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Abstract
This paper investigates the analogue performance of process-induced-
strained PMOSFETs for system-on-a chip applications. Through a
comparison between co-processed strained and unstrained PMOSFETs
regarding important analogue metrics such as transconductance to drain
current ratio (gm/Id), output resistance, dc gain and the gain-bandwidth
product, the impact of process-induced uniaxial strain on the analogue
performance of MOS devices has been assessed and analysed. Our study
may provide insights for analogue design using advanced strained devices.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

As conventional CMOS is reaching its scaling limits, mobility
scaling has emerged as a key technology for improving device
performance [1]. To enable the mobility scaling, process-
induced-strained silicon has been widely used in state-of-the-
art CMOS technologies [2–7].

Although the carrier mobility enhancement can help
overcome the speed/power barrier for logic applications and
enhance the cut-off frequency [8], the impact of strain on
analogue performance is not well known [9]. This issue is
especially important to mixed-mode integrated circuits for
system-on-a-chip (SOC) [10, 11] and merits investigation.

Important metrics for analogue applications include
transconductance to drain current ratio (gm/Id) [12], output
resistance (Rout), dc gain (gm × Rout) and the gain-bandwidth
product. Through a comparison between co-processed
strained and unstrained PMOSFETs [4] with a sub-100 nm
gate length, this work examines the analogue performance in
uniaxial strained PMOSFETs.

2. Devices and intrinsic Id extraction

The devices used in this study were fabricated by state-of-
the-art process-induced uniaxial strained-Si technology [13].
The transistor gate length, Lgate, ranges from 1 µm to 50
nm. Since the source/drain series resistance (Rs/Rd) is
crucial to device performance, an accurate determination of
the source/drain series resistance has been carried out. The
Rs/Rd values are 252 � µm and 118 � µm for the control

and strained devices, respectively [13]. Once the source/drain
series resistance is determined, the intrinsic drain current in
the linear region (Id,lin) and saturation region (Id,sat) can be
extracted by equations (1) and (2), respectively:

Id,lin(int) = Id,lin(ext)

1 − Id,lin(ext)(Rs + Rd)/Vd
(1)

Id,sat(int) = Id,sat(ext)

1 − Id,sat(ext)Rs/Vgst
. (2)

Note that in equations (1) and (2), Vd and Vgst (=Vg − Vth)
denote drain bias and gate voltage overdrive, respectively.

3. Results and discussion

Figure 1 shows the intrinsic Id,lin and Id,sat enhancement of
the strained devices. It can be seen that the intrinsic Id,lin and
Id,sat are improved by about 100% and 50%, respectively. The
PMOS drain currents are improved because the hole mobility
is increased by the strain-induced valence band warping
[3–5, 14]. The enhancement in Id,sat is less than Id,lin because
of velocity saturation. It indicates that the enhancement in
saturation velocity (vsat) for strained devices is smaller than the
mobility (µeff) improvement. Since the critical electric field at
which the carrier velocity becomes saturated, Esat = 2vsat/µeff

[15], we can expect a smaller Esat in strained devices. In other
words, the saturation drain voltage (Vdsat) for the strained
device should be smaller than its control counterpart for a
given gate voltage overdrive. From the output resistance (Rout)
versus the Vd plot (figure 2), Vd,sat can be extracted by linear
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Figure 1. Intrinsic Id,lin and Id,sat enhancements for strained PMOS
devices.
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Figure 2. Output resistance versus Vd. The extracted Vdsat ratio
corresponds to the Esat ratio in the short channel device.
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Figure 3. gm/Id versus Lgate at Vgst = 0.8 V.

extrapolation because Rout is proportional to Vd − Vd,sat in the
channel-length modulation region [15, 16]. It can be seen
from figure 2 that the strained PFET indeed has a smaller
Vd,sat (∼0.11 V).
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Figure 4. gm/Id versus Lgate at Vgst = 0.2 V.
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Figure 5. The extracted carrier mobility versus Vgst for devices with
Lgate = 50 nm.
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Figure 6. gm/Id versus Id at Vd = 1 V for devices with Lgate =
50 nm.

The impact of Esat on gm/Id, the transconductance
efficiency of the device, is mainly in the high Vg regime.
Figure 3 shows gm/Id versus Lgate at Vgst = 0.8 V. The roll-
off of gm/Id as gate length decreases can be modelled by the
following equation derived from BSIM [15]:

gm

Id
= 1

Vgst

(
Vgst + 2EsatLeff

Vgst + EsatLeff

)

+

(
EsatLeff

EsatLeff + Vgst

)
(∂µeff/∂Vg)

µeff
, (3)
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Figure 7. Rout versus Vd for devices with Lgate = 50 nm.
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Figure 8. DC gain versus Lgate for Vgst = 0.2 V and 0.8 V.

where the effective channel length Leff = Lgate −2�L. �L is
the gate-extension overlap distance and is calculated from the
measurement of overlap capacitance. Note that the gm/Id ratio
shown in figure 3 is indeed bounded by 2/Vgst and 1/Vgst when
the effective channel length decreases from the long channel
limit (Leff → ∞) to the short channel limit (Leff → 0), as
predicted by the first term in equation (3). The lower gm/Id

for strained devices can be attributed to the smaller Esat.
Figure 4 shows gm/Id versus Lgate in the low Vg regime

(Vgst = 0.2 V). It can be seen that gm/Id for the strained device
rolls up as gate length decreases. Moreover, gm/Id for the
strained device is higher than its control counterpart, which
can be attributed to the gate bias sensitivity of the mobility
(i.e. the second term in equation (3)).

Figure 5 shows the extracted mobility [13] versus Vgst.
It can be seen that µeff increases with Vg around Vgst =
0.2 V. This is because in the low Vg regime, the mobility
is mainly determined by Coulombic scattering. The mobile
carrier screening makes µeff increase with Vg. The larger slope
of the mobility for the strained device, which is consistent
with the data in [17–19], may be attributed to the reduced
effective mass [21] and is responsible for the higher gm/Id

observed in figure 4. Figure 6 shows gm/Id versus drain
current for strained and unstrained devices with Lgate =
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Figure 10. The gain-bandwidth product versus Lgate for (a) Vgst =
0.8 V and (b) Vgst = 0.2 V.

50 nm. For analogue devices normally biased by constant
drain currents, figure 6 indicates that the strained device has
a superior transconductance efficiency [12] than its control
counterpart.

Figure 7 shows output resistance (Rout) versus Vd for
various Vg. It can be seen that Rout for strained devices is
significantly reduced. Rout in the high Vd regime (i.e. maximum

406



Investigation of analogue performance for process-induced-strained PMOSFETs

Rout) is mainly determined by drain-induced barrier lowering
(DIBL) and can be modelled by [15, 16]

Rout(DIBL) = 1

−gm × (∂Vth/∂Vd)
. (4)

The reduction in Rout for the strained device is mainly due to
the enhanced gm. Figure 8 compares the dc gain (gm × Rout) of
the strained device with the control device at Vd = 1 V. It can
be seen that the dc gain for the strained device (especially in
the low Vg regime) is slightly less than its control counterpart.
It indicates that, according to equation (4), the strained device
has a higher Vd sensitivity of the threshold voltage, as verified
by figure 9.

Figure 10 shows the comparison of the gain-bandwidth
product in the high Vg regime and low Vg regime, respectively.
The gain-bandwidth product is considered as the gain ×gm

product because the bandwidth, fT = gm/2πCL, is
proportional to gm for a given capacitive load at the transistor
output [20]. Due to the enhancement in carrier mobility and
gm [4], the gain-bandwidth product is significantly improved
for the strained device. It is worth noting that in figure 10(b),
there is a significant lowering of gain-bandwidth product for
Lgate < 0.1 µm. This can be attributed to the degraded carrier
mobility caused by pocket implants, which is one main reason
that strained silicon is needed for boosting the performance of
state-of-the-art CMOS technologies.

4. Conclusions

We have investigated the impact of process-induced uniaxial
strain on the analogue performance of MOS devices. In the
high Vg regime, gm/Id for strained devices is reduced due
to decreased Esat. In the low Vg regime, nevertheless, gm/Id

for the strained device is higher than its control counterpart
because of the higher Vg sensitivity of the mobility present
in the strained device. For analogue devices biased by
constant drain currents, the strained device shows superior
transconductance efficiency. Although the output resistance
for strained devices is substantially reduced due to the gm

enhancement, the impact of strain on dc gain is not significant.
Finally, substantially improved gain-bandwidth product has
been observed for strained devices. This study may provide
insights for analogue design using advanced strained devices.
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