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Abstract—In wireless ad hoc networks, constructing and maintaining a topology with lower node degrees is usually intended to

mitigate excessive traffic load on wireless nodes. However, keeping lower node degrees often prevents nodes from choosing better

routes that consume less energy. Therefore, the trade-off is between the node degree and the energy efficiency. In this paper, an

adjustable structure, named the r-neighborhood graph, is proposed to control the topology. This structure has the flexibility to be

adjusted between the two objectives through a parameter r, 0 � r � 1. More explicitly, for any set of n nodes, the maximum node

degree and power stretch factor can be bounded from above by some decreasing and increasing functions of r, respectively.

Specifically, the bounds can be constants in some ranges of r. Even more, the r-neighborhood graph is a general structure of both

RNG and GG, two well-known structures in topology control. Compared with YGk, another famous adjustable structure, our method

always results in a connected planar with symmetric edges. To construct this structure, we investigate a localized algorithm, named

PLA, which consumes less transmitting power during construction and executes efficiently in Oðn lognÞ time.

Index Terms—Wireless ad hoc networks, topology control, energy-efficient, localized algorithm.

Ç

1 INTRODUCTION

WIRELESS ad hoc networks enhance the conventional
deployment of communicating environments for

many applications, such as conferences, hospitals, battle-
fields, search and rescue teams, etc. In these environments,
the performance of network operations heavily depends
upon the underlying topology [4]. For instance, the delivery
rate would be significantly lower as the underlying topology
breaks. Therefore, appropriately controlling the topology is
a crucial stage in communication. The topology control
problem in wireless ad hoc networks has been widely
studied in recent years [3], [15], [18], [19], [20], [23], [29], [32].
Generally speaking, the core of this problem is to determine
a set of wireless links such that the composed topology is
able to achieve certain goals [23]. These goals would be
variant depending upon the circumstances and could be
either qualitative features or quantitative objectives. Since
wireless nodes usually struggle with limited bandwidth and
computation power, a genius way should be able to
simultaneously achieve several goals. In this paper, we
aim to control the topology with the following goals, which
are extremely desired in wireless environments:

1. Symmetry. The existence of asymmetric links may
complicate many communication primitives. For
instance, the MAC layer’s ACK is hard to implement

when some links are not bidirectional [21]. Besides,
asymmetric links in topology would also cause
inconsistent routing qualities at two ends.

2. Connectivity. Connectivity is unquestionably the
most essential prerequisite in any communicable
topology [23]. Two nodes u and v are strongly
connected if there is a directed path from u to v and
vice versa. A directed topology is strongly connected
if all pairs of nodes are strongly connected. If the
links are symmetric, we should aim at the connectiv-
ity of an undirected topology instead.

3. Energy efficiency. Energy is the most crucial resource
in wireless nodes. Due to the severe path loss in
radio carriers, transmitting with large ranges would
exponentially run out of nodes’ energy. Therefore,
relaying messages through multiple hops with
shorter ranges could usually consume less energy
[24]. How to choose the links between nodes for
relaying is a critical point in this goal.

4. Sparseness. Numerous distributed and localized
routing protocols are based on flooding [13]; how-
ever, this may burden networks with unavoidable
redundant messages. Thus, keeping a sparse topol-
ogy, consisting of linear number of links [15], would
be an ingenious way to shrink the expenditure from
network operations.

5. Maximum node degree. For some nodes with overly
large degrees, the network flows will concentrate on
them and rapidly draw out their energy. Besides, a
larger node degree means tighter dependency
among nodes, which is not expected when wireless
nodes move frequently. Therefore, the maximum
node degree over a topology should be bounded
from above by some constant.
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6. Planarity. A graph is planar if it has no crossed links
inside. It is helpful for many geometric problems:
The shortest path (least energy unicast route) can be
quickly found in linear time when the underlying
topology is planar [12]. Besides, in many position-
based routing algorithms, the successful delivery can
be guaranteed only if the underlying topology is
planar [2], [11].

Taking a further look, a topology having constant node
degree must be sparse. So, we can be concerned with the
fifth goal only. Unfortunately, keeping nodes with lower
node degree would possibly sacrifice some potential links
composing more energy efficient routes in topology. There-
fore, empirically, a trade-off is between the node degree and
energy efficiency [15]. For this reason, we aim to design an
adjustable way so that the trade-off can be adjusted flexibly.

In wireless ad hoc networks, due to the absence of a
central arbitrator and the limited sensing range, centralized
approaches [3], [30] are rarely attainable. Therefore, a
variety of distributed approaches were proposed [17],
[19], [29]. A distributed protocol passes messages hop-by-
hop. However, this may cause considerable overhead
through the entire network. So, a localized approach is
more preferred. According to Stojmenovic and Lin [27], a
node using the localized topology control method requires
information within constant hop(s). However, in some
localized approaches [15], [16], [18], [27], the operations
should recursively depend upon the computed status or
partial results from nearby nodes, which may hurt their
practicability. Therefore, in the following, we define a new
type of methodology for more practicability:

Definition 1. An algorithm L is purely localized if it is
localized and all operations depend upon only the information
inherent1 in nodes, available before any execution of L.

A purely localized topology control algorithm is more
useful to large-scale and high mobility environments, since
the operation of a node is completely isolated from any
execution of other nodes. Further, we say that a structure
is purely localizable if we can construct it by a purely
localized algorithm. Our goal is to investigate a purely
localizable structure so that all the desired goals listed
above can be achieved.

The rest of this paper is organized as follows: Section 2
specifies the network model and formally describes the
problem under study. In Section 3, we review and summarize
the related works. The main structure, components, and their
theoretical results are presented in Section 4. Some detailed
derivations are given in the Appendix. In Section 5, we
investigate an extended version of the main structure to
comprehend our theoretical properties. In Section 6, a purely
localized algorithm is investigated to construct our structure.
Finally, concluding remarks and some directions for further
research are given in the last section.

2 The MODEL AND PROBLEM

The wireless ad hoc network discussed in this paper
consists of a set V of n wireless nodes distributed on a

two-dimensional plane <2. Each node is equipped with an
omnidirectional antenna and can change its transmission
range by adjusting the transmitting power at any level. The
maximum transmission ranges are equal among all nodes.
In other words, we can normalize the maximum transmis-
sion ranges of all nodes to be 1 for simplicity. In addition,
each node u can obtain its position P ðuÞ through a lower-
power GPS or some other ways [14], and a unique idðuÞ is
also available to each node u.

This network can be modeled as a unit disk graph,
UDGðV Þ. In this graph, an edge uv exists if and only if the
euclidean distance between u and v, denoted as kuvk, is at
most 1.

The least power required to transmit immediately
between u and v is modeled as kuvk�, where � is typically
taken on a value between 2 and 4, depending on the
attenuation strength of the communication environment [5].
To measure the power efficiency of a topology, Li et al. [15]
defined a well-formed measure, named power stretch factor.
We reintroduce it below. Let �ðu; vÞ ¼ v0v1 . . . vh�1vh be a
unicast path connecting nodes u and v, where v0 ¼ u and
vh ¼ v. The total transmission power consumed by path
�ðu; vÞ is defined as

pð�ðu; vÞÞ ¼
Xh
i¼1

kvi�1vik�:

Let ��GðV Þðu; vÞ be the least-energy path connecting u and v in

graph GðV Þ. Given a subgraph G0ðV Þ in UDGðV Þ, the power

stretch factor of G0ðV Þ with respect to UDGðV Þ is defined as

�ðGðV ÞÞ ¼ max
u;v2V

p ��G0ðV Þðu; vÞ
� �

p ��UDGðV Þðu; vÞ
� � :

On the other hand, the maximum node degree of graph
GðV Þ is defined as

dmaxðGðV ÞÞ ¼ max
u2V

dGðV ÞðuÞ;

where dGðV ÞðuÞ is the degree of node u in graph GðV Þ.

3 RELATED WORK

Many localizable structures, used to control the network
topology, have been proposed in the literature [15], [16],
[18], [26], while only a few of them are purely localizable. In
the following, we list four well-known structures. Most of
them or their extensions are purely localizable:

. The constrained Relative Neighborhood Graph [28],
denoted by RNGðV Þ, has an edge uv if and only if
kuvk � 1 and the intersection of two open disks2

centered at u; v with radius kuvk contains no
node w 2 V ; see Fig. 1a.

. The constrained Gabriel Graph [6], denoted by GGðV Þ,
has an edge uv if and only if kuvk � 1 and the open
disk using kuvk as diameter contains no node w 2 V ;
see Fig. 1b.
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1. The node’s position and id are usually assumed to be inherited in
nodes. See Section 2 for more explanation.

2. An open disk centered at point x with radius d is the collection of
points with distance less than d from P ðxÞ.



. The constrained Yao Graph [33] with a parameter
k � 6, denoted by YG

��!
kðV Þ, is constructed as follows:

For each node u, define k equal cones by k equal-
separated rays originated at u. At each cone, a
directed edge uv exists if kuvk � 1 and the cone
contains no vertex w 2 V such that kuwk < kuvk.
Ties are broken arbitrarily. YGkðV Þ is denoted as the

underlying undirected graph of YG
��!

kðV Þ; see Fig. 1c.
. A Delaunay Triangulation, denoted by DelðV Þ, is a

triangulation of V in which the interior of the
circumcircle of each �uvw contains no node w 2 V .
The unit Delaunay Triangulation, denoted by UDelðV Þ,
has all edges of DelðV Þ except those longer than 1 [8],
[18]; see Fig. 1d.

Let us discuss the properties of these structures and their
extensions. We say an objective fð:Þ of a structure SðV Þ is
bounded if there is a constant C such that fðSðV ÞÞ � C, for
any set V of n nodes. Li et al. [15] showed that dmaxðRNGðV ÞÞ
is unbounded if there is a node u 2 V having an unbounded
number of neighbors adjacent to u at exactly the same
distance in the underlying UDGðV Þ. To overcome this
problem, Wattenhofer and Zollinger [32] proposed an
algorithm to find a structure, denoted by XTCðV Þ. They
showed that XTCðV Þ is a subgraph of RNGðV Þ and the
dmaxðXTCðV ÞÞ is at most 6. Especially, if there is no node
having two or more neighbors at exactly the same distance in
V , XTCðV Þ is identical to RNGðV Þ [24]. Their results infer
the following theorem:

Theorem 1. Given a set V of nodes on <2, if there is no node
having two or more neighbors at exactly the same distance,
then dmaxðRNGðV ÞÞ � 6.

We denote the condition in Theorem 1 as Assump-
tion AS. That is,

Assumption AS. There is no node in V having two or more
neighbors at exactly the same distance.

This theorem reveals that even RNGðV Þ has no constant
bound on its node degree. It is still useful since the
distances of nodes in the real world are rarely exactly the
same. The constrained Gabriel Graph GGðV Þ has the least
power stretch factor 1 in comparison with the unbounded
power stretch factor n� 1 of RNGðV Þ [15]. However,
dmaxðGGðV ÞÞ could be as large as n� 1. An extended
structure, Enclosure graph [16], [14], [24], denoted by EGðV Þ,
is generalized from GGðV Þ. It can always result in a
subgraph of GGðV Þ [16]. Even so, its maximum node degree
is still unbounded [20], [24].

To overcome the trade-off between the maximum node

degree and the power stretch factor, an adjustable structure,

having the flexibility to be adjusted between the two

objectives, becomes more attractive. YG
��!

kðV Þ is an adjustable

structure. It can be adjusted through a parameter k such that,

for any given k, the maximum out-degree is at most k, and

the power stretch factor is at most 1=ð1� ð2 sin�=kÞ�Þ [15].

We say an objective fð:Þ of an adjustable structure SkðV Þ
with parameter k is partially bounded if there is at least one k0

such that fðSk0
ðV ÞÞ is bounded. According this definition, the

maximum out-degree and power stretch factor of YG
��!

kðV Þ
are partially bounded since, for some ranges of k, k and

1=ð1� ð2 sin�=kÞ�Þ are constants. However, the asymmetric

edges of YG
��!

kðV Þmay lead to large in-degrees even when k is

very small [15]. So, dmaxðYGkðV ÞÞ can be neither bounded

nor partially bounded. To improve this, an extension of

YG
��!

kðV Þ, named Yao and Sink, was proposed [15], [17], [29]. It

can limit the maximum node degree in ðkþ 1Þ2 � 1 and

result in symmetric edges. Unfortunately, in this structure,

the neighbors of some node should be recursively deter-

mined by one another so that it cannot be purely localizable.

The unit Delaunay triangulation UDelðV Þ has a bounded

power stretch factor. However, neither DelðV Þ nor UDelðV Þ
can be computed locally. So, Li et al. [18] suggested a

localized version of the Delaunay graph, denoted by

LDelðhÞðV Þ, where h means that each node uses at most

k-hop information. The power stretch factor of LDelðkÞðV Þ is

bounded for all k � 1. Even so, its maximum node degree is

not bounded for any h.
The relations among these structures were studied in

several papers [7], [10], [16], [22], [24], [33]. We summarize
them in Fig. 2, where EMST ðV Þ is the euclidean minimum
spanning tree of UDGðV Þ. With these relations, their
connectivity and planarity can be easily inferred.

Regarding their connectivity, we know that EMST ðV Þ is

connected if UDGðV Þ is itself a connected component of V .

Therefore, whenUDGðV Þ is connected, all graphs containing

EMST ðV Þ are connected. That is, RNGðV Þ, GGðV Þ, EGðV Þ,
UDelðV Þ, LDelðkÞðV Þ, and YGkðV Þ are all connected. The

connectivity of XTCðXÞ was proven in a different way [24].

Regarding their planarity, LDelðkÞðV Þ is planar for any

k � 2 [18]. Therefore, all subgraphs of LDelð2ÞðV Þ are planar.

That is, UDelðV Þ, GGðV Þ, EGðV Þ, RNGðV Þ, XTCðV Þ, and

EMST ðV Þ are all planar. On the contrary, YG
��!

kðV Þ and

LDeð1ÞlðV Þ cannot avoid producing a crossed link, so they

are not planar [15], [18]. Table 1 summarizes the above

discussion.
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Fig. 1. (a) RNGðV Þ. (b) GGðV Þ. (c) YGkðV Þ, k ¼ 8. (d) UDelðV Þ.



From Table 1, we can see that no presented structure can
bound or even partially bound the two objectives. Besides,
to the best of our knowledge, no other structure can be
purely localizable and achieve this goal. Therefore, we will
propose the first purely localizable structure, named
r-Neighborhood Graph, to fill this gap. This structure is
adjustable and can always result in a connected planar with
symmetric edges. In addition, we can show that our
structure is a generation of both GGðV Þ and RNGðV Þ.

Apart from the purely localizable structures, several
composite methods, based on combining two or more
existent structures, were investigated in the last few years
[17], [19], [25], [31]. Conceptually, the main idea is to use the
virtue of one structure to patch up the fault in the other
structures. For examples, the ordered Yao structure, denoted
as OrdY aoðV Þ [1], is a variation of YG�kðV Þ. It has the
partially bounded maximum node degree and length
stretch factor. However, the planarity cannot be guaranteed.
Therefore, Li and Wang [19], [31] applied OrdY aoðV Þ onto
LDelð2ÞðV Þ to avoid the crossed edges produced by
OrdY aoðV Þ; Song et al. [25] improved it by applying the
OrdY aoðV Þ on GGðV Þ using only one-hop information.
However, the construction of OrdY aoðY Þ requires exchan-
ging the computed status as well as partial results between
nodes. Consequently, none of them is purely localized or
purely localizable.

4 THE r-NEIGHBORHOOD GRAPH

In this section, we introduce a new adjustable structure.

First, we define a region on <2. It will be used to compose

our structure. Let x be any point on <2 and the open disk and

circle centered at P ðxÞ with radius d are denoted as Dðx; dÞ
and Cðx; dÞ, respectively. The region is defined as follows:

Definition 2. Given a node pair ðu; vÞ on <2, the

r-neighborhood region of ðu; vÞ, denoted as NRrðu; vÞ, is

defined as

NRrðu; vÞ ¼ Dðu; kuvkÞ \Dðv; kuvkÞ \Dðmuv; luvÞ;

where muv is the middle point on uv,

luv ¼ ðkuvk=2Þð1þ 2r2Þ1=2;

and 0 � r � 1.

When not confused, we use m and l instead of muv and

luv, respectively. In Fig. 3, the shaded region intersected

by the three open disks sketches an example of the

r-neighborhood region. This region is obviously equivalent

to the following point set:

NRrðu; vÞ¼ fP ðxÞ 2 R2jkuxk< kuvk; kvxk< kuvk; kmxk< lg:
ð1Þ

For any node w located on NRrðu; vÞ, this region limits the

power consumed by path uwv. This property is shown in

Lemma 2 and derived in the Appendix.
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Fig. 2. The relations of the purely localizable structures and their

extensions.

TABLE 1
The Properties of the Four Main Purely Localizable Structures

Fig. 3. The r-neighborhood region of nodes u and v.



Lemma 2. Given two nodes u and v on <2, for any node w such
that P ðwÞ2NRrðu; vÞ, pðuwvÞ<kuvk�ð1þ r�Þ, for all � � 2.

This lemma explains why we call such a plane a
neighborhood region: For any node w located in the region
NRrðu; vÞ, it should be an alternative neighbor for u with
respect to v in the sense that the power required for relaying
from u to v through w is no greater than 1þ r� times the
immediate transmission. Based on this region, the structure
is defined below:

Definition 3. Given a set V of nodes on <2, the r-neighborhood
graph of V , denoted as NGrðV Þ, has an edge uv if and only if
kuvk � 1 and NRrðu; vÞ contains no node w 2 V , where
0 � r � 1.

By Definition 3, if edge uv is not in UDGðV Þ or a node w
is inside NRrðu; vÞ, there is no direct link connecting u and v
in NGrðV Þ, which means that all transmissions between u
and v should be relayed through some other node(s) in
NGrðV Þ. Now, we explore the desired properties in our
structure. Before this, we shall discussion the following
relations:

Lemma 3. For any set V of nodes on <2,

RNGðV Þ � NGrðV Þ � GGðV Þ;

for all 0 � r � 1.

Proof. Consider the open disk Dðm; kuvk=2Þ defining
GGðV Þ. Suppose uv 2 NGrðV Þ, the region NRrðu; vÞ,
has no node inside. Since Dðm; kuvk=2Þ is obviously a
subregion of NRrðu; vÞ, for any 0 � r � 1, there is also no
node in Dðm; kuvk=2Þ. Therefore, according to the
definition of GGðV Þ, we get uv 2 GGðV Þ. On the other
hand, consider the two open disks Dðu; kuvkÞ and
Dðv; kuvkÞ defining RNGðV Þ. Suppose uv 2 RNGðV Þ,
no node is inside the intersection of Dðu; kuvkÞ and
Dðv; kuvkÞ, which obviously covers the region NRrðu; vÞ,
for any 0 � r � 1. Therefore, no node can be inside
NRrðu; vÞ and we get uv 2 NGrðV Þ. tu

Specifically, as r ¼ 0, NR0ðu; vÞ � Dðm; kuvk=2Þ, which
is the disk defining GGðV Þ. On the contrary, as r ¼ 1,
NR1ðu; vÞ � Dðm; kuvkÞ, which is the disk defining
RNGðV Þ. Therefore, GGðV Þ � NG0ðV Þ and RNGðV Þ �
NG1ðV Þ: So, we can conclude the following theorem:

Theorem 2. The r-neighborhood graph is a generalized
structure of both the restricted Gabriel graph and the restricted
relative neighborhood graph.

Since a subgraph of a planar graph is always planar, and
a supergraph of a connected graph is always connected,
with the planarity of GGðV Þ and connectivity of RNGðV Þ,
we can infer the following two theorems:

Theorem 3. For any set V of nodes on <2, NRrðV Þ is planar, for
all 0 � r � 1.

Theorem 4. For any set V of nodes on <2, if the underlying
UDGðV Þ is connected, NRrðV Þ is connected, for all
0 � r � 1.

Now, we consider the energy efficiency and node degree
of NRrðV Þ. We will show that the upper bound of
�ðNGrðV ÞÞ is increased by r and, contrarily, the upper
bound of dmaxðNGrðV ÞÞ is decreased by r. In other words,
the r-neighborhood graph is adjustable to the two objectives
through the parameter r. With these results, we can further
show that the power stretch factor and maximum node
degree are partially bounded in our structure. Before these,
a property proposed by Li et al. [15] shall be mentioned. It
can be used to simplify our proof.

Lemma 4 [15]. Given a subgraph G0ðV Þ � UDGðV Þ and a
constant C, �ðG0ðV ÞÞ � C if and only if, for any edge uv
in GðV Þ, there is a path �ðu; vÞ in G0ðV Þ such that
pG0ðV Þðu; vÞ � Ckuvk�.

This lemma indicates that to derive an upper bound
for �ðNGrðV ÞÞ, it is sufficient to consider only those node
pairs having direct links in UDGðV Þ. So, we aim to derive
a strictly decreasing function F ðrÞ, such that, for any uv
in UDGðV Þ, a path �ðu; vÞ is in NRrðV Þ such that
pð�ðu; vÞÞ � F ðrÞkuvk�. To achieve this, we investigate an
algorithm called EXPANSION with an input of any two
nodes ðu; vÞ that outputs subgraph S of NRrðV Þ related to
ðu; vÞ. Let P ðSÞ be the total transmission power of edges
in S, i.e., P ðSÞ ¼

P
st2S pðs; tÞ. We can show that there is

some path in S connecting ðu; vÞ and P ðSÞ � F ðrÞkuvk�.

ALGORITHM EXPANSION

Input: A node pair ðu; vÞ in V .

Output: A subgraph S and a positive value P .

Step 1: S ¼ fg, S0 ¼ fðu; vÞg, Q ¼ fu; vg, P ¼ kuvk�;

Step 2: When some node pair ðs; tÞ is in S such that a node

w 2 NRrðs; tÞ
S0 ¼ S0 � ðs; tÞ;
If w =2 Q then

S0 ¼ S0 [ ðs; wÞ [ ðw; tÞ;
Q ¼ Q [ fwg;
P ¼ P þ ðkstkrÞ�;

Otherwise,

S0 ¼ S0 [ ðs; wÞ;
Step 3: S ¼ fxy 2 NGrðV Þjðx; yÞ 2 S0g;
Step 4: Stop and output E and P .

In this algorithm, S0 is a set of node pairs in which an
edge st in NRrðV Þ can be a part of S only if its two ends
ðs; tÞ are in S0 as described at Step 3. So, to determine S, we
have to discuss the S0 first. Initially, S0 contains only ðu; vÞ.
Then, it will be recursively expanded as follows: For each
ðs; tÞ in S0, if a node w is in NRrðs; tÞ and not considered
before, replace ðs; tÞ with ðs; wÞ and ðw; tÞ; if a node w is in
NRrðs; tÞ but considered before, replace ðs; tÞ with ðs; wÞ;
otherwise, keep ðs; tÞ unchanged. We use the set Q to record
the considered nodes.

When some ðs; tÞ is in S0 such that a node w 2 NRrðs; tÞ,
no matter whether w is considered or not, by (1), the
replaced node pair(s) must be shorter than kstk, i.e., kswk <
kstk and kwtk < kstk. Thus, after finite iterations, each
node pair in S0 can be replaced by another node pair with
the shortest distance. So, the algorithm is terminable. Now,
we show that ðu; vÞ is connected by some path in the
subgraph S when termination occurs.
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Lemma 5. Given any set V of node on <2, for any two nodes u
and v in V , if edge uv is in UDGðV Þ and UDGðV Þ is
connected, there is some path in S connecting ðu; vÞ.

Proof. Since Q includes u and v, we can prove this lemma

by showing that all nodes in Q are connected in S. For

each expansion of S0, we define a dummy graph S00 in

which an edge st exists if and only if ðs; tÞ is in S0 (note

that any edge in S00 is not necessarily in either UDGðV Þ
or NRrðV Þ). First, we show that, at any iteration, all

considered nodes in Q are connected by S00. Initially, Q is

connected by S00, since S0 ¼ fðu; vÞg and Q ¼ fu; vg. We

assume for induction that all nodes in Q are connected

by S00 at the kth iteration. Then, we show that it is true for

the next iteration. At the kþ 1th iteration, if there is no

pair in S0 that satisfies the entrance condition of Step 2,

the claim is correct, since Q and S00 are unchanged;

otherwise, a node pair ðs; tÞ 2 S0 is expended. In this

case, if the chosen w =2 Q, w is connected with all nodes in

Q via dummy edges sw and wt; otherwise, w 2 Q, which

implies that all nodes in Q are still connected by S00 as in

the previous iteration. As described above, the distance

of any expended node pair is no longer than the previous

one. So, if uv is in UDGðV Þ, all edges in S00 are also in

UDGðV Þ. Then, as the algorithm proceeds to Step 3, no

nodes can be in the r-neighborhood region of any node

pair in S0. With these two facts, all dummy edges in S00

are also in NRrðV Þ at termination. So, S is equivalent to

the last S00. Consequently, if UDGðV Þ is connected, by

Theorem 4, all nodes in the last Q are connected to S. tu
Then, we derive a strictly decreasing function F ðrÞ using

the value P in this algorithm.

Lemma 6. Given any set V of n nodes on <2, for any two nodes u
and v in V ,

P ðSÞ � F ðrÞkuvk� and F ðrÞ ¼ 1þ ðn� 2Þr�;

for all 0 � r � 1 and � � 2.

Proof. LetP ðS0Þ ¼
P
ðs;tÞ2S0 pðs; tÞ. We show thatP ðS0Þ � P at

each iteration of Step 2. Initially, S0 ¼ fðu; vÞg. We can get

P ðS0Þ ¼ kuvk� ¼ P . Then, at the first iteration, if no nodew

is inNRrðu; vÞ, the claim remains true since neitherP norS

is changed; otherwise, a nodew is inNRrðu; vÞ. Since there

is no node except u and v in Q so far, ðu; vÞ is replaced by

ðv;wÞ and ðw; vÞ. By Lemma 2,

P ðvwÞ þ P ðwuÞ � P ðuvÞð1þ r�Þ ¼ P þ ðkuvkrÞ�:

Consequently, the new P remains an upper bound of
P ðS0Þ. We assume for induction that P ðS0Þ � P at the
kth iteration. Then, we prove that the claim is true at the
next iteration. If the entrance condition of Step 2 is not
satisfied or the chosenw =2 Q, it can be proved by the same
reasons as in the first iteration. Otherwise, ðs; tÞ is replaced
by ðs; wÞ only. By (1), P ðstÞ � P ðswÞ, which implies that
the unchanged P is still an upper bound of P ðS0Þ. Besides,
(1) further implies that the distance between any two
nodes in S0 is no greater than kuvk. So, another upper
bound P 0 can be found by replacing P ¼ P þ ðkstkrÞ� by
P 0 ¼ P 0 þ ðkuvkrÞ�. Moreover, we can observe that the

situation wherew is chosen from someNGrðs; tÞ that is not
in Q never happens more than n� 2 times, since, in this
case, the size of Q must be increased by 1. Consequently,
P ðS0Þ � P � P 0 � P ðuvÞ þ P ðuvÞr�ðn� 2Þ. Finally, we get
F ðrÞ ¼ ð1þ r�Þðn� 2Þ. tu
With Lemmas 4, 5, and 6, we can conclude the following

theorem:

Theorem 5. For any set V of n nodes on <, for all 0 � r � 1 and
� � 2,

�ðNGrðV ÞÞ � 1þ r�ðn� 2Þ ¼ F ðrÞ:

Although this bound is related to the node size n so that
�ðNRrðV ÞÞ cannot be bounded, it can still be constant when
r is 0 or sufficiently small, i.e., �ðNRrðV ÞÞ is bounded in
some range of r. So, we can make the following conclusion:

Corollary 1. The power stretch factor of the r-neighborhood
graph is partially bounded.

Consider the maximum node degree of the r-neighborhood
graph. Since NRrðV Þ consists of all edges in RNGðV Þ, the
maximum node degree of NRrðV Þ is no less than that of
RNGðV Þ. In Section 3, we know that dmaxðRNGðV ÞÞ is not
always bounded in any case of V . Thus, dmaxðNGrðV ÞÞ is also
unbounded. Fortunately, Theorem 1 indicates that
dmaxðRNGðV ÞÞ is bounded in most cases of V , where AS is
assumed. Therefore, in the following theorem, we analyze the
maximum node degree of the r-neighborhood graph under
assumption AS.

Theorem 6. For any set V of nodes on <2 with assumption AS,
for all 0 � r � 1,

dmaxðNGrðV ÞÞ � �= sin�1ðr=2Þ
�� ��:

Proof. To prove this statement, it is sufficient to show that,
in NGrðV Þ, there are no adjacent edges enclosing an
angle less than 2 sin�1ðr=2Þ. Assume for contradiction
that two edges uv and uw in NGrðV Þ enclose an angle
� < 2 sin�1ðr=2Þ at node u, where w, v 2 V . Without
loss of generality, we assume that kuwk < kuvk. With
assumption AS, all nodes are placed on different
positions, i.e., P ðxÞ 6¼ P ðyÞ, for any two nodes x, y 2 V .

Consider the length of vw: If ffuwv is obtuse, it is clear
that kvwk < kuvk (note that kvwk cannot be equal to kuvk,
since P ðuÞ 6¼ P ðwÞ); see Fig. 4b. Otherwise, if ffuwv is not
obtuse, kvwk is less kvw0k, where kuw0k ¼ kuvk; see
Fig. 4a. By the law of cosines, we have

kvw0k2 ¼ kuw0k2 þ kuvk2 � 2kuw0kkuvk cos �

¼ 2kuvk2 � 2kuvk2 cos �

< 2kuvk2 � 2kuvk2 cos 2 sin�1 r=2ð Þ
� �

:

ð2Þ

If �0 ¼ 2 sin�1ðr=2Þ, we get sinð�0=2Þ ¼ r=2. Then, one of
the corresponding right-angled triangles is as shown in
Fig. 4c. In this case, cos �0 ¼ ð2� r2Þ=2. Thus, we can get
that 2 sin�1ðr=2Þ ¼ �0 ¼ cos�ðð2� r2Þ=2Þ. Consequently,

Equation ð2Þ ¼ 2kuvk2 � 2kuvk2 cos cos� 2� r2
� �

=2
� �� �

¼ 2kuvk2 � 2kuvk2 2� r2
� �

=2
� �

¼ kuvk2r2:
ð3Þ
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Consequently, we have that, for any case of ffuwv,

kvwk < max kuvkr; kuvkf g ¼ kuvk: ð4Þ

Consider the length of um: If ffuwm is obtuse,

kwmk < kuvk=2; see Fig. 4b. Otherwise, kmwk is less

kmw0k; see Fig. 4b. By the law of cosine, we have

kmw0k2 ¼ kuw0k2 þ kum0k2 � 2kuw0kkum0k cos �

< kuvk2 þ kuvk2=4� kuvk2 cos �

< 5kuvk2=4� kuvk2 ð2� r2Þ=2
� �

¼ kuvk2 ð1þ 2r2Þ=4
� �

:

ð5Þ

Similarly, we have, for any case of ffuwm,

kmwk < max kuvk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2r2

p
=2; kuvk=2

n o
¼ l: ð6Þ

By (4), (6), and the assumption of kuwk < kuvk, w is

included in the set of points specified in (1). Therefore,

P ðwÞ 2 NRrðu; vÞ. However, it contradicts the assumption

that uv is in NRrðV Þ. Thus, we conclude this theorem. tu
However, for those instances of V withoutAS, Theorem 6

cannot hold anymore. See the instance in Fig. 5, where all

nodes except vi are placed on the outlier of NRrðvi; v1Þ. This

will result n� 1 neighbors adjacent to vi in NRrðV Þ.
So, in the next section, we propose an extended version

of the r-neighborhood graph. As the readers will see, the

extended structure has the partially bounded maximum

node degree for all cases of V and inherits almost all of the

desired features in NRrðV Þ.

5 THE EXTENDED r-NEIGHBORHOOD GRAPH

In this section, an extended structure of the r-neighborhood

graph is given. The main goal is to avoid the unbounded

maximum node degree in NRrðV Þ. In this extension,

Assumption AS is not required anymore. Instead, a unique

identifier idðuÞ is available to each node u in V . The

structure is defined as follows:

Definition 4. Given a set V of nodes <2, the extended

r-neighborhood graph of V , denoted as NG�rðV Þ, has an

edge uv if and only if kuvk � 1 and there exists no node

w 2 V satisfying one of the following three conditions:

. D1 : P ðwÞ 2 NRrðu; vÞ;

. D2 : P ðwÞ 2 Dðmuv; luvÞ \ Cðv; kuvkÞ and
idðuÞ > idðwÞ;

. D3 : P ðwÞ 2 Dðmuv; luvÞ \ Cðu; kuvkÞ and
idðvÞ > idðwÞ.

Without D2 and D3, NG�rðV Þ is clearly equivalent to the

original r-neighborhood graph. In conditions D2 and D3, the

two subregions of Dðmuv; luvÞ intersected by Cðv; kuvkÞ and

Cðu; kuvkÞ are, as depicted in Fig. 6, the solid left arc and the

right arc along the outlier of NRrðu; vÞ, respectively. When a

node w is located in these two arcs, the existence of edge uv

should be further determined by their identifiers.
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Fig. 4. (a) ffuwv and ffuwm are not obtuse. (b) ffuwv and ffuwm are obtuse. (c) A right-angled triangle with angle � ¼ 2 sin�ðr=2Þ.

Fig. 5. dmaxðNGrðV ÞÞ is not bounded if Assumption AS does not hold.

Fig. 6. The r-neighbor region of nodes u and v and the two intersections

defined in D2 and D3.



Hereafter, we say that a node w 2 V blocks an edge uv in

UDGðV Þ if and only if w satisfies one of the three conditions

in Definition 4.
In NG�rðV Þ, an edge uv of UDGðV Þ will not only be

blocked by some node w in NRrðu; vÞ, but may also be

blocked when either D2 or D3 happens. Therefore, NG�rðV Þ
constitutes a subgraph of NRrðV Þ, which means that the

maximum node degree of NG�rðV Þ is no worse than its

original version. In the following theorem, we show that the

upper bound of dmaxðNGrðV ÞÞ in Theorem 6 remains correct

in dmaxðNG�rðV ÞÞ and the correctness is, for any case of V ,

not subject to Assumption AS.

Theorem 7. For any set V of nodes on <2, for all 0 � r � 1,

dmaxðNG�rðV ÞÞ �
�

sin�1ðr=2Þ

	 

:

Proof. Using the same argument as Theorem 6, we assume

for contradiction that two edges uv and uw in NG�rðV Þ
enclose an angle �0 < 2 sin�1ðr=2Þ at nodeu. Without loss of

generality, we assume that kuwk � kuvk. If kuwk < kuvk,
the argument of Theorem 6 has proved the contradiction.

Consider kuwk � kuvk: Let w0 be a point crossed by

Cðu; kuvkÞ and the outlier of Dðmuv; luvÞ, as shown in

Fig. 7. The two edgesw0u and uv enclose an angle �0. By the

law of cosines, we have

cos �0 ¼ kuw
0k2 þ kuvk=2ð Þ2�kmuvw

0k2

kuw0kkuvk

¼ kuvk
2 þ kuvk=2ð Þ2�l2uv

2

kuvkkuvk ¼ 1þ r2=2:

Then, one corresponding right-angle triangulation is
as Fig. 4c. In this case, sinð�0=2Þ ¼ r=2. Thus, we can get
that � < �0 ¼ 2 sin�1ðr=2Þ. Since kuwk � kuvk, both P ðwÞ
and P ðvÞ are on Cðu; kuvkÞ. The fact that � < �0 further
limits P ðwÞ on the arc intersected by Dðmuv; luvÞ.
Similarly, P ðvÞ is limited on the arc intersected by
Dðmuv; luvÞ for the same reason. Therefore, P ðwÞ and
P ðvÞ are on the regions defined in D2, with respect to
edges uw and uv, respectively.

Next, the existence of uv and uw should be deter-
mined by their identifiers. If idðvÞ > idðwÞ, uv is blocked
by w. Otherwise, if idðvÞ < idðwÞ, uw is blocked by v. As a
sequel, no matter what the values of idðvÞ and idðwÞ are,
at least one of the edges enclosing �0 cannot be in
NG�rðV Þ. Thus, we proved this theorem. tu

From Theorem 7, we can see that dmaxðNG�rðV ÞÞ is
constant when r is sufficiently large. Therefore, there is
some setting of r such that dmaxðNG�rðV ÞÞ is bounded by
some constant for any set V of n nodes. So, we reach the
following conclusion:

Corollary 2. The maximum node degree of the extended
r-neighborhood graph is partially bounded.

In the rest, we show that NG�rðV Þ inherits all desired
properties achieved by NRrðV Þ, except the generality
for RNGðV Þ. The fact that NG�rðV Þ � NGrðV Þ confirms
the planarity of NG�rðV Þ, since NRrðV Þ is planar for
any r. Moreover, when r ¼ 0, the two arcs defined in
D2 and D3 are empty. Thus, whether an edge is in
NG�rðV Þ is solely dependent on D1, which means that
NG�0ðV Þ � NG0ðV Þ � GGðV Þ. Therefore, NG�rðV Þ remains
a general structure of GGðV Þ.

However, as shown in Theorem 7, some adjacent edges
having the same length in RNGðV Þ would be avoided in
NG�rðV Þ. Thus, RNGðV Þ is not always a subgraph of
NG�rðV Þ. This means that NG�1ðV Þ is not essentially
equivalent to RNGðV Þ. Even more, NG�1ðV Þ could be a
subgraph of RNGðV Þ. Therefore, NG�rðV Þ is no longer a
general structure of RNGðV Þ.

About the connectivity, because RNGðV Þ is not always a
subgraph of NG�rðV Þ, we cannot ensure the connectivity of
NG�rðV Þ directly from that of RNGðV Þ. Therefore, we apply
an entirely different logic to prove this property. The idea is
based on comparing the lexicographic orders of nodes
pairs. This idea has been successfully used to prove the
connectivity of XTCðV Þ [32], another subgraph of RNGðV Þ.

We define a three-field tuple ðkuvk; idðuÞ; idðvÞÞ for each
node pair ðu; vÞ. The lexicographic order of ðu; vÞ is smaller
than that of another node pair ðs; tÞ if one of the follow-
ing three cases happens: 1) kuvk < kstk, 2) kuvk ¼ kstk,
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Fig. 7. If � < 2 sin�1ðr=2Þ and kuwk ¼ kuvk, either uw or uv cannot be in NG�rðV Þ.



and idðuÞ < idðsÞ, or 3) kuvk ¼ kstk, idðuÞ ¼ idðsÞ and

idðvÞ < idðtÞ. Now, we prove the connectivity of NG�rðV Þ
in Theorem 8.

Theorem 8. For any set V of nodes on <2, if the underlying

UDGðV Þ is connected, NG�rðV Þ is connected, for all

0 � r � 1.

Proof. Suppose UDGðV Þ is connected. Let UðV Þ be the set of

unconnected nodes pairs in NG�rðV Þ. We assume for

contradiction that some nodes pairs in NG�rðV Þ are not

connected, i.e., UðV Þ is not empty. Let ðu; vÞ be the node

pair with smallest lexicographic order in UðV Þ. Assume

that edge uv is not in UDGðV Þ, i.e., kuvk > 1. Since

UDGðV Þ is connected, there must be some path longer

than one hop connecting u and v. Let �ðu; vÞ be such a

path in UDGðV Þ. Since kuvk > 1, the lengths of each edge

on �ðu; vÞ is less than kuvk. When this path is mapped to

NG�rðV Þ, there are some node pairs on �ðu; vÞ uncon-

nected in NG�rðV Þ. Thus, some unconnected node pair on

�ðu; vÞ has length shorter than kuvk, which, however,

contradicts that ðu; vÞ has the smallest lexicographic

order in UðV Þ. Therefore, edge uv must be in UDGðV Þ.
Since edge uv is in UDGðV Þ and not in NG�rðV Þ, there

must be some node w satisfying one of the three
conditions in Definition 4. Besides, either ðu;wÞ or
ðw; vÞ is in UðV Þ; otherwise ðu; vÞ can be connected by
path uwv. We consider the three cases:

1. If D1 happens, P ðwÞ 2 NRrðu; vÞ. So, we have
kuwk < kuvk and kwvk < kuvk, which means that
the lexicographic orders of ðu;wÞ and ðw; vÞ are
less than that of ðu; vÞ.

2. If D2 happens, we have kwvk ¼ kuvk and
idðuÞ > idðwÞ, which means that the lexicographic
order of ðw; vÞ is less than that of ðu; vÞ;

3. If D3 happens, we have kuwk ¼ kuvk and
idðvÞ > idðwÞ, which means that the lexicographic
order of ðu;wÞ is less than that of ðu; vÞ.

Therefore, we cannot find any node pair in UðV Þ having

the smallest lexicographic order. In other words, UðV Þ is

empty, which, however, is a contradiction. Thus, we

have proven this algorithm. tu

Due to the fact that NG�rðV Þ � NGrðV Þ, there may be
some paths in NGrðV Þ not in NG�rðV Þ. Therefore,
�ðNG�rðV ÞÞ is no better or even worse than �ðNGrðV ÞÞ.
Even so, the upper bound of �NG�r ðV ÞðUDGðV ÞÞ can be as
good as that proven in Theorem 5. We briefly explain this:
All arguments in Theorem 5 are not related to the two
additional conditions D2 and D3, except those referred from
Lemma 2. Whichever D1, D2, or D3 happens, kuwk � kuvk,
kvwk ¼ kuvk, and kmvk < l, which means that all inequal-
ities in the proof of Lemma 2 are unchanged. Consequently,
Theorem 5 is still correct, even if all conditions of
Definition 4 are considered. So, �ðNG�rðV ÞÞ is also partially
bounded.

Below, we show that the bound 1þ r�ðn� 2Þ in
Theorem 5 is not only correct, but also asymptotically tight
to the worst possible value of �NG�rðV ÞðUDGðV ÞÞ. In other
words, it is very hard to find another upper bound of
�NG�r ðV ÞðUDGðV ÞÞ better than ours. We apply the same
argument as that used to verify the tightness of the length
stretch factor [3] and the power stretch factor [15] of
RNGðV Þ
Theorem 9. For any n � 2 and 0 � r � 1, there is a set V of
n nodes such that

sup
jV j¼n

�NG�r ðV ÞðUDGðV ÞÞ > 1þ r�ðn� 2Þ � ";

for any sufficient small " > 0.

Proof. Let �1¼ 2 sin�1ðr=2Þ�2� and �2¼�=2� sin�1ðr=2Þþ�,
where� > 0. We construct a set ofnnodesV ¼ fv1; v2; . . . ;
v2m�1; v2m; . . . ; vng, where n � 2 is even and m ¼ n=2 as
follows:

1. kv1v2k � 1 and kviviþ1k ¼ kv1v2k, for

i ¼ 2; 3; . . . ; 2m� 1;

2. ffviviþ1viþ2 ¼ �1, for i ¼ 1; 2; . . . ; 2m� 2;
3. ffviþ2viviþ1¼ffviviþ2viþ1¼ �2, for i¼1; 2; . . . ; 2m�2;
4. idðviÞ ¼ n� iþ 1, for i ¼ 1; 2; . . . ; n.

One corresponding UDGðV Þ is as shown in Fig. 8a. For
i ¼ 1; 2; . . . ; 2m� 2, since ffviviþ1viþ2 ¼ �1 < 2 sin�1ðr=2Þ
and kviviþ1k ¼ kviþ1viþ2k, by the argument in Theorem 7,
we get P ðviþ2Þ 2 Dðvi; viþ1Þ \ Cðmviviþ1

; lviviþ1
Þ. That is,
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Fig. 8. A worst-case instance V of n nodes in NG�rðV Þ: (a) n is even. (b) n is odd.



P ðviþ2Þ is in the regions with respect to edge viviþ1, defined
in D2. Moreover, idðviÞ > idðviþ2Þ. Thus, edge viviþ1 is not
in NG�rðV Þ. Then, the remaining edges are exactly a path
(spanning tree) v1v3v5 . . . v2m�3v2m�1v2mv2m�2 . . . v6v4v2 of
V , connecting all nodes, as the bold links in Fig. 8a.
Therefore, we can get that

p ��NG�r ðV Þðv1; v2Þ
� �

¼
X2m�2

i¼1

r�kviviþ2k� þ kv2m�1v2mk�:

As �! 0, �1! 2 sin�1ðr=2Þ, which implies that kviviþ2k!
rkviviþ2k ¼ rkv1v2k according to (3). Consequently, as
�! 0, we get that

X2m�2

i¼1

r�kviviþ2k� þ kv2m�1v2mk�

!
X2h�2

i¼2

r�kv1v2k� þ kv1v2k�

¼ kv1v2k� ðn� 2Þr� þ 1ð Þ:

On the other hand, since kv1v2k � 1, we get

pð��UDGðV Þðu; vÞÞ ¼ kuvk
�:

Therefore, as �! 0, �NGrðV ÞðUDGðV ÞÞ ! 1þ r�ðn� 2Þ.
That is, supjV j¼n �NG�r ðV ÞðUDGðV ÞÞ > 1þ r�ðn� 2Þ � ",
for any sufficient " > 0. For any odd n � 2, the result
can be obtained by applying the same argument to the
instance as shown in Fig. 8b. So, we proved this
theorem. tu
Actually, an equivalent structure of NG�rðV Þ, without an

original version like NRrðV Þ, was mentioned in our
previous paper3 [9]. In that preliminary work, however,
only qualitative results were given. To prove the quantita-
tive results, we separate NRrðV Þ from NG�rðV Þ in this paper
because NRrðV Þ has a clearer form in definition that can be
used to highlight the main tricky parts in our derivations.
Besides, all qualitative results in [9] are reevaluated here
using different arguments.

6 PURELY LOCALIZED ALGORITHM

In this section, we propose an efficient purely localized
algorithm, named PLA, to construct the r-neighborhood

graph. This algorithm consists of two main procedures,
GETINF and FINDNB. First, GETINF collects a set of nodes’
information within one-hop distance, denoted as INu. Then,
the collected information will be fed into FINDNB to
determine a set of neighbors in NRrðV Þ, denoted as NBu.

ALGORITHM PLA

Input: A ratio 0 � r � 1.

Output: A set of neighbors adjacent to u.

Step 1: INu :¼ GETINFðu; rÞ;
Step 2: NBu :¼ FINDNBðu; r; INuÞ;
Step 3: Stop and output NBu;

To collect the one-hop information, the simplest way is to
let each node broadcast its information at the maximum
transmission range 1 and gather the information from
others. However, the severe path loss and the frequent
change in topology may cause considerable power in such
transmission. Therefore, in GETINF, we aim to reduce the
transmission range during construction. The main idea is to
incrementally raise the transmission power from a small
range and then use some rule to stop the increment earlier
before the transmission range 1 is reached. The detailed
steps are explained as follows: The transmission range is
initiated at a small distance d0, and then it will be
incrementally raised for several rounds. Let d1 and d2 be
the previous and the current transmission ranges of a
round, respectively. In each round, a node broadcasts a
request to distance d2 and waits for the responses from the
receiving nodes to gather the nodes’ information. To avoid
replying to a node for the second time, the request of a
node u contains the position P ðuÞ and the previous
distance d1. As a node v receives this request, it calculates
the euclidean distance kuvk. Then, if kuvk > d1, v responds
with its information, P ðvÞ, to u at distance kuvk; otherwise,
it just neglects the request. In each round, the range is
increased by multiplying

ffiffiffi
2�
p

, which means the transmission
power is multiplied by 2 each time. The process is
continued until the following stopping criterion is satisfied.
Let v1 and v2 be two crossed points intersected by
Cðu; kuvkÞ and Cðm; lÞ; see Fig. 9a. We define SCðu; vÞ to
be the semicircle enclosed by uv1 and uv2 with radius ",
where " > 0 is a small value less than the distance between
any pair of nodes in V . Then, given a distance d, a semicircle
�ðu; dÞ is defined as follows:

�ðu; dÞ ¼
[
kuvk�d

SCðu; vÞ:

We can prove that, if �ðu; dÞ is exactly the circle Cðu; "Þ, like
Fig. 9b, then a disk centered at u with d radius can cover all
neighbors of u in NRrðV Þ. In other words, GETINF can be
halted as �ðu; d2Þ � Cðu; "Þ. Let NuðGðV ÞÞ be the set of
neighbors of node u in a graph GðV Þ. This property is
proven in Lemma 7.

Lemma 7. Given a node u 2 V and distance d 2 <, if
�ðu; dÞ � Cðu; "Þ,

NuðNGrðV ÞÞ � v 2 V jP ðvÞ 2 Dðu; dÞf g:

Proof. We assume for contradiction that some node s in
NuðNGrðV ÞÞ is not in fv 2 V jP ðvÞ 2 Dðu; dÞg. Since " is less
than the distance between any pair of nodes in V , we get
kusk > ". Thus, edge us intersects a point on the circle
Cðu; "Þ. Due to the fact that �ðu; dÞ � Cðu; "Þ, us must
intersect at least one semicircle that composes �ðu; dÞ; see
Fig. 9b. Let SCðu; vÞ be one of the semi-circles intersected
by us. Then, us is enclosed by uv1 and uv2 in SCðu; vÞ. In
other words, ffsuv � ffv1uv or ffsuv � ffvuv2. According to
the argument in Theorem 7, we can get that ffv1uv ¼ ffvuv2

¼ 2 sin�1ðr=2Þ. Therefore, we have ffsuv � 2 sin�1ðr=2Þ.
Moreover, since s is not in fv 2 V jP ðvÞ 2 Dðu; dÞg, s must
be farther thanv fromu. So,P ðvÞ 2 NRrðu; sÞ. According to
Definition 4, us is not in NRrðV Þ, which, however,
contradicts that s is a neighbor of u in NRrðV Þ. Thus, we
conclude this lemma. tu
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3. The term “r-neighborhood graph” in [9] does not refer to the original
version in Definition 3, but to the extended version in Definition 4. In this
paper, we reuse the same term to name the original version and rename the
previous structure in [9] the extended version.



The total transmission power used by GETINF could be
as large as d�0 ð1þ 21 þ 22 þ 	 	 	 þ 2IÞ, where I is the number
of rounds. This result could be worse than the maximum
transmission power 1 as I is large. Fortunately, when n is
large, nodes are closer to and evenly surrounded by each
other so that �ðu; dÞ has more chance to be quickly shaped
as Cðu; "Þ. So, we can benefit from GETINF in higher
probability as the number of nodes increases.

The steps of GETINF are described below. Neglecting the
communication overhead at step 2, the execution time of
GETINF is dominated by the union operation at step 4.
This step can be implemented by some search-and-merge
algorithm. Thus, the time complexity of GETINF is
Oðn lognÞ.

GGETINF ðu; rÞ
Step 1: d1 :¼ 0, d2 :¼ d0, IN :¼ �, �ðu; d2Þ :¼ �;

Step 2: Broadcast a request ðP ðuÞ; d1Þ to distance d2 and

gather a set R of responses from nodes within

d1 and d2;

Step 3: For each v 2 R do

�ðu; d2Þ :¼ �ðu; d2Þ [ SCðu; vÞ;
Step 4: IN :¼ IN [R;

Step 5: If d2 � 1 and �ðu; d2Þ is not the circle Cðu; "Þ do
d1 ¼ d2;

d2 :¼ d2 
 21=�;

Return to step 2;

Step 6: Stop and output IN ;

Now, we discuss the communication cost of GETINF. As
d0 is multiplied by

ffiffiffi
2�
p

over � log2ð1=d0Þ times, it is larger
than 1. Therefore, the number of rounds to increase the
transmission range d2 is dominated by � log2ð1=d0Þ þ 1.
Assume a node’s position can be encoded by log2 n bits. Each
node has to broadcast at most ðlog2 nÞð� log2ð1=d0Þ þ 1Þ bits
for the request messages. In addition, a node will reply to the
same node no more than once. Thus, a node needs at most
ðlog2 nÞðn� 1Þ bits to reply to all requests. Combining these
results, the communication cost of a node is no more than
ðlog2 nÞð� log2ð1=d0Þ þ nÞ bits.

Once the information INu is collected, node u can start to
determine its neighbors in NRrðV Þ. One institutive way is

to apply Definition 2 on INu directly, as in the following

procedure:

Step 1: N :¼ INu;

Step 2: For each node v in N do

For each node w 2 INu do

If P ðwÞ 2 NRrðu; vÞ do

N :¼ N � fvg;
Step 3: Output N and stop;

In this procedure, the existence of a neighbor v in INu is

determined by checking whether some node w is located in

NRrðu; vÞ. The correctness is obvious, while, in the worst

case, it should take Oðn2Þ time on each node. This time is

usually not tolerable when topology changes frequently.

Therefore, we aim to reduce the time complexity in this

part. In FINDNB, the main idea is to reverse the original

procedure. That is, instead of checking whether some

node w can block an edge uv, for each uv, we check

whether some edge uv can be blocked by a node w for each

w. The procedure is below.
This checking is begun from the farthest to the closet

nodes in INu. So, we index all elements of INu in the

nondecreasing order of kuwk in Step 2. The set NB contains

all candidates that could be a neighbor of u during the

process. As a node w is given, we remove from NB all failed

candidates that that are already blocked by w. After that, w

is added into NB to be a new candidate of NuðNGrðV ÞÞ. The

process continues until all ws in INu are considered. Now,

we prove the correctness of FINDNB.

FFINDNBðu; r; INuÞ
Step 1: NB :¼ �;

Step 2: Index the elements of INu in nonincreasing order of

kuwk;
Step 3: For each node w 2 INu with smallest index do

For each node v 2 NB do

If P ðwÞ 2 NRrðu; vÞ do

NB :¼ NB� fvg;
NB :¼ NBþ fwg;

Step 4: Stop and output NB;
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Fig. 9. (a) The semicircle SCðu; vÞ. (b) �ðu; dÞ is the union of all SCðu; vÞ, where v is within distance d.



Theorem 10. For any setV of nodes on<2,NBu ¼ NuðNGrðV ÞÞ,
for any u 2 V .

Proof. We prove this by showing that, for any v 2 V , v 2
NBu if and only if edge uv is in NRrðV Þ. Suppose an

edge uv is in NRrðV Þ. By Definition 2, there is no w 2
NuðUDGðV ÞÞ such that P ðwÞ 2 NRrðu; vÞ. This implies

that, once v is added in NB, there is also no w 2 INu

such that v can be removed at Step 3. Since v 2
NuðNGrðV ÞÞ � INu and each node in INu can be added

to NB, v must be in NB at least one time. So, we can get

that v is in the final output of NBu. Contrarily, we

suppose uv =2 NRrðV Þ. Some node w 2 NuðUDGðV ÞÞ is

located in NRrðu; vÞ. If v =2 INu, the result clearly follows

by Lemma 7. Otherwise, v 2 INu. In this case, all nodes

blocking uv are in INu. Besides, every node w blocking

uv is always considered after v in GETNB. Therefore,

even if v can be added to NB, there must be a node

w 2 INu such that v can be removed from NB at the

successive iteration. So we get v =2 INu. tu
Lemma 7 also implies that, if uv 2 NRrðV Þ, then v 2 Nu

and u 2 Nv and that, if uv 2 NRrðV Þ, then v =2 Nu and

u =2 Nv. So, the neighbors (links) determined by GETNB are

symmetric.

Corollary 3. Any topology resulted by PLA is symmetric.

Consider the time complexity of FINDNB. Step 2 can be

done by some sorting algorithm in Oðn lognÞ. Before a

node w 2 INu is added to NB, any v 2 IN blocked by w is

removed from NB. Therefore, for any two nodes in NB,

neither of them can be blocked by the other. Let s and t be

two nodes in NB. The argument of Theorem 7 indicates

that, if ffsut < 2 sin�1ðr=2Þ, then either s blocks t or t block s.

Since neither s blocks t nor t blocks s, we get that

ffsut � 2 sin�1ðr=2Þ. Therefore, during the process, the size

of NB can be never greater than dmaxðNGrðV ÞÞ. Conse-

quently, FINDNB can be done in Oðnmaxflogn; dmaxðNGrÞgÞ
time. We can observe that this time complexity depends

on the parameter r. When r is equal or close to 0 (the

worst cases), the time complexity of FINDNB is still

Oðn2Þ. However, when r is sufficiently large, such that

dmaxðNGrðV ÞÞ is a constant, FINDNB can be done in

Oðn lognÞ.
With a slight modification, PLA can be easily applied on

the extended r-neighbors graph and all results can be

preserved. We omit the detailed explanation here.

7 CONCLUSION

In this paper, we proposed a purely localized structure to

control the topology in wireless networks. We showed that

the worst case of the power stretch factor is an increasing

function of r and the worst cast of the maximum node

degree is contrarily a decreasing function of r. So, the two

objectives can be adjusted in our structure. Although the

power stretch factor is related to n so that our structure is

not really a spanner, �ðNGrðV ÞÞ can still be bounded for

some range of r. Therefore, the power stretch is partially

bounded in our structure. About the maximum node

degree, we proposed an upper bound derived for

dmaxðNGrðV ÞÞ. However, this result is correct only when

no node has two or more neighbors at exactly the same

distance. For this reason, an extended structure NG�rðV Þ
was given to comprehend this theorem.

Besides, the proposed structure can always result in a

connected topology with symmetric edges. Any resulting

topology is always planar. The relations between the

r-neighborhood graph and existent structures are summar-

ized in Fig. 10. Specially, NRrðV Þ is a general structure of

both GGðV Þ and RNGðV Þ.
To construct our structure, we proposed a 1-hop purely

localized algorithm, PLA. It can avoid long-distance

transmission when collecting information and can be

efficiently done in Oðn lognÞ time when dmaxðNGrðV ÞÞ is

constant.

For further research, a localized topology control

approach enables the design of localized routing protocols.

For instance, the greedy route discovery in CFG [26] and

GPSR [11] are based on GG. We anticipate that the

r-neighborhood graph could provide a concrete basis for

many interesting extensions due to the sound theoretical

results. Moreover, the parameter r can be turned to find the

best settings for different scenarios. Another interesting

issue for possible further work is to evaluate the stability of

the proposed structure when perfect position (range)

information is not available or when the accuracy of

position information differs from node to node.

APPENDIX

Proof of Lemma 2. Without loss of generality, we assume
that kuwk � kvwk. Let y be the projection of w on uv so
that yw is perpendicular to uv. We can derive that

kymk ¼ kvwk
2

2kmvk �
kwmk2

2kmvk �
kmvk

2
and kyxk

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kwvk2 � kvwk2

2kmvk �
kwmk2

2kmvk þ
kmvk

2

 !2
vuut :
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Fig. 10. The relationships of NGrðV Þ, NG�rðV Þ, GGðV Þ, and RNGðV Þ.



Thus,

kuwk2 ¼ kwyk2 þ ðkumk � kymkÞ2

¼ kwyk2 þ ðkmvk � kymkÞ2

¼ kvwk2 � kwvk2

2kmvk �
kwmk2

2kmvk þ
kmvk

2

 !2

þ 3kmvk
2
� kvwk

2

2kmvk þ
kwmk2

2kmvk

 !2

¼ 2kmvk2 � kvwk2 þ 2kwmk2:

Then, the power consumed by path uwv is as follows:

pðuwvÞ ¼ kuwk� þ kvwk�

¼ ð2kmvk2 � kvwk2 þ 2kwmk2Þ
�
2 þ kvwk�:

From (1), we get

kwmk < l ¼ kuvk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2r2

p
=2 ¼ kmvk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2r2

p
and kvwk < kuvk, so

2kmvk2 � kvwk2 þ 2kwmk2
� ��

2þkvwk�

� ð4þ 4r2Þkmvk2 � kvwk2
� ��

2þkvwk�

� ð4þ 4r2Þ
4

kuvk2 � kuvk2

� ��
2

þkuvk

¼ r2kuvk2
� ��

2þkuvk� ¼ kuvk�ð1þ r�Þ:

Thus, we have that pðuwvÞ � kuvk�ð1þ r�Þ. tu
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