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Abstract
Parametric estimation of coverage interval is useful since the parametric
intervals are generally narrower than the non-parametric ones; however, it
has been considered only for the measurement variable with normal
distribution. Here we propose a general technique for constructing
parametric coverage intervals that may deal with all distributions, both
symmetric and asymmetric, in measurement science.

1. Introduction

The coverage interval, called the reference interval in
laboratory chemistry, refers to population-based reference
values obtained from a well-defined group of reference
individuals. This is an interval with two confidence limits
which covers the measurement values in the population
in some probabilistic sense. It is useful for determining
what should be the future measurement values, based upon
present or past data. It assists in making major decisions,
such as those pertaining to policy on environmental and
occupational health about maximum acceptable chemical
exposures. With its fundamental importance in clinical
chemistry, toxicology, environmental health, quality control,
etc (Holst and Christensen 1992), there are published standards
for the requisite statistical methodology, e.g. the International
Organization for Standardization (ISO 3534-1 1993, 3534-2
1993), the International Federation of Clinical Chemists
(IFCC) (Solberg 1987a, 1987b, Dybkær and Solberg 1987).

The coverage interval can be estimated either parametri-
cally or non-parametrically. The parametric method generally
assumes that the underlying distribution of the measurement
variable is normal, whereas the non-parametric approach
estimates the quantiles directly. In general, the paramet-
ric intervals are narrower than the non-parametric intervals.
Since the distribution of biological measurements is generally
non-normal, constructing appropriate coverage intervals for
non-normal distributions, particularly for asymmetric ones, is
important in measurement science.

To develop the standards in the science of measurements
for the application of statistical methods, Perruchet (2004)
pointed out that possible damage may be caused to laboratories
due to inconsistency in using concepts of statistics and

metrology. From a metrological point of view, it has
been agreed that collaboration should be established between
professional organizations, industry and health authorities to
achieve common reference intervals for the users. Thus,
if the coverage interval’s derivation with respect to various
measurands is not consistent because they have different
distributions, this may confuse users in the interpretation of
these measurands. In fact, the choice of the coverage interval
at a given coverage probability is not unique. The present paper
proposes a technique that constructs the shortest one. We will
show that this shortest coverage interval is consistent to deal
with all distributions, symmetric or asymmetric.

2. Development of coverage interval

Fundamentally, a parametric coverage interval is an estimate
of a fractile interval of fixed coverage probability γ (usually
it is 0.95). The IFCC defines a 0.95 fractile interval as the
interval between the 0.025 and 0.975 fractiles. In general,
letting F−1(δ) be the δth fractile for the measurement variable,
the following interval

[F−1(δ), F−1(γ + δ)] (1)

for some δ ∈ (0, 1 − γ ) is a fractile interval of coverage
probability γ . Then, any estimate of (1) may serve as a γ

coverage interval. Among the choices of fractile interval of
(1) in terms of δ, we consider if there is an adaptive way to
define a coverage interval appropriate for our consideration of
consistency.

This proposal is clarified by its use for an application.
In clinical chemistry, the coverage interval is also called a
reference interval that refers to population-based measurement
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values obtained from a group of normal or healthy people. Let
f be the density function corresponding to the distribution
function F for a measurement variable X of a normal person.
Suppose that xa is a measurement value, for person A,
contained in a considered fractile interval. Then a value xb, for
person B, with f (xb) � f (xa) indicates that B is more likely
than A to be a normal person. Then, why should not we insert
value xb in this fractile interval? This scientific consideration
for fractile interval of highest density values results in the
shortest fractile interval. This proposal considers the shortest
fractile interval in the form as

C(γ ) = [F−1(δ∗), F−1(γ + δ∗)], (2)

where δ∗ = δ∗(γ ) = argδmin0<δ<1−γ {F−1(γ + δ) − F−1(δ)}.
Here we assume a set of measurement variables X1, ..., Xn

from this distribution with the distribution function F such
that appropriate fractile estimates F̂−1(δ∗) and F̂−1(γ + δ∗)
are available. Then,

Ĉ(γ ) = [F̂−1(δ∗), F̂−1(γ + δ∗)]

serves as a choice of coverage interval, called the shortest
coverage interval for distribution F .

3. Consistency property of coverage interval

We then investigate the consistency property for this new
coverage interval. Suppose that the measurement variable X

has a unimodal distribution with symmetric density function f .
Then the shortest fractile interval searches for δ that minimizes

� = F−1(γ + δ) − F−1(δ).

Now, solving δ for 0 = ∂�
∂δ

, we have

0 = ∂F−1(γ + δ)

∂δ
− ∂F−1(δ)

∂δ

= 1

f (F−1(γ + δ))
− 1

f (F−1(δ))
,

which indicates that f (F−1(γ + δ)) = f (F−1(δ)). The
symmetry assumption yields δ = 1−γ

2 , which leads to the
fractile interval C(γ ) = [F−1(

1−γ

2 ), F−1(
1+γ

2 )]. When X has
normal distribution N(µ, σ 2), the shortest γ fractile interval
is C(γ ) = [µ − z 1+γ

2
σ, µ + z 1+γ

2
σ ] which is identical to the

classical normal fractile interval. The shortest and classical
coverage intervals are then identical when parameters µ and σ

have the same estimates. This verifies the consistency of using
the same technique when X has a symmetric distribution.

4. Estimation of coverage interval

We now consider fractile estimates for the shortest coverage
interval. With this setting in (2), although the coverage interval
exists for any distribution, we will introduce only an important
family of distributions as an example and several specific
distributions for advanced study. Many distributions allow
a fractile represented in an explicit form as F−1(δ) = a(δ, θ)

with a known function a so that the shortest coverage interval
of (2) is Ĉ(γ ) = [a(δ∗, θ̂ ), a(γ + δ∗, θ̂ )]. We first consider

a general distribution family that does have this desirable
property. A measurement variable X with location-scale
distribution has the density of the form f (x, θ1, θ2) =
1
θ2

f0(
x−θ1

θ2
) with parameters θ1 ∈ R and θ2 > 0 where f0

is a parameter-free function. The δth fractile F−1(δ) which

satisfies δ = ∫ F−1(δ)

−∞
1
θ2

f0(
x−θ1

θ2
) dx is F−1(δ) = θ1 + θ2F

−1
0 (δ)

where F0 is the distribution function with density f0. This
further yields the shortest quartile interval as

C(γ ) = [θ1 + θ2F
−1
0 (α∗), θ1 + θ2F

−1
0 (γ + α∗)],

where

α∗ = argαmin0<α<1−γ (F−1
0 (α + γ ) − F−1

0 (α)).

The shortest γ coverage interval is simply

Ĉ(γ ) = [θ̂1 + θ̂2F
−1
0 (α∗), θ̂1 + θ̂2F

−1
0 (γ + α∗)],

where θ̂1 and θ̂2 are estimates of θ1 and θ2 if they are available.
We note that fractiles F−1

0 (α∗) and F−1
0 (γ + α∗) are evaluated

from density f0 and then they are free of parameters.
The measurement variable following a location-scale

distribution has a fractile linear in location and scale parameters
θ1 and θ2. Hence, a coverage interval may be simply obtained
by replacing these two parameters by their estimates. On the
other hand, the location-scale distribution family is a rich class
of distributions that allows development of coverage intervals
for many non-normal distributions to be accomplished. We do
not go further on this point except to study several examples.

The two-parameter exponential distribution with density
function f (x, θ, λ) = λe−λ(x−θ)I (x � θ). This is a location-
scale family distribution with location parameter θ and
scale parameter 1

λ
with fractile function F−1(u) = θ −

λ−1 log(1 − u), 0 < u < 1. The shortest width γ fractile
interval is

C(γ ) = [θ, θ − λ−1 log(1 − γ )].

Based on maximum likelihood estimates of θ and λ with
θ̂ = Xn,1 and λ̂ = 1

X̄−Xn,1
where X̄ = 1

n

∑n
i=1 Xi and Xn,1

is the smallest variable of X1, ..., Xn, the shortest coverage
interval is

Ĉ(γ ) = [Xn,1, Xn,1 − (X̄ − Xn,1)log(1 − γ )].

In the case that θ is a known constant, we have

Ĉ(γ ) = [θ, θ − (X̄ − θ)log(1 − γ )].

Furthermore, when θ = 0, this involves the usual one-
parameter exponential distribution and we have

Ĉ(γ ) = [0, −X̄log(1 − γ )].

The Gamma distribution with density f (x, β, κ) =
βκxκ−1 exp(−βx)/�(κ), x > 0, β, κ > 0 is also the χ2

2κ/2β

distribution. The γ fractile interval is

C(γ ) =
[

1

2β
G−1

2κ {δ∗(κ)}, 1

2β
G−1

2κ {γ + δ∗(κ)}
]

,

where δ∗(κ) = argδmin0<δ<1−γ {G−1
2κ (γ + δ) − G−1

2κ (δ)} and
Gν is the distribution function of the chi-squared distribution
with ν degrees of freedom.
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The coverage interval based on the method of moments is
of the form

Ĉ =
[

X̄

2κ̂
G−1

2κ̂
{δ∗(κ̂)}, X̄

2κ̂
G−1

2κ̂
{γ + δ∗(κ̂)}

]
, (3)

with δ∗(κ) = argδinf0<δ<1−γ {G−1
2κ (γ + δ) − G−1

2κ (δ)} and
κ̂ = X̄2/(n−1 ∑n

i=1 X2
i − X̄2). If κ is known, the coverage

interval is in the form of (3), replacing κ̂ by κ .

The Weibull distribution with density f (x, θ, κ) =
θκxκ−1 exp(−θxκ), x > 0, θ , κ > 0, has the fractile function
F−1(u) = {−θ−1 log(1 − u)}1/κ . The γ fractile interval is

C(γ ) =
[[

− 1

θ
log{1 − δ∗(κ)}

] 1
κ

,

[
− 1

θ
log{1 − γ − δ∗(κ)}

] 1
κ
]
,

where δ∗(κ) = argδinf0<δ<1−γ [{− log(1 − γ − δ)} 1
κ −

{− log(1 − δ)} 1
κ ]. The coverage interval is

Ĉ(γ ) =
[[

− 1

θ̂
log{1 − δ∗(κ̂)}

] 1
κ̂

,

[
− 1

θ̂
log{1 − γ − δ∗(κ̂)}

] 1
κ̂
]
,

where δ∗(κ) = argδinf0<δ<1−γ [{− log(1 − γ − δ)} 1
κ −

{− log(1 − δ)} 1
κ ] and θ̂ and κ̂ are estimates of θ and κ ,

respectively. The maximum likelihood estimates of θ and κ

may be handled by many software packages.
The parametric coverage intervals may be derived for

these distributions such that their fractile intervals of (2)
are available. Although we have not studied them, most
distributions appearing in the literature are satisfied with this
condition. If the fractile interval of (2) is not available
for a specific distribution, a non-parametric type shortest
coverage interval may be derived if we substitute distribution
function F in (1) by the empirical distribution function

Fn which is free of parameters. We will not do this further in
this paper.

Acknowledgments

The authors are grateful to the Editor and a referee for
comments which greatly improved the presentation of this
paper. This research work was partially supported by
the National Science Council of Taiwan, Grant No NSC
95-2118-M-009-007.

References

Dybkær R and Solberg H E (International Federation of Clinical
Chemistry (IFCC)) 1987 Approved recommendation (1987) on
the theory of reference values: 6. Presentation of observed
values related to reference values Clin. Chim. Acta 170 33–42;
J. Clin. Chem. Clin. Biochem. 25 657–62

Holst E and Christensen J M 1992 Intervals for the description of
the biological level of a trace element in a reference population
Statistician 41 233–42

ISO 3534-1 1993 Statistics—vocabulary and symbols—part 1: basic
statistical terms and concepts (Geneva: International
Organization for Standardization)

ISO 3534-2 1993 Statistics—vocabulary and symbols—part 2:
statistical quality control (Geneva: International Organization
for Standardization)

Perruchet C 2004 Some differences between the applied
statistical approach for measurement uncertainty theory
and the traditional approach in metrology and testing
Advanced Mathematical and Computational Tools in
Metrology VI ed P Ciarlini and F Pavese (Singapore: World
Scientific)

Solberg H E (International Federation of Clinical Chemistry
(IFCC)) 1987a Approved recommendation (1986) on the
theory of reference values: 1. The concept of reference values
Ann. Biol. Clin. 45 237–41; Clin. Chim. Acta 165 111–18;
J. Clin. Chem. Clin. Biochem. 25 337–42

Solberg H E (International Federation of Clinical Chemistry
(IFCC)) 1987b Approved recommendation (1987) on the
theory of reference values: 5. Statistical treatment of collected
reference values. Determination of reference limits Clin. Chim.
Acta 170 13–32; J. Clin. Chem. Clin. Biochem. 25 645–56

Metrologia, 44 (2007) L7–L9 L9

http://dx.doi.org/10.2307/2348256

	1. Introduction
	2. Development of coverage interval
	3. Consistency property of coverage interval
	4. Estimation of coverage interval
	 Acknowledgments
	 References

