Second, for a yeast protein without
the 3D structure, we have to use the structure of a protein
homologous to the yeast protein. Moreover, PDB homo-
logues are not available for many yeast ORFs. Third, the
structural similarity between the yeast protein and its dis-
tant PDB homologue may hold only for the well-folded,
conserved domains, but not for the other regions. Fourth,
many PDB structures are only partially determined, and
most of them are restricted to the well-folded regions
in the proteins. Only the structures of well-folded proteins
may be completely determined. The alignment length be-
tween the PDB homologue and the yeast ORF sequence
can approximately represent the proportion of the structure
determined. The unaligned regions are either not structur-
ally determined or too diverged between the yeast protein
and its PDB homologue. They are often disordered re-
gions in 3D structures. Fifth, some PDB structures only
include one or a few subunits, not the entire protein com-
plex. In this case, residues on the stable interaction sur-
face, which should be buried in vivo, are mistakenly
treated as exposed residues in the PDB structure data.
Therefore, Pexposed estimated from PDB homologues is
only applicable for a limited number of proteins. To over-
come these problems, we also used support vector ma-
chine (SVM) to predict Pexposed for each ORF directly
from the amino acid sequence.

Solvent Accessibility Prediction Using SVM

We used the same training data set as Kim and Park
(2004), which includes 480 proteins all with known 3D
structures and with less than 25% sequence similarity be-
tween sequences. The ACC for each residue of these 480
proteins were obtained from DSSP. Residues on the stable
interaction surface between 2 subunits were also regarded
as buried residues. We used position-specific scoring ma-
trices (PSSM), secondary structure profiles, and hydropathy
indexes (Kyte and Doolittle 1982) as feature factors. A 15-
amino acid–sliding window was used to represent the local
environment of the protein sequences. We used 5iterations
of PSI-Blast (Altschul et al. 1997) against the nonredundant
protein sequence database to produce PSSM. The second-
ary structure profiles describing the occurring probabilities
for helix, sheet, and coil were generated using the PSIPRED
secondary structure prediction method (Jones 1999). SVM
prediction was performed using a library for SVM version
2.6 (Chang and Lin 2001). A 7-fold cross validation test
yields 78% accuracy. Note that Pexposed (PDB) is only cal-
culated for the determined, well-folded regions, whereas
Pexposed (SVM) can be estimated for the whole protein.

Results and Discussion
Proportion of Exposed Residues in a Protein

To investigate how well Pexposed (SVM) represents
the proportion of exposed residues, we compared it with
Pexposed (PDB) for ORFs with their PDB homologues for
the cases with alignment length .98% and sequence iden-
tity .98% (i.e., completely determined PDB structures
from S. cerevisiae, data set I in table 1). Because the bur-
ied/exposed state of residues predicted by SVM have 22%
inaccuracy, proteins with high (low) Pexposed would tend to
have their Pexposed (SVM) underpredicted (overpredicted);
in other words, the predicted values would have a smaller
variance. We indeed found 9/9 ORFs with Pexposed (PDB)
.0.6 have their Pexposed (SVM) slightly underpredicted,
whereas 30/31 ORFs with Pexposed (PDB) ,0.4 have
their Pexposed (SVM) slightly overpredicted. Compared with
Pexposed (PDB), Pexposed (SVM) has, as expected, a slightly
higher mean (closer to 0.5) and a smaller variance (table 1).
The correlation coefficient between Pexposed (PDB) and
Pexposed (SVM) is high but not perfect (R 5 0.72, n 5
96, P5 1.3 3 10�16). The reason might be that most ORFs
(84/96) have their Pexposed (PDB) between 0.3 and 0.6, and
not evenly distributed from 0 to 1; the noise introduced by
SVM may therefore likely disturb the correlation. Never-
theless, the correlation between Pexposed (SVM) and KA

is very similar to the correlation between Pexposed (PDB)
and KA (0.450 vs. 0.465, first row in table 1). This result
suggests that Pexposed (SVM) can be used to estimate the
correlation between Pexposed and KA.

All proteins in data set I have their 3D structures well
determined and this fact implies that they are all well-folded
proteins. Structurally less well-determined proteins usually
contain disordered regions, which contain mainly exposed
residues and have been found to evolve rapidly (Brown
et al. 1992). To study this problem, we subdivided our data
set by the alignment length between the PDB homologue

1006 Lin et al.

 at N
ational C

hiao T
ung U

niversity L
ibrary on A

pril 25, 2014
http://m

be.oxfordjournals.org/
D

ow
nloaded from

 

http://www.yeastgenome.org/
http://swift.cmbi.ru.nl/gv/dssp/
http://mbe.oxfordjournals.org/


and the ORF sequence (table 1). The alignment length
reflects the extent that a protein structure has been deter-
mined and, to some degree, reflects how a protein is folded.
Because disordered regions are not determined in 3D struc-
ture and usually are solvent exposed, Pexposed likely in-
creases with the disordered regions in a protein. The
positive correlation between Pexposed (SVM) and the pro-
portion of unaligned regions (R 5 0.52, n 5 1163, P 5
6.9 3 10�81) supports this view, even though, as noted
above, SVM prediction tends to underestimate Pexposed

for proteins with a high Pexposed. In contrast, there is no sig-
nificant change for Pexposed (PDB) when the alignment
length threshold decreases (table 1), probably because only
the well-folded cores are represented for these PDB homo-
logues, whereas disordered regions are not. We also found
a positive correlation between KA and the proportion of un-
aligned regions (R 5 0.38, n 5 1163, P 5 3.6 3 10�42),
consistent with the finding that disordered regions evolve
fast (Brown et al. 1992). Our result suggests that the disor-
dered regions in a protein may largely determine its Pexposed

and evolutionary rate. Therefore, Pexposed (PDB) is only ap-
plicable for structurally well-determined, well-folded pro-
teins, whereas Pexposed (SVM) is suitable for ORFs in
general, especially for proteins with disordered regions.

Pexposed and Rate of Protein Evolution

England and Shakhnovich (2003) suggested that pro-
teins with a higher contact density (fewer exposed residues)
are more designable (a protein structure encoded by many
sequences). Bloom, Drummond, et al. (2006) proposed that
proteins with higher designable structures evolve more rap-
idly. They stated, ‘‘although buried residues are generally
more conserved than exposed ones, increasing the fraction
of buried residues leads to an overall increase in the evo-
lutionary rate of all residues in the protein, primarily via
a dramatic increase in KA for the exposed residues.’’ There-
fore, the reduction in Pexposed ‘‘is more than compensated
for by the increased variability of exposed residues in pro-
teins with high contact density.’’ Interestingly, we found
that when the threshold of the alignment length is high, that
is, for proteins with fewer disordered residues, Pexposed is
negatively correlated with KA (estimated either by PDB ho-
mologues or SVM prediction; table 1), which is consistent

with the observation of Bloom, Drummond, et al. (2006).
They also used a stringent criterion to restrict their data set,
that is, the number of identities in the total length of the
alignment is .80%. However, we found that Pexposed

(SVM) is positively correlated with KA when the alignment
threshold is decreased, especially when proteins with many
disordered regions are included (table 1).

We next noted that the negative correlation between
Pexposed and KA found in this study (e.g., in data set I) is
not as strong as that in Bloom, Drummond, et al. (2006).
The major reason is that they did not consider inter-
chain (intersubunit) contacts, whereas we did. Bloom,
Drummond, et al. (2006) found that proteins with a smaller
contact density evolve much slower at their exposed sites.
We analyzed 100 proteins in their data set, for which the
complex annotations are available (Lin et al. 2007). We
found that all the 11 proteins with a contact density ,6
are heterocomplexes and 9 out of these 11 proteins have
at least 7 subunits. In contrast, only 26 out of the 89 proteins
with a contact density .6 were annotated to have 7 or more
subunits. We also noted that the number of complex sub-
units (k) is negatively correlated with KA in the data set of
Bloom, Drummond, et al. (2006) (R5�0.32, n5 62, P5
1.2 3 10�2), which is consistent with Teichmann’s (2002)
finding that stable complex proteins evolve more slowly.
Therefore, we suggest that for these well-folded proteins,
selection pressure on residues at the interchain interaction
sites is as important as designability (inferred from contact
density) for determining the evolutionary rate.

Note that the correlation between Pexposed and evolu-
tionary rate may reflect 2 contradictory effects, that is, fit-
ness (functional) density and designability. The switch from
negative to positive correlations between Pexposed (SVM)
and KA as Pexposed (SVM) increases indicates that the effect
of designability (inferred from contact density) on evolu-
tionary rate (Bloom, Drummond, et al. 2006) might be re-
stricted to the well-folded proteins (or cores). This also
explains the slightly negative correlation between Pexposed

(PDB) and KA when the alignment length is not long (table
1), that is, only the designability of the well-folded cores is
inferred by Pexposed (PDB). The significant positive corre-
lation between Pexposed (SVM) and KA for proteins contain-
ing large disordered regions (table 1) suggests that for these

Table 1
Comparison between Pexposed (PDB) Estimated from PDB Homologues and Pexposed (SVM) Estimated from SVM Predictions

The
alignment
length, l

Number of
Proteins
Used (n)

Correlation between
Pexposed (PDB) and
Pexposed (SVM)

Pexposed (PDB) Pexposed (SVM)

Mean 6
Standard
Deviation

Correlation
with KA

Mean 6
Standard
Deviation

Correlation
with KA

Data set I 96 0.721*** 0.450 6 0.109 �0.093 0.465 6 0.072 �0.106
l . 98% 151 0.665*** 0.446 6 0.108 �0.049 0.456 6 0.076 �0.066
98% � l . 90% 146 0.404** 0.436 6 0.094 0.006 0.431 6 0.073 �0.013
90% � l . 70% 225 0.229* 0.452 6 0.091 �0.089 0.462 6 0.090 0.177*
70% � l . 50% 205 0.292* 0.468 6 0.089 �0.022 0.510 6 0.110 0.201*
50% � l . 30% 218 — — — 0.561 6 0.104 0.266*
30% � l 218 — — — 0.611 6 0.142 0.411***

NOTE.—The length of alignment is between the ORF sequence and the PDB homologue. Data set I: alignment length .98%, and sequence identity .98%. Pexposed (PDB)

is only represented for proteins with the alignment length .50%, and omitted for others (—).

*P , 0.05; **P , 10�6; ***P , 10�9.
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proteins, fitness (functional) density can explain the vari-
ance of evolutionary rate much better than designability.

When all proteins are included, partial correlation
analysis shows that Pexposed (SVM) still significantly pos-
itively correlates with evolutionary rate even when the trans-
lational selection predictors (mRNA expression, protein
abundance, and codon usage bias measured by CAI) are
controlled (table 2). The variance of evolutionary rates ex-
plained by Pexposed (SVM) is more than half of that ex-
plained by mRNA expression or protein abundance, and
even slightly more than that explained by CAI. This result
suggests that in general, fitness (functional) density has
much higher impact than designability on protein evolu-
tionary rate. It is likely that for well-folded proteins the var-
iances of Pexposed and evolutionary rate are small, so that the
differences in selection pressure between exposed and bur-
ied residues are almost compensated by the effect of des-
ignability in these proteins, but this is not true for other
proteins (fig. 1).

Principal Component Regression Analysis

Note that although partial correlation analysis may be
unreliable when data are noisy and the correlation is weak

(Drummond et al. 2006), the correlation we found is not
weak (R2 . 10%, table 2). On the other hand, the results
of principal component regression (PCR) analysis can be
misleading due to 2 problems (see Box 1). We use our data
in table 3 as an example. Three translational selection–
related predictors are used to perform the analysis, so they
contribute to more than 90% of CP1 (the first component),
which explains 26.5% of the variance of KA, whereas
Pexposed (the major component of CP2) seems to explain
only ;5% of the variance. This inference is misleading
because the 3 translational selection–related predictors
are not mutually independent, and this decides the order
of the components. To demonstrate this problem, let us
consider only 1 translational selection–related predictor,
say CAI, and the 2 Pexposed values obtained from PDB ho-
mologues and SVM prediction. Now the 2 Pexposed varia-
bles contribute to ;90% of CP1, whereas CAI contributes
only 11% (table 4). CP1 explains almost 20% of the vari-
ance of KA. We cannot conclude that all this 20% variance is
contributed by Pexposed because CAI is not really controlled.
This example shows that PCR analysis tends to over-
estimate the contribution of correlated predictors to the
variation of a response variable but underestimate the
contributions of other predictors. In the presence of nonin-
dependent factors, if the purpose is to obtain 1 representa-
tive component and to see the correlation between this
component and the response variable, PCR analysis is very
useful. However, if the purpose is to see the correlation be-
tween one factor and the response variable whereas control-
ling other factors, PCR analysis can be misleading.

Contribution of Pexposed to Variation in Rate of Protein
Evolution

To conduct the analysis more appropriately, we used
suitable controls. We defined CP1 in the principal com-
ponent analysis (PCA) for the 3 predictors, mRNA expres-
sion, protein abundance, and CAI, as translational selection,
and we controlled it to calculate partial correlation between
Pexposed (SVM) and KA. (Because mRNA expression, pro-
tein abundance, and CAI together represent translational
selection 1 noise and because CP1 is the best variable to
represent these 3 predictors at the same time, controlling
translational selection would be better than controlling
the 3 predictors individually). As seen near the bottom
of table 2, the contribution of Pexposed (SVM) to the vari-
ance of KA is 11.3% when the translational selection is

FIG. 1.—A positive correlation between nonsynonymous substitution
rate (KA) and Pexposed predicted by SVM. Proteins with their alignment
length between the PDB homologue and the ORF sequence larger than
98% are indicated by crosses, whereas others are represented by circles.
Red indicates highly expressed genes, whereas blue indicates lowly ex-
pressed ones. The strength of translational selection is based on the first
component in the principal component analysis for mRNA expression, pro-
tein abundance, and CAI values.

Table 2
Partial Correlation Analyses between one of 5 Variables and KA

Variable
Number of

Proteins Used (n)
Correlation

with KA

Partial Correlation with KA

R2 P The Factor Controlled

Pexposed (SVM) 2153 0.376 10.9% ,10�15 mRNA expression
Pexposed (SVM) 1602 0.399 12.5% ,10�15 Protein abundance
Pexposed (SVM) 2267 0.373 13.2% ,10�15 CAI
mRNA expression 2153 �0.452 17.4% ,10�15 Pexposed (SVM)
Protein abundance 1602 �0.416 13.9% ,10�15 Pexposed (SVM)
CAI 2267 �0.353 11.8% ,10�15 Pexposed (SVM)
Pexposed (SVM) 1568 0.397 11.3% ,10�15 Translational selection
Translational selection 1568 �0.473 18.3% ,10�15 Pexposed (SVM)

NOTE.—Translational selection is represented as the first component in the principal component analysis for mRNA expression, protein abundance, and CAI values.
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controlled, which is about two-thirds of the contribution by
translational selection (18.3%) to the variance of KA when
Pexposed (SVM) is controlled. This analysis suggests that
Pexposed contributes ;10% to variation in KA and is the most
important known determinant next to translational selec-
tion. Note that this might be an underestimate because of
the considerable uncertainty involved in the estimation
of Pexposed.

Fraser (2005) showed that party hubs (proteins inter-
acting with most of their partners simultaneously; Han et al.
2004) evolve slower than date hubs (proteins interacting
with different partners at different times). Because most
party hubs are protein complexes, whereas date hubs are
not (Han et al. 2004), we compared Pexposed (SVM) values
between them. Not surprisingly, party hubs, on average,
have a smaller Pexposed (49.7%) compared with date hubs
(56.9%, t-test P 5 5.0 3 10�5). It is therefore reasonable
to speculate that Pexposed should also explain part of the dif-
ference in evolutionary rate between party and date hubs.
Similarly, subunits of a large heterocomplex should have
more protein interactions and should be less dispensable
(Lin et al. 2007). Pexposed may therefore underlie the corre-
lations between these 2 factors and evolutionary rate (Hirsh
and Fraser 2001; Fraser et al. 2002; Yang et al. 2003; Wall
et al. 2005; Zhang and He 2005).

It is worth noting that proteins with a high Pexposed may
evolve slowly or fast, whereas proteins with a low Pexposed

almost always have a low evolutionary rate (fig. 1). This
result suggests that protein 3D structure provides only a gen-
eral index, that is, buried resides cannot evolve freely. Some
exposed residues (e.g., residues at active sites or ligand-
binding sites) may be functionally important and are thus
conserved. Protein mutagenesis experiments have shown
that increasing a protein’s thermodynamic stability dramat-
ically increases its tolerance to mutations that suggests del-
eterious mutations usually act by hindering the formation of
a properly folded protein rather than altering a protein’s
function (Bloom et al. 2005; Bloom, Labthavikul, et al.
2006). The evolutionary constraint of highly expressed
proteins was suggested to reduce the burden of protein mis-
folding (Drummond et al. 2005). Similarly, it is likely that
buried residues are conserved because they are important to
make proteins fold or interact correctly among subunits or

proteins. Although translational selection largely governs
the rate of evolution for the whole protein (Drummond
et al. 2006), our study shows that fitness (functional) den-
sity negatively correlates with protein evolutionary rate,
that is, a protein with more residues under selective con-
straint tends to evolve more slowly. We expect that an even
better correlation will be found when the fitness (functional)
density can be appropriately defined rather than estimated
as buried residues.

Box 1

PCA transforms n factors (which may not be mutually
independent) to n independent components by rotating the
axes such that the first component has the largest variance
by any projection of the data, and the second component has
the second largest variance, and so on. Given a data set {x1,
x2, x3}, we can obtain the first component, CP1 5 a11x1 1
a12x2 1 a13x3, where a2

11, a2
12, and a2

13 indicate the contri-
butions of x1, x2, and x3 to CP1 and they are summed to 1.
We can then use CP1 to correlate with a response, y, and
calculate R2, the variance of y explained by CP1.

However, although a2
11 indicates the contributions of

x1 to CP1, using a2
113R2 to represent the variance of y ex-

plained by x1 is invalid. This problem can be demonstrated
by a simple example with a data set {x1, x2}, where x1 and x2

have the same variance and are correlated. We can then ob-
tain CP1 5 a11x1 1 a12x2 and CP2 5 a21x1 1 a22x2, where
a11 5 a12 and a21 5 �a22, so that x1 and x2 contribute
equally to both CP1ða2

115a2
12Þ and CP2ða2

215a2
22Þ: We

can thus correlate CP1 and CP2 with y and calculate the var-
iance of y explained by CP1 and CP2, respectively. When
y5 x1, it is obvious that x1 can completely explain the var-
iance of y, whereas only a proportion of the variance of y
can be explained by x2 (x1 and x2 are correlated). However,
the fact that the variances of y explained by x1 and x2 are
different cannot be revealed by PCR analysis (x1 and x2

contribute equally to both CP1 and CP2, i.e., a2
115a2

12
and a2

215a2
22.)

Table 3
Results of Principal Component Regression Analysis of
mRNA Expression, Protein Abundance, CAI, and Pexposed

(SVM) on KA for 1,568 Genes

Principal Components

CP1 CP2 CP3 CP4

Percent variance in predictors 58.3 23.0 10.0 8.7
Percent variance explained (R2) in KA 26.5*** 4.9*** 0.1 0.1

Percent contributions of a predictor

mRNA expression 32.6 0.4 6.3 60.7
Protein abundance 30.8 1.4 65.4 2.4
CAI 30.4 6.1 28.0 35.5
Pexposed (SVM) 6.2 92.1 0.3 1.4

NOTE.—Boldface indicates that the indicated predictor contributes at least 20%

to the indicated component.

***P , 10�9.

Table 4
Results of Principal Component Regression Analysis of 2
Pexposed Values (from SVMPrediction and PDBHomologues),
Gene Dispensability, Protein Length, and Translational
Selection–Related Predictor (CAI) on KA for 1,163 Genes

Principal Components

CP1 CP2 CP3 CP4 CP5

Percent variance in predictors 30.1 22.7 21.1 16.6 9.5
Percent variance explained

(R2) in KA

19.3*** 12.1*** 0.6 0.0 1.7*

Percent contributions of a predictor

Pexposed (SVM) 46.2 0.6 6.9 1.6 44.8
Pexposed (PDB) 41.9 10.4 3.0 2.0 42.7
Dispensability 0.7 30.6 33.1 34.7 0.8
Protein length 0.4 28.6 53.2 6.4 11.4
CAI 10.7 29.8 3.9 55.4 0.3

NOTE.—Boldface indicates that the indicated predictor contributes at least 20%

to the indicated component. The observation that Pexposed (SVM) and Pexposed (PDB)

contribute almost equally to the first component does not imply that they contribute

equally to KA. They contribute equally to CP1 because in this way CP1 can include

maximal information (see Box 1).

*P , 0.05; ***P , 10�9.
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The second problem is that, when the inputs include
many nonindependent factors, the first component can be
highly correlated to these factors, so that it can include
as much information as possible. After the first component
is decided, the second component is determined by includ-
ing as much of the remaining information as possible.
Given a data set {x1, x2, x3, x4} where the variables in
the subset {x1, x2, x3} are highly correlated with each other,
CP1 will be mainly composed of x1, x2 and x3. If the subset
{x1, x2, x3} has covariance with x4, this covariance will
therefore be mainly included in CP1 but not other compo-
nents. In this case, x4 contributes mainly to CP2 but also
weakly to CP1. For CP1, CP2 is actually controlled because
CP1 and CP2 are independent to each other. However, we
cannot say that for CP1, factor x4 is controlled because CP1

includes the covariance shared between the subset {x1, x2,
x3} and x4.
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