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involves solving a semidefinite programming problem. The new de-
tector offers additional robustness compared to a detector that assumes
a known signature, and is a relevant alternative whenever there exists a
possible mismatch between the actual signature and the presumed one.
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ISI-Free Block Transceivers for Unknown Frequency
Selective Channels

Chih-Hao Liu, See-May Phoong, and Yuan-Pei Lin

Abstract—The orthogonal frequency-division multiplexing (OFDM)
transceiver has enjoyed great success in many wideband communication
systems. It has low complexity and robustness against channel-induced
intersymbol interference (ISI). When the channel order does not exceed
the length of cyclic prefix, any frequency-selective channel is converted
to a set of frequency-nonselective subchannels. This channel-independent
ISI-free property is useful for many applications. In this correspondence,
we study general block transceiver with such a property. We will show that
the solutions of channel-independent ISI-free block transceivers are given
in a closed form. It is found that except for some special cases, the solutions
are identical to the Lagrange–Vandermonde and Vandermonde–Lagrange
transceivers.

Index Terms—Filter bank, multicarrier, multitone, orthogonal fre-
quency-division multiplexing (OFDM), transceiver, transmultiplexer.

I. INTRODUCTION

In recent years, the orthogonal-frequency-division-multiplexing
(OFDM) system has been widely adopted for wideband communi-
cations [1]. One of the advantages of OFDM systems is their ability
to combat channel-induced intersymbol interference (ISI). In an
OFDM system, the transmitter and receiver perform respectively M
point inverse discrete Fourier transform (IDFT) and discrete Fourier
transform (DFT) operations. By adding a cyclic prefix of length L,
any frequency-selective channel of order L is converted to a set ofM
parallel frequency-nonselective subchannels. Symbol recovery can be
obtained by using simple one-tap equalizers at the receiver. Such a
channel-independent ISI-free property is useful for many applications.

Recently, there has been some interest in finding other trans-
ceivers with channel-independent ISI-free property [2]–[8]. The
first non-DFT-based transceiver with such a property was proposed
[2]. By judiciously selecting the zeros of the transmit filters, the
authors showed that when the number of trailing zeros is larger than
or equal to the channel order, ISI can be eliminated completely by
using a channel-independent receiver. The transmit filters are M
Lagrange interpolation polynomials, whereas the receive filters are
M Vandermonde filters, and therefore such a transceiver is called
a Lagrange–Vandermonde (LV) transceiver. A dual system called a
Vandermonde–Lagrange (VL) transceiver, where the transmit filters
are Vandermonde filters and the receive filters are Lagrange filters,
was derived in [3]. The LV and VL systems were generalized to
the so-called mutually orthogonal user code receiver (AMOUR)
system [4]. In [5] and [6], these LV and VL systems were studied
using a different framework. Using the multirate technique, it was
demonstrated that given an exponential vector input, the output of the
Toeplitz channel matrix is also an exponential vector. Exploiting this
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Fig. 1. Block transceiver.

property, the channel-independent LV and VL systems were derived.
In [7], the authors extended the idea of channel-independent ISI-free
transceivers to the case where the filter length can be longer than
the block size. It was showed that for cyclic prefixed systems where
the redundant samples are added in the form of cyclic prefix at the
transmitter, the only channel-independent ISI-free transceiver is the
OFDM system with possibly a different diagonal scaling matrix. In
[8], using a filter bank formulation, the authors derived the necessary
and sufficient conditions for channel-independent ISI-free filter bank
transceivers. However, the solutions to these necessary and sufficient
conditions are not tractable, and the filters are optimized so that the
signal-to-interference ratio (SIR) is maximized. Another technique
for combating the channel ISI is to use the polynomial ambiguity
resistant modulated codes (PAMRC) [9]–[11]. It was shown that by
incorporating the PAMRC, we can blindly identify the input signal
without knowing the channel.

In this correspondence, we focus on the block transmission scheme
shown in Fig. 1. In a block transmission system, the transmit and re-
ceive matrices F and H are memoryless matrices (constant matrices
independent of z). Under the assumption that the first column of H
is not a zero vector, we will derive the most general channel-indepen-
dent ISI-free transceiver. The solution is given in a closed form. It is
found that except for some special cases, the solution is the LV system.
Using a similar approach, we can also derive the transceiver under the
assumption that the last row ofF is not zero. The solution is also given
in a closed form, and except for some special cases, the solution is the
VL system.

II. PROBLEM FORMULATION

Consider Fig. 1, where a block transceiver is shown. The input vector
x(n) and the output vector y(n) are M � 1 vectors. The matrices F
andH are, respectively, N�M and M�N . To avoid the degenerated
case of scalar system, we assume M � 2. In this correspondence,
we assume that the channel does not vary during the transmission of
one data block so that it can be modelled as an linear time-invariant
(LTI) system. We will further assume that the channel is finite impulse
response (FIR) with an order less than or equal to L, as follows:

C(z) = c0 + c1z
�1 + . . . + cLz

�L
: (1)

As we focus only on the ISI-free solution, the channel noise q(n) does
not affect our solution. For convenience, we set q(n) = 0 in the rest of
the correspondence. The transceiver is ISI free for unknown channels
if for any C(z) of the form (1), the output is related to the input by

y(n) = �x(n) (2)

for some M �M diagonal matrix �. Transceivers possessing such a
property are said to be channel-independent ISI free. The orthogonality

of data is not affected by any LTI channel, provided that the channel
order does not exceed L. Any frequency-selective channel of order L
is converted into a set of M parallel frequency nonselective subchan-
nels. In this case, zero-forcing solution can be obtained using a set ofM
scalar multipliers known as the frequency-domain equalizers at the end
of the receiver. The OFDM system is an example of channel-indepen-
dent ISI-free transceivers. In the following, we will find the necessary
and sufficient conditions on F and H so that (2) is satisfied for any
C(z) of the form (1).

First note that if N < M or rank(F) < M , we can never fully
recover the input vectorx(n) no matter what the channelC(z) is. Thus,
we will assume thatN �M and rank(F) �M . Furthermore, one can
show that if the transceiver is ISI free for any C(z); then, N > L (in
fact, we will show that N �M +L in Section III). When N > L, the
input vector x(n) and the output vector y(n) are related as

y(n) = HC0Fx(n) +HC1Fx(n� 1)

where theN�N matrixC0 is a lower triangular Toeplitz matrix whose
first column is given by [c0 c1 . . . cL 0 . . . 0]T and the N � N by
matrix C1 is an upper triangular Toeplitz matrix whose first row is
given by [0 . . . 0 cL . . . c1]. The ISI-free conditions become

HC0F = �; HC1F = 0M :

For 0 � i � N � 1, define two sets of N �N matrices Si and Ri as

[Si]kj =
1; k = j + i

0; otherwise

[Ri]kj =
1; j = k +N � i

0; otherwise
:

For example, when N = 4, we have

S0 = I4; S1 =

0 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

S2 =

0 0 0 0

0 0 0 0

1 0 0 0

0 1 0 0

S3 =

0 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0

R0 = 04; R1 =

0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0

R2 =

0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0

R3 =

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

:
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Multiplication with these matrices only involves simple row or column
operations. To be more specific, we have

[a0 a1 . . . aN�1]Si = [ai ai+1 . . . aN�1 0 . . .0]

Ri

b
T
0

b
T
1

...
b
T
N�1

=

b
T
N�i

...
b
T
N�1

0
T

...
0
T

for any N �N matrices [a0 a1 . . . aN�1] and [b0 b1 . . . bN�1]
T .

These properties will be used later in the derivation of ISI-free block
transceivers. Using Si and Ri, we can rewrite the ISI-free conditions
as

L

i=0

ciHSiF = �;

L

i=1

ciHRiF = 0:

For a channel-independent ISI-free transceiver, the condition should be
satisfied for arbitrary coefficients ci. Therefore, the above conditions
are equivalent to

HSiF = �i; HRiF = 0 (3)

for 0 � i � L and for some diagonal matrices�i. In the next section,
we will find the transmit matrix F and the receive matrix H such that
the above conditions are satisfied.

Remarks:
1. Note that the diagonal matrices �i do not depend

the channel impulse response ci. If the transceiver
is an OFDM system, one can verify that the matrix
�i = diag[1 e�j2�i=M . . . e�j2�(M�1)i=M ]. For any
channel-independent ISI-free transceivers, the diagonal entries
of the sum ci�i are the subchannel gains.

2. It is emphasized that the ISI-free condition in (3) does not guar-
antee symbol recovery. In fact, for any H and F that satisfy (3),
one can find channel coefficients ci so that one or more subchannel
gains are equal to zero.

3. From [8], it is known that when a transceiver satisfies the ISI-
free conditions in (3), it is also ISI-free for both multiuser and
multiple-input multiple-output (MIMO) transmissions, provided
that the orders of all the transmission channels do not exceed L.

III. CHANNEL-INDEPENDENT ISI-FREE BLOCK TRANSCEIVERS

In the following, we will derive the ISI-free solution under the as-
sumption that the first column ofH is not a zero vector. The following
lemma is important for the derivation of the main result.

Lemma 1: Suppose the first column ofH is not a zero vector. Then,
the last L rows of the transmit matrix F are zero.

Proof: As the first column of H is not a zero vector, it has at
least one nonzero entry, say hi0 6= 0. The condition HR1F = 0

implies that the last row of F is a zero row. This fact and the condition
HR2F = 0 imply that the last two rows ofF are zero. Continuing the
process, one can show that the last L rows of F are zero rows.

In other words, the transmitter appends L zeros to every block of M
data samples. Such a transmission scheme is also known as the zero-
padding transmission. Using the above lemma, we see that the rank of
the matrix F is smaller than N �L+1. As the rank of F should be at
least M , we have the following inequality:

M � rank(F) < N � L+ 1

which implies that N � M + L. That is, the number of redundant
samples should be at leastL, the channel order. In what follows, we will
show that ISI-free solution exists for the case of minimum redundancy
N = M +L. For convenience, we define an M �M matrix F̂ and an
N �M matrix Ŝi, respectively, as

F =
F̂

0
; Si = [Ŝi �]:

In other words, F̂ is obtained by deleting the last L rows of F, and
Ŝi is obtained by deleting the last L columns of Si. Then, the ISI-free
condition in (3) reduces toHŜiF̂ = �i, for i = 0; 1; . . . ; L. Note that
the square matrix F̂ is invertible, and let

F̂
�1 = G:

Therefore, we can writeHŜi = �iG. Looking at the kth row of these
matrix equations for 0 � i � L, we have

hk;0 hk;1 . . . hk;M�1

hk;1 hk;2 . . . hk;M
...

...
. . .

...
hk;L hk;L+1 . . . hk;L+M�1

=

�k;0 0 . . . 0

0 �k;1 . . . 0
...

...
. . .

...
0 . . . 0 �k;L

gk;0 gk;1 . . . gk;M�1

gk;0 gk;1 . . . gk;M�1
...

...
. . .

...
gk;0 gk;1 . . . gk;M�1

(4)

where �k;i is the kth diagonal entry of�i. First note that �k;i should be
nonzero for at least one i; otherwise hk;i = 0 for 0 � i �M +L�1.
That is, the k row of H is a zero row; the symbol transmitted through
the kth subchannel can never be recovered no matter what the channel
C(z) is. Using this fact, we can prove the following lemma (see the
Appendix for a proof).

Lemma 2: Consider (4). The solutions hk;i and gk;i are either of the
form

[hk;0 hk;1 . . . hk;N�1]

= hk;N�1[0 . . . 0 1]; for some nonzero hk;N�1 (5)

[gk;0 gk;1 . . . gk;M�1]

= gk;M�1[0 . . . 0 1]; for some nonzero gk;M�1 (6)

or they have the form

[hk;0 hk;1 . . . hk;N�1]

= hk;0 1 �k �
2
k . . . �

N�1
k ; for some nonzero hk;0 (7)

[gk;0 gk;1 . . . gk;M�1]

= gk;0 1 �k �
2
k . . . �

M�1
k ; for some nonzero gk;0: (8)

Note that both the receive matrix H and the transmit matrix F̂ =
G
�1 are independent of the channel coefficients ci. Because the ranks

ofH and G are M; hk;i, and gk;i can have the form shown in (5) and
(6) for at most one k. In fact, if one is allowed to choose � = +1,
then (7) and (8) reduce as (5) and (6), respectively. To see this, let us
rewrite (7) and (8), respectively, as

[hk;0 hk;1 . . . hk;N�1] = hk;N�1 �
�N+1
k . . . ��1k 1

[gk;0 gk;1 . . . gk;M�1] = gk;M�1 �
�M+1
k . . . ��1k 1 :
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As � approaches infinity, the above equations become those in (5) and
(6), respectively. In summary, we have proved the following results.

Assume that N = M +L and the first column of the receive matrix
H is not a zero vector. Then, the block transceiver in Fig. 1 achieves
channel-independent ISI-free for any FIR channel of order L if the
following conditions are met:

a) the transmit matrix is given by

F =
F̂

0
(9)

where F̂ is an M �M matrix whose inverse is

F̂
�1 = G =

g0;0 0 . . . 0

0 g1;0 . . . 0
...

...
. . .

...
0 . . . 0 gM�1;0

1 �0 . . . �M�10

1 �1 . . . �M�11

...
...

. . .
...

1 �M�1 . . . �M�1M�1

;

b) the receive matrix is given by

H =

h0;0 0 . . . 0

0 h1;0 . . . 0
...

...
. . .

...
0 . . . 0 hM�1;0

1 �0 �20 . . . �N�10

1 �1 �21 . . . �N�11

...
...

...
1 �M�1 �2M�1 . . . �N�1M�1

: (10)

The scalars hk;0 and gk;0 are nonzero and the parameters �k are dis-
tinct. Conversely, if the transceiver achieves channel-independent ISI-
free for any FIR channel of order L, then, except for the extreme case
of one of �k approaching infinity, the transmit and receive matrices
have the closed-form expressions given in (9) and (10), respectively.
In other words, the receive matrixH is a scaled Vandermonde matrix,
and the matrix F̂ = G

�1 is the inverse of a scaled Vandemonde ma-
trix. Note that the matrix F̂ can also be obtained by using the Lagrange
interpolation formula. Thus, except for the extreme case of (5) and (6),
the most general channel-independent ISI-free block transceiver is the
Lagrange–Vandermonde transceiver proposed in [2].

Similarly, by assuming that the last row ofF is not a zero row, we can
show that the first L columns ofH are zero columns. Such a transmis-
sion scheme is known as the zero jamming transmission [5]. Solving
the ISI-free conditions, it can be found that, except for some special
cases, the resulting solution is identical to the Vandermonde–Lagrange
transceiver proposed in [3].

IV. CONCLUSION

In this correspondence, the most general channel-independent ISI-
free block transceivers are derived. It is found that, except for some
special cases, the solutions are given by the LV and VL systems in
[3] and [2], respectively. For transceivers with a longer filter length,
which corresponds to the nonblock transmission case, the most general
channel-independent ISI-free solutions are still unknown.

APPENDIX

A PROOF OF LEMMA 2

For convenience, we will drop the index “k” in the following discus-
sion. We know that there is at least one �i 6= 0. Let the first nonzero
diagonal entry be �m. We will show that m is either 0 or L. When
m = L, the solution has the form given in (5) and (6), and whenm = 0,
the solution has the form given in (7) and (8).

Suppose that m > 0. Then �0 = . . . = �m�1 = 0 and �m 6= 0.
The equation in (4) implies that h0 = � � � = hm+M�2 = 0. As
M � 2, from the equation [hm . . . hm+M�1] = �m[g0 . . . gM�1],
we get g0 = . . . = gM�2 = 0 and gM�1 6= 0 (because gi cannot be
all zero). Moreover, hm+M�1 = �mgM�1 6= 0. If m 6= L, then from
the relation

[hm+1 . . . hm+M�1 hm+M ] = �m+1[g0 . . . gM�2 gM�1]

we will get hm+M�1 = �m+1gM�2, which is zero as gM�2 = 0.
This contradicts the fact that hm+M�1 is a nonzero number. Thus, we
can conclude that if m 6= 0;m must be L.

Suppose that m = L. Substituting �0 = � � � = �L�1 = 0 into
(4), we immediately get the solution given in (5) and (6). When m =
0; �0 6= 0. The first two rows of (4) imply that [h1 . . . hM ] =
�1=�0[h0 . . . hM�1]. From this, we get hi = �ih0, and gi = �ig0
for 0 � i �M �1 and � = �1=�0. Substituting these results into (4),
we will get a set of equations

[hi . . . hi+M�1] = �ig0[1 � . . . �M�1]

for 0 � i � L. From these equations, we can get hi = �ih0 for
0 � i � M + L � 1.

Note that when �0 6= 0; �i for i 6= 0 can still be zero. It can be
verified from (4) that if any �i = 0 for some i > 0, then � = 0, which
implies �1 = . . . = �L = 0.
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