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Abstract: Several criteria affect bidding decisions. Cur-
rent bidding models determine a markup based on a fixed
project construction cost. This work presents a novel bid
price determination procedure that is built by integrating
a simulation-based cost model and a multi-criteria eval-
uation model. The cost model is used to consider cost
uncertainties and generate a bid price cumulative distri-
bution, whereas the multi-criteria evaluation model ap-
plies pairwise comparisons and fuzzy integrals to reflect
bidder preferences regarding decision criteria. The rela-
tionship between the two models is based on a practi-
cal phenomenon in that a bidder has a high probability
of winning when criteria evaluations favor his bid, and,
consequently, the bidder would bid a low price, and vice
versa. The merits of the proposed procedure are demon-
strated by its application to two construction projects in
Taiwan.

1 INTRODUCTION

Bidding decisions often include whether to bid (Han
and Diekmann, 2001; Wanous et al., 2000, 2003; Lin
and Chen, 2004) and what bid markup to allocate (or
what bid price to use). This study focuses on the sec-
ond decision. Making suitable decisions regarding the
bid price of a lump-sum-based construction project is
essential for a bidder to win the project contract and
achieve a reasonable profit, regardless of the type of bid-
award method used (e.g., lowest bid versus multi-criteria
evaluation bid). A high bid price that maximizes profit
conflicts with the interest of the bidder in winning the
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contract. On the other hand, a low bid price that in-
creases the probability of winning the contract jeopar-
dizes profit (if awarded). The dilemma for the bidder
is to set a bid price that is sufficiently high to maximize
profit, while simultaneously being sufficiently low to suc-
cessfully win the contract.

In practice, the markup (or bid price) of a construc-
tion project is frequently determined based on intuition
and experience, and involves emotional responses to
current pressures (Fayek, 1998; Xu and Tiong, 2001).
Nevertheless, this experience-based bid price decision
explicitly or implicitly considers numerous criteria re-
lated to environmental conditions, company conditions,
and project conditions (Dozzi et al., 1996; Chua and Li,
2000; Dulaima and Shan, 2002). Consequently, a suitable
bid price decision must deal with the evaluations of these
criteria.

Current bidding models determine bid markup by as-
suming that project construction cost is fixed. However,
construction costs typically vary due to variations in sev-
eral cost uncertainties such as inflation rate, financing
interest rate, quantity takeoff and price quotes. By con-
sidering project construction cost as probabilistic and
assuming that bid price decisions should go through a va-
riety of criteria evaluations, this investigation proposes
a novel hybrid bid price determination procedure that
combines a simulation-based cost model and a multi-
criteria evaluation model. The cost model considers the
criteria involving cost uncertainties and derives a cumu-
lative distribution of project bid price. The multi-criteria
evaluation model is utilized to identify the preferences
for other decision criteria. A bid price is recommended
from the bid price distribution according to a project
expected utility value as assessed by the multi-criteria
evaluation model.
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The rest of this article is organized as follows. The next
section reviews the literature on bidding and tendering
practices, and then describes the proposed procedure.
The detailed workings of the proposed procedure are
demonstrated using two projects (i.e., case studies I and
II). Finally, research significance is discussed, and direc-
tions for future research are suggested.

2 REVIEW OF PERTINENT RESEARCH

Relevant bidding and tendering research addresses as-
sessment of bidder capability to complete a contract
(Russell and Skibniewski, 1988; Lo et al., 1999), selec-
tion of a method for awarding contracts (Herbsman and
Ellis, 1992; Ioannou and Leu, 1993), tests to minimize
subjective bias in best value procurement (Kashiwagi
and Byfield, 2002a, 2002b), determination of the project
ceiling price (Wang, 2002a; Wang, 2004), evaluation of
competitive bids for examining the decision to accept
or reject the lowest project bid (Crowley and Hancher,
1995; Skitmore et al., 2001), and determination of bid
markup. The research most relevant to this work is that
for determining project ceiling price and bid markup.

From the perspective of project clients, Wang (2002a)
created a procedure (called SIM-UTILITY) to obtain
a project ceiling price or cost threshold to use as a ref-
erence for accepting and rejecting construction project
bids. Any bid over this cost threshold was generally dis-
qualified under the Taiwanese Procurement Law (Wang,
2002a). Wang’s procedure was based on a utility theory
and facilitated by a cost simulation approach. The util-
ity theory was applied to reflect client preferences re-
garding the determination criteria affecting project cost
threshold, whereas the simulation technique was utilized
to yield objective project cost data to support the exe-
cution of utility theory. For simplicity, Wang (2004) fur-
ther devised a mathematically derived cost model that
substituted the simulated-derived cost model to support
SIM-UTILITY.

Existing models for determining bid markups can
be classified into three groups (Marzouk and Moselhi,
2003): (1) statistical models, (2) artificial intelligence
based models, and (3) multi-criteria utility models.
Among the statistical models, for example, Carr (1983)
designed a general bidding model by considering the
influence of the number of involved bidders on the
markup. Carr (1987) further illustrated how competitive
bid analysis can include resource constraints and oppor-
tunity costs.

Considering that markup decisions have difficulty
in going through a sequence of deep reasoning
steps, several bidding models using Artificial Neural
Network (ANN) related tools have been designed to
support markup decisions (Moselhi et al., 1993; Li and

Love, 1999). Additionally, believing that bidding deci-
sion problems are highly unstructured and no clear rules
can be found for delivering a bidding decision, Chua et
al. (2001) devised a case-based-reasoning bidding model
for helping contractors.

Several decision criteria guide bidders in determining
how to price their work in relation to estimated con-
struction costs (Ahmad and Minkarah, 1988; Dozzi et al.,
1996; Chua and Li, 2000; Dulaima and Shan, 2002). For
example, Dozzi et al. (1996) applied a multi-criteria util-
ity theory to implement construction project bid markup
decisions. Moreover, based on the analytic hierarchy
process (AHP), Cagno et al. (2001) proposed a simu-
lation model to assess the probability of winning in a
competitive bidding process in which competing bids
were evaluated based on multiple criteria. Furthermore,
Marzouk and Moselhi (2003) designed a model for esti-
mating markup and evaluating bid proposal using multi-
attribute utility theory and AHP.

Generally, statistical models have difficulty capturing
specific project characteristics (e.g., project complexity
and market conditions); the ANN-related models re-
quire numerous training cases or suitable rules to rep-
resent the bidding strategies of individual bidders. The
multi-criteria evaluations meet the real-life situations
closely (Marzouk and Moselhi, 2003). Finally, all current
models produce bid markups based on an assumption of
fixed project costs.

3 PROPOSED PROCEDURE

3.1 Modeling strategies

The goal of most bidding models is to maximize the
chance of winning a bid under the criterion of expected
profit maximization (Car, 1987; Moselhi et al., 1993;
Cagno et al., 2001; Chua et al., 2001). However, like other
models (Dozzi et al., 1996; Li and Love, 1999; Marzouk
and Moselhi, 2003), the proposed procedure attempts to
improve the quality of a bid price decision-making pro-
cess by incorporating the assessments of a variety of de-
cision criteria and by treating project construction costs
as variables to fit real-world situations.

This study divides bid price decision criteria into two
groups: (1) the group-1 criteria (cost uncertainties) di-
rectly influence estimations of project construction costs;
and (2) the group-2 criteria address subjective prefer-
ences of decision-makers. Based on a review of several
current studies (Dozzi et al., 1996; Cagno et al., 2001; Du-
laima and Shan, 2002), Figure 1 displays an example hier-
archical structure for these two groups of criteria. Each
group of criteria is classified into two levels: level-1 cri-
teria and level-2 subcriteria. The level-1 criteria for each
group are related to environmental conditions, company
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Fig. 1. Example of the hierarchical structure of criteria and subcriteria.

conditions, and project conditions. A simulation-based
cost model is applied to assess the group-1 criteria,
whereas a multi-criteria evaluation model is designed
to evaluate the group-2 criteria. The integration of both
models for supporting bid price decisions is described in
the following section.

3.2 Modeling steps

Figure 2 shows the modeling steps of the proposed hy-
brid procedure achieved by modifying the procedure in
Wang (2002a). (The differences between the two proce-
dures are described in Section 6.1.) The right of the figure
illustrates a simulated cumulative probability distribu-
tion of project bid price, whereas the left part presents
a utility function generated based on the multi-criteria
evaluation model. The proposed procedure is executed
via the following three phases, which consist of nine steps.

� Phase I: cost model

1. Estimate the construction costs, including the di-
rect and indirect costs.

2. Conduct a simulation analysis to include cost un-
certainties and then generate a cumulative dis-
tribution of bid price.

3. Identify the maximum and minimum bid prices
of the project (namely, the upper and lower
boundaries of the project bid price).

� Phase II: multi-criteria evaluation model

4. Set the lowest expected utility value for the bid-
der, Eu(w), to 0. Additionally, set the probabil-
ity of not winning (PONW) for Eu(w) at 1. The
point (Eu(w) = 0, 1) thus corresponds to the
probability of 1 of the cumulative distribution
of bid price, and then corresponds to the max-
imum bid price. (See Figure 2.) Submitting the
maximum bid price implies that probability of
winning is zero (=1 − PONW = 1 − 1). This set-
ting reflects a practical phenomenon: a bidder
assumes a high risk if the criteria evaluations are
unfavorable to him; and he would bid a high bid
price (with less chance of winning the project
contract).
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Fig. 2. Proposed procedure.

5. Set the highest expected utility value for the bid-
der, Eu(p), to 1. Furthermore, set the PONW
with respect to Eu(p) at 0. Thus, the point
(Eu(p) = 1, 0) corresponds to the probability of
0 for the cumulative distribution of bid price, and
then corresponds to the minimum bid price. (See
Figure 2.) Submitting the minimum bid price in-
dicates that probability of winning is 1 (=1 −
PONW =1 − 0). Restated, a bidder would pre-
fer to make a lowest price bid to gain a high
chance of winning the project contract in situ-
ations where the criteria evaluations favor that
bidder.

6. Set a particular value of PONW (= 1.0 − average
winning probability = 1.0 − Pave) corresponding
to the threshold expected utility value (Eu(t)).
The value of Pave equals the number of earned
bids divided by total number of submitted bids in
a given period for the bidder. The value of Eu(t)
is calculated using threshold utility scores for the
bidder’s subcriteria. The threshold utility score
of a subcriterion is considered as the acceptable
utility score for the subcriterion for the bidder
to bid on a project. It is assumed that the bidder
would submit a bid if the criteria evaluation of
the project was Eu(t).

7. Assuming a straight-line relationship, develop
the PONW utility function based on the follow-
ing three points; that is, (Eu(w) = 0, 1), (Eu(t),
1 − Pave), and (Eu(p) = 1, 0).

� Phase III: integration of two models

8. Calculate the expected utility value of project
scenario x, Eu(x) after assessing the utility value
of each criterion of the project. According to
the PONW utility function developed above, a
value of PONW, Px, is identified with respect
to Eu(x).

9. Based on the value of Px, find a recommended
bid price from the cumulative distribution of the
project bid price.

In establishing the PONW utility function, the two
points, ((Eu(w) = 0, 1) and (Eu(p) = 1, 0)), are applica-
ble to all bidders, whereas the threshold point (Eu(t), 1 −
Pave) is used to reflect a particular bidder’s uniqueness.
The PONW utility function assumes that the relation
between the PONW values and the expected utility val-
ues for previously submitted bids (notably, the PONW
utility function) does not consider profitability of histor-
ical projects. Restated, this utility function represents a
way to transform a particular expected utility value for
a given project (Eu(x)) into a predicted value of proba-
bility of not wining (Px).

The relationship between the cost model and multi-
criteria evaluation model is constructed based on practi-
cal phenomenon (refer to steps (4) and (5)): a bidder has
a high probability of winning (low Px) when the criteria
evaluations are favorable, thus, the bid price would be
low, and vice versa. Moreover, the meaning of Px is con-
sistent in both models. That is, on the right of Figure 2,
there is also a Px chance that a bid price will be below
the recommended bid price.

3.3 Cost model

3.3.1 Project construction cost. The total cost of a con-
struction project includes direct costs, indirect costs
and markup (Adeli and Wu, 1998; Wang, 2002b; Wang
et al., 2005). In this investigation, the total construc-
tion cost (i.e., the bid price), CTot, of a project is
represented as,

CTot = (C1 + . . . + Cj + . . . + CJ )

× (1 + C1 + . . . + Ck + . . . + Ck) × (1 + t)
(1)
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=
(

J∑
j=1

Cj

)
×

(
1 +

K∑
k=1

Ck

)
× (1 + t) (2)

=
(

J∑
j=1

Cj +
J∑

j=1

Cj ×
K∑

k=1

Ck

)
× (1 + t) (3)

where Cj is the cost of direct cost component j, and J
denotes the number of direct cost components. Ck is the
cost of indirect cost component k, and K denotes the
number of indirect cost components. Thus

∑J
j=1 Cj and∑J

j=1 Cj × ∑K
k=1 Ck represent the total direct and indi-

rect project costs, respectively. The value t represents
the tax as a percentage (constant value, usually 5% in
Taiwan) of the sum of the total direct costs and the indi-
rect costs.

The direct costs, measured in dollar terms, are such
as excavation, structure, finishes, doors, windows, paint-
ing, and furnishing. The indirect costs, measured in per-
centage terms, include costs such as installing temporary
water and electricity supplies, field and home office over-
heads, insurance, and markup. Notably, markup can be
expressed as a percentage of CTot (Dozzi et al., 1996;
Wang et al., 2005). In this study, according to the typ-
ical practice in Taiwan, markup is treated as an indi-
rect cost and measured as a percentage of total direct
cost.

Notably, modeling step (1) develops a bid estimate
according to bid documents (such as bid forms, draw-
ings, and specifications) and the construction proce-
dures devised by the bidder (Peurifoy and Oberlender,
2002). This bid estimate encompasses estimating tasks
of quantity takeoffs and vender/subcontractor quotes for
estimating labor, materials, equipment, and subcontract-
ing costs for each detailed cost item in the bid project.
The cost of each Cj (e.g., sitework) in Equation (1) rep-
resents the sum of costs of several detailed cost items
(e.g., clearing, excavation, compaction, etc.).

3.3.2 Cost uncertainty. The proposed cost model as-
sesses the first group of criteria and subcriteria that di-
rectly affect estimations of project construction costs.
The subcriteria are, for example, inflation, interest rates,
historical markups, quantity takeoffs, payment terms,
and cash flow requirements. These subcriteria are treated
as cost uncertainties, and variations of such subcriteria
impact direct and indirect cost components. Thus, Cj s
and Ck s are variables in costs and percentages, respec-
tively. This cost model uses three point estimates (op-
timistic, most likely, and pessimistic costs) to acquire a
Beta distribution for each cost component. For example,
the optimistic cost for Cj is the cost that would be lowest

once out of 20 times if the cost component could be re-
peated under the same conditions (Moder et al., 1983).
Similar definitions can be applied to the pessimistic cost.
Furthermore, each indirect cost component is evaluated
in terms of optimistic, most likely, and pessimistic per-
centages.

This study suggests that costs (or percentages) esti-
mated in modeling step (1) can be considered the most
likely costs (or percentages) of Cj (or Ck). Moreover,
a bidder subjectively estimates the optimistic and pes-
simistic costs (or percentages) for each Cj (or Ck) based
on experience or knowledge of the requirements of Cj

(or Ck) learned from the bid estimation process in mod-
eling step (1).

3.3.3 Simulation and computer implementation. Monte
Carlo simulation involves the generation of random costs
according to Cj and Ck distributions, and then totals
these costs to derive the project bid price (CTot) ac-
cording to Equations (1)–(3). This process is repeated
several hundred times, with CTot being calculated each
time. A cumulative probability distribution of bid price
can then be constructed based on the values of CTot.
Notably, the simulated maximum and minimum project
construction costs are assumed to be maximum and min-
imum bid prices, respectively. Additionally, in modeling
step (5), the probability of zero (Px = 0) is assumed to
be mapped to the simulated minimum value. This as-
sumption is made for simplicity as the probability for
this minimum value is only 0.02% (= 1/5,000 simulation
iterations).

The cost model is implemented in a simulation lan-
guage, Stroboscope (Martinez, 1996). Stroboscope can
define probabilistic cost data concerning each cost com-
ponent, and generate a cumulative distribution of project
bid price. The cost model is implemented on a Pentium
III PC with 768 MB of RAM in a Windows XP environ-
ment. It took approximately 2 minutes to analyze the
example projects 5,000 times.

3.4 Multi-criteria evaluation model

The multi-criteria evaluation model assesses the group-2
criteria mentioned earlier, which are divided into three
categories of level-1 criteria (see Figure 1), namely en-
vironmental conditions (R1), company conditions (R2),
and project conditions (R3). Each criterion then includes
several level-2 subcriteria. For example, the criteria and
subcriteria shown in the bottom part of Figure 1 are iden-
tified by the bidder for the example project (case study
I) and are elucidated in Section 4.2. Notably, the pro-
posed model does not restrict the number of criteria and
subcriteria involved.
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In the proposed multi-criteria evaluation model, cri-
teria are assumed to be independent, and the impor-
tance of criteria is pairwisely compared to derive the
criteria weights according to AHP algorithms (Saaty,
1978). Then, assuming that the subcriteria under a crite-
rion are mutually dependent, the fuzzy integral is em-
ployed to support subcriteria assessments (Chen and
Tzeng, 2001). The assessment result for a subcriterion
is a utility score of the subcriterion. The evaluation re-
sult for the level-2 subcriteria (e.g., r5, r6, r7, and r8)
for a given level-1 criterion (e.g., R2) is a utility value
for the criterion. Multiplying the utility value by a corre-
sponding weight yields a weighted utility value for each
criterion. The sum of all of the weighted utility values
of the criteria is the expected utility value for a specific
project scenario. Further details of these utility-related
definitions can be found in Clemen (1996).

3.4.1 Weight of criteria. The importance of the three
group-2 level-1 criteria is pairwisely compared. The
scale used to derive the relative importance from ma-
trices of pairwise comparisons ranges from 1 to 9,
as follows (Saaty, 1978): 1—equally important; 3—
slightly more important; 5—strongly more important;
7—demonstratedly more important; 9—absolutely more
important. 2, 4, 6, 8 denote a degree of importance lying
between 1 and 3, 3 and 5, 5 and 7, and 7 and 9, respec-
tively. The matrix of preferences is manipulated via a
method that determines the eigenvector corresponding
to the maximum eigenvalue of a matrix (Saaty, 1978).
The sum of the weights of criteria equals 1.

3.4.2 Fuzzy integral. As mentioned previously, the sub-
criteria for a criterion are assumed to be interdepen-
dent. Thus, unlike criteria evaluations (an additive sit-
uation), subcriteria evaluations are non-additive. This
work employs a fuzzy integral value to express the util-
ity value (

∫
hdg) of each criterion that is evaluated based

on fuzzy measure (g(·)) and the utility score (h(·)) of each
subcriterion.

The fuzzy measure is frequently used with a fuzzy inte-
gral for aggregating information evaluation. The λ fuzzy
measure is applied to evaluate the importance of the de-
pendent subcriteria (Chen and Tzeng, 2001). The fuzzy
measure g is a set of function defined using a power set
β(X) of X, and g:β(X) → [0, 1]. The function g must pos-
sess the following properties (Chen and Tzeng, 2001):

(A) g(φ) = 0, g(X) = 1.
(B) if A, B∈ β (X) and A ⊂ B, then g(A) ≤ g(B)

A λ fuzzy measure gλ has the following properties:
∀A, B ∈ β(X), A∩ B = φ; gλ(A∪ B) = gλ(A) + gλ(B) +
λgλ(A)gλ(B); and −1 < λ < ∞. Then for the definite set
X = {x1, x2, . . . . . . . , xn}, the density of fuzzy measure

gi = gλ({xi}) (gλ({x1, x2, . . . . . , xn}) can be viewed as
the importance of considering various subcriteria), can
be formulated as follows (Chiou et al., 2005):

gλ({x1, x2, . . . . ., xn})

=
n∑

i=1

gi + λ

n−1∑
i1=1

n∑
i2=i1+1

gi1gi2

+ . . . . + λn−1g1g2, . . . , gn, for − 1 < λ < ∞ (4)

In a specific case involving two subcriteria, A and B, if
λ > 0, namely, gλ({A, B}) >gλ({A}) + gλ({B}), then A
and B have multiplicative effects; if λ < 0, namely, gλ({A,
B}) < gλ({A}) + gλ({B}), then A and B have substitu-
tive effects; if λ = 0, namely, gλ({A, B}) = gλ({A}) +
gλ({B}), then the evaluation of the set {A, B} equals
the sum of assessments for sets {A} and {B}.

Let h be a measurable set function defined on a mea-
surable space, and suppose h(x1) ≥ h(x2) ≥ . . . ≥ h(xn),
then the fuzzy integral (i.e.,

∫
hdg = utility value of a

criterion) of fuzzy measure g(·) with respect to h(·) can
be defined as follows (Ishii and Sugeno, 1985).∫

hdg = h(xn)g(Hn) + [h(xn−1) − h(xn)]g(Hn−1)

+ . . . + [h(x1) − h(x2)]g(H1)

= h(xn)[g(Hn) − g(Hn−1)] + h(xn−1)[g(Hn−1)

− g(Hn−2)] + . . . + h(x1)g(H1) (5)

where h(xi) is the utility score of subcriterion xi; H1 =
{x1}, H2 = {x1, x2}, . . . , Hn = {x1, x2, x3, . . . , xn} = X.
Figure 3 illustrates the concept of Equation (5). Namely,
the value of

∫
hdg is the area in Figure 3. The details

of g({x1, x2, . . . . . , xn}) and
∫

hdg can also be found in
(Chen and Tzeng, 2001; Lin, 2005); an example is pre-
sented in Section 4.2.

Fig. 3. Concept for fuzzy integral.
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4 CASE STUDY I

The mechanical/electrical subproject (termed M/E
project herein) of a public construction project in
northern Taiwan is used to demonstrate the proposed
procedure. Besides two underground floors, the project
includes a 5-story high-tech facility building and a 10-
story office building. The project was completed by mid-
2004. The project was awarded based on a multi-criteria
evaluation bid-award method. The bid-award criteria en-
compassed bid price, technology, quality, function, and
commercial terms of a bid. The proposed procedure was
applied to support a bidder in determining bid price.
This application was conducted following the awarding
of the M/E project (namely, after the submission of the
bid price). A cost manager who was fully involved in the
bid decision-making process for the bidder provided the
inputs for executing the proposed procedure. The follow-
ing subsections describe the assessments of the modeling
steps.

4.1 Evaluations of the cost model

Based on bid documents and planned construction pro-
cedures, the bidder conducted a bid estimation based
on the quantity takeoff and a vender/subcontractor’s
quote for each detailed cost item in the project. Then,
the costs of numerous detailed cost items are aggre-
gated to a summary sheet that includes 11 cost compo-
nents. Table 1 lists the description and three point cost
estimates (optimistic, most likely and pessimistic costs
or percentages) for each cost component. Following
5,000 simulations, the minimum and maximum bid prices
are NT$387,345,043 and NT$419,265,473, respectively.
(thirty New Taiwan dollars∼=1US dollars. Thereafter, NT

Table 1
Three-point estimates for each cost component of the M/E project

(Currency: NT$30 ∼= US$1)
Cost components Optimistic cost ($NT) Most likely cost ($NT) Pessimistic cost ($NT)

C1. Electrical systems 71,200,000 71,386,677 78,000,000
C2. Water supply/disposal systems 7,100,000 7,434,321 8,500,000
C3. Mechanical systems 41,800,000 41,966,401 47,600,000
C4. Fire protection systems 36,600,000 36,724,514 41,600,000
C5. Clean room and special systems 193,000,000 194,373,567 219,700,000

Optimistic % Most likely % Pessimistic %
C6. Drawing compositions and quality inspection 0.23% 0.25% 0.50%
C7. Temporary water & electricity 0.70% 0.75% 0.90%
C8. Site safety management 0.25% 0.30% 0.60%
C9. Insurance 0.15% 0.20% 0.35%
C10. Markup 3% 4.05% 6.00%
C11. Tax 5% 5% 5%

dollar is used.) Notably, the generated cumulative prob-
ability distribution of the project bid price is displayed
on the right of Figure 5.

4.2 Assessments of the multi-criteria evaluation model

The bottom part of Figure 1 shows the group-2 level-2
subcriteria that are qualitatively assessed for the M/E
project. Table 2 describes the utility and range of the
utility scores for each subcriterion. The subcriterion of
r1 (future projects) provides an example. If the bidder
forecasts that several new projects are being marketed,
then he will have a high chance of obtaining project con-
tracts. Restated, the bidder can still find opportunities to
compete for other projects if he does not win the contract
of the current project. Consequently, the bidder will sub-
mit a comparatively high bid price, leading him to assign
a low utility score to subcriterion r1.

Table 3 shows a pairwise comparison and lists the im-
portance of the level-1 criteria. These inputs of impor-
tance have passed the consistency index and consistency
ratio tests (Saaty, 1978). The eigenvector for the matrix
of Table 3 (preferences of criteria) is (0.9628, 0.1067,
0.2483) using the maximum eigenvalue of 3.0649. The
normalized weights of the three criteria then are 0.7306,
0.0810, and 0.1884. The sum of the normalized weights
of the criteria equals 1.

Next, the fuzzy integral is utilized to evaluate the sub-
criteria and generate the utility value of each criterion.
Table 4 displays the threshold and project utility scores
(h(xi)) assigned to subcriteria for computing the thresh-
old expected utility value (Eu(t)) and expected utility
value for the project (Eu(x)). For example, the bidder
assigns utility scores of 1.0, 0.9, 1.0, and 0.8 of h(xi)
to subcriteria r5, r6, r7, and r8, respectively. That is,
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Table 2
Description of utility and range of utility scores for subcriteria of the M/E project

Subcriteria Description of utility Range of utility scores

R1. Environmental conditions
r1. Future projects Forecast of upcoming projects on the market. Many future

projects → more opportunities for bidders → low current
project value → high bid price → low utility score

(0, 1); Many = 0, Few = 1

r2. Market conditions Other projects currently being tendered for. Good
construction economy → more opportunities for bidders
→ low current project value → high bid price → low utility
score

(0, 1); Good = 0, Poor = 1

r3. Competition Expected number of competitors bidding for the project.
Many competitors → high current project value → low
price → high utility score

(0, 1); Few = 0, Many = 1

r4. Labor availability Is local labor available or difficult to obtain? Many laborers
are available → high current project value → low price →
high utility score

(0, 1); Few = 0, Many = 1

R2. Company conditions
r5. Current work load Volume of all current projects relative to company capacity.

High current load → high bid price → low utility score
(0, 1); High = 1, Low = 0

r6. Need for public exposure High exposure → high current project value → low bid price
to win project contract → high utility score

(0, 1); Low = 0, High = 1

r7. Need for work High need for work → high current project value → low bid
price → high utility score

(0, 1); Low = 0, High = 1

r8. Experience in similar projects Good experience → high current project value → low bid
price → high utility score

(0, 1); Poor = 0, Good = 1

R3. Project conditions
r9. Project complexity Does the project complexity exceed current firm capabilities?

High project complexity → high risk → low current
project value → high bid price to meet project
specifications → low utility score

(0, 1); High = 0, Low = 1

r10. Location Is the project located within company operating area? Close
location → high current project value → low bid price →
high utility score

(0, 1); Far = 0, Close = 1

r11. Project duration Tight duration → high risk → low current project value →
high bid price to meet project deadline → low utility score

(0, 1); Tight = 0, Loose = 1

r12. Relationship with owner Good relationship → Good communication → high current
project value → low bid price → high utility score

(0, 1); Poor = 0, Good = 1

h(r5) = 1.0, h(r7) = 1.0, h(r6) = 0.9, and h(r8) = 0.8. And
h(r5) ≥ h(r7) ≥ h(r6) ≥ h(r8).

Then, based on Equation (4), the fuzzy measure g({x1,
x2, . . . . . , xn}) (namely, the importance considering var-
ious subcriteria) is assessed. The criterion R2 (company
conditions) provides an example. The evaluation re-
sults demonstrate that the importance of r5 = gλ({r5})
= 0.0619, the importance of r56 (i.e., considering both
subcriteria r5 and r6) = gλ({r5, r6}) = 0.3966, the im-
portance of r567 = gλ({r5, r6, r7}) = 0.6572, and the
importance of r5678 = gλ({r5, r6, r7, r8}) = 1. (The
detailed computations for g({x1, x2, . . . . . , xn}) in this
case study can be found in Lin (2005).) The utility value
of the criterion R2 (including subcriteria r5, r6, r7, and

r8),
∫

hdg, is calculated according to Equation (5) (see
Figure 4), namely:

∫
hdg = utility value of criterion R2 (= the area

shown in Figure 4)

= 0.8 × 1 + (0.9 − 0.8) × 0.6572 + (1.0 − 0.9)

× 0.3966 + (1.0 − 1.0) × 0.0619 = 0.91
(6)

The left of Table 5 shows the weight and utility value
for each criterion. The weighted utility value (i.e., weight
multiplied by utility value) then can be obtained, and
the expected utility value of the project (Eu(x)) equals
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Table 3
Pairwise comparisons of group-2 level-1 criteria for the M/E project

Criteria R1. Environmental conditions R2. Company conditions R3. Project conditions

R1. Environmental conditions 1 7 5
R2. Company conditions 1/7 1 1/3
R3. Project conditions 1/5 3 1

Table 4
Threshold and project utility scores assigned to each

subcriterion of the M/E project

Threshold Utility score
Subcriteria utility score of the project

r1 0.6 0.6
r2 0.4 0.5
r3 0.5 0.5
r4 0.6 0.6
r5 0.6 1.0
r6 0.6 0.9
r7 0.6 1.0
r8 0.7 0.8
r9 0.5 0.9

r10 0.5 0.9
r11 0.5 0.9
r12 0.5 0.8

0.6175 (= 0.3799 + 0.0737 + 0.1639; the sum of the
weighted utility values of the three criteria). Similarly,
the threshold expected utility value (Eu(t)) equals 0.4870
using the threshold utility scores assigned to subcriteria.
(See Table 4.) Additionally, the average winning prob-
ability for this bidder was just 10% per year (namely,
the bidder won around 10 project contracts out of 100
projects). Thus, Pave= 0.1 (i.e., 1 − Pave = 0.9).

Fig. 4. Fuzzy integral of criterion R2 of the M/E project.

4.3 Results

Figure 5 presents the modeling results based on the eval-
uations of the cost model and the multi-criteria evalua-
tion model. According to the PONW utility function,
the probability Px can be estimated from the following
relationship, and Px = 0.671.

Px

0.9
= (1 − 0.6175)

(1 − 0.4870)
(7)

By mapping the value of Px (0.671) to the cumu-
lative distribution of bid price (i.e., the right part of
Figure 5), the probabilities of 0.6668 (with a bid price
of NT$400,200,000) and 0.6724 (with a bid price of
NT$400,300,000) are closest to Px. Then, assuming a
linear relationship, the recommended bid price (RBP)
corresponding to Px can be determined using the fol-
lowing relationship, and the recommended bid price is
NT$400,281,132.

RBP − 400,200,000
400,300,000 − 400,200,000

= (0.6710 − 0.6668)
(0.6724 − 0.6668)

(8)

In this project, the bidder’s submitted bid price was ex-
actly NT$390,000,000, which was approximately 2.64%
less than the recommended bid price (=(400,281,132 −
390,000,000)/390,000,000). However, the cost manager
indicated that the initial estimate exceeded $400 million.
If NT$400 million is used as another comparison base,
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Table 5
Multi-criteria evaluation results of the M/E project

Threshold Utility Weighted threshold Weighted
Weight utility value value utility value utility value

Criteria (m) (n′) (n) (z′ = m × n′) (z = m × n)

R1. Environmental conditions 73.06% 0.47 0.52 0.3434 0.3799
R2. Company conditions 8.10% 0.61 0.91 0.0494 0.0737
R3. Project conditions 18.84% 0.50 0.87 0.0942 0.1639
Expected utility value Eu(t) = 0.4870 Eu(x) = 0.6175

the bid price recommended using the proposed proce-
dure is around 0.07% above the initial estimate of the
bidder (=(400,281,132 − 400,000,000)/400,000,000). Re-
stated, the difference in the estimates (estimated by the
procedure and the bidder) is marginal (2.64% or 0.07%).

Notably, NT$390 million (estimated by the project ar-
chitect/engineer) was the project budget announced in
the tendering documents. Any bid price over that budget
would be disqualified. The bidder regarded the project
budget as tight. However, the bidder decided to sub-
mit a bid price of $390 million (instead of the initially
estimated $400 million) as the bidder perceived that a
chance existed for reducing project construction costs
by efficiently allocating resources (primarily laborers)
and using certain material equivalents or substitutions
to decrease equipment costs. Furthermore, this bidder,
who used the project budget as a bid price, could still
earn the project contract because he gained favorable re-
sults for other bid criteria (i.e., technology, quality, func-
tion, and commercial terms) evaluations for the project.
Overall, the proposed procedure adds value for this case
study because it improves the quality of the bid price
decision-making process (in considering multi-criteria
evaluations and cost uncertainties) while generating a
recommended bid price close to submitted estimates (ei-
ther NT$390 million or NT$400 million).

Fig. 5. Modeling results of the M/E project (case study I).

5 CASE STUDY II

To examine further the feasibility of the proposed
procedure, this study applied the proposed procedure
to another case project with characteristics that dif-
fer from the first case. This project is related to the
civil/structure/architect part of a high-tech construction
project (called C/S/A project herein). The C/S/A project
is located in southern Taiwan, and was constructed be-
tween May 2003 and February 2004 (duration = 10
months). The project was tendered according to a low-
bid method. Again, the proposed procedure was applied
after the project bid price had been submitted. This app-
lication came from a different contractor. The project
budget was not made known in advance. A project man-
ager involved in the project bidding process provided the
inputs for the proposed procedure.

Following the above modeling steps, Figure 6 displays
the evaluation results of this C/S/A project. Namely, after
simulating the cost model 5,000 times, the minimum and
maximum bid prices of this project are NT$118,866,465
and NT$131,123,626, respectively. In the multi-criteria
evaluations, the expected utility values of Eu(t) and
Eu(x) are 0.5979 and 0.7990, respectively. Moreover,
Pave = 0.43 (namely, winning nine project contracts from
21 submissions in a year) and 1 − Pave = 0.57. This
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Fig. 6. Modeling results of the C/S/A project (case study II).

average winning probability was comparatively high,
because this contractor generally did not compete for
a project unless they were highly confident of win-
ning the contract. For example, the bidder considered
the location of this project (such as subcriterion r10 in
Table 2) favorable owing to having a nearby project that
was nearing completion and simply being able to reallo-
cate existing resources (including laborers and equip-
ment) to this C/S/A project, thus saving mobilization
costs if awarded the project contract. Additionally, the
bidder had considerable experience in similar projects
(subcriterion r8 in Table 2). Most importantly, the bid-
der had a good relationship with the owner of the project
(subcriterion r12). The assessments of these subcriteria
provided the bidder with an edge, and provided them
with increased confidence relative to other potential
competitors.

The probability, Px, can be estimated based on the
following PONW utility function, and Px = 0.285.

Px

0.57
= (1 − 0.7990)

(1 − 0.5979)
(9)

By mapping the value of Px (0.285) to the cumu-
lative distribution of bid price (i.e., the right portion
of Figure 6), the recommended bid price is around
NT$123,597,917 with a winning probability of 0.715
(=1 − 0.285). Meanwhile, the bid price submitted by
the bidder totaled NT$120,000,000. These two prices
only differ by around 3% (=(123,597,917 − 120,000,000)/
$120,000,000). Thus, this C/S/A project achieves reliable
application results.

6 RESEARCH SIGNIFICANCE
AND FUTURE WORK

6.1 Research significance

As indicated earlier, this proposed procedure modi-
fies the SIM-UTILITY procedure developed by Wang

(2004). Both procedures have a cost model and a multi-
criteria evaluation model. However, the primary dif-
ferences in the two procedures are as follows. First,
the proposed procedure supports contractors in select-
ing bid prices, whereas SIM-UTILITY assists clients
in determining project cost thresholds. Second, the
proposed procedure evaluates bid criteria, whereas
the SIM-UTILITY addresses tendering criteria. The
proposed procedure includes a markup in cost esti-
mation, and SIM-UTILITY does not. Third, the pro-
posed procedure applies fuzzy integrals, whereas the
SIM-UTILITY uses utility theory for multi-criteria
evaluations. Fourth, the Y-axis value in the pro-
posed procedure represents the probability of not win-
ning. Conversely, the Y-axis value in SIM-UTILITY
is the likelihood of a bidder completing the project
profitably.

Three key contributions of this proposed procedure
are as follows:

� Although the cost model and multi-criteria evalua-
tion model are not original, integration of these two
models is novel within bid decision research.

� The proposed procedure derives bid price decisions
considering that project construction costs are uncer-
tain, thereby fitting real-world practices more closely
than existing bid models.

� The proposed procedure determines bid prices
for meeting a practical decision-making process,
whereas current bidding models focus on markups. In
Taiwan, a considerable number of decision-makers
typically look for methods of reducing construc-
tion costs to attain an edge over other bidders.
Eventually, such bidders submit low bids with-
out sacrificing a percentage markup. Focusing on
percentage markup is not central to winning a
project contract. Namely, the bidders look at the to-
tal bid price rather than markup when making bid
decisions.
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6.2 Future work

During the course of this work, the following future re-
search directions arose that may improve the proposed
procedure.

� To reduce the computational complexity in the simu-
lation, a statistic-based cost model can be employed.
Based on χ2 (chi-square) tests, the Lognormal and
Weibuill distributions have the best goodness of fit to
the bid price distributions for case studies I and II,
respectively. A normal distribution fails the χ2 tests
in both case studies. Nevertheless, a normal distribu-
tion deserves special consideration as it only requires
estimating means and standard deviations.

� Previous studies have indicated that correlations be-
tween cost components affect construction project
costs (Touran and Wiser, 1992; Wang, 2002b). The
correlated effects on bid price should be considered
to improve cost scheme modeling.

� The proposed procedure suggests a total bid price.
However, the procedure does not indicate how direct
and indirect costs should be adjusted to arrive at this
suggested total bid price. Therefore, future research
can explore strategies for cost adjustments.

� The multi-criteria evaluation model uses AHP algo-
rithms to assess the weights of independent criteria
and fuzzy integrals to examine mutually-dependent
subcriteria. To simplify the modeling, the AHP
algorithms can be applied throughout the crite-
ria/subcriteria evaluations by assuming that the sub-
criteria are also independent. Notably, the consistency
measure for inputs of relative criteria and subcriteria
importance requires further investigation.

� In the PONW utility function, the value of threshold
point (Eu(t), 1 − Pave) is devised to obtain the unique-
ness of a specific bidder. Future research should up-
date the values of Eu(t) and Pave when using the pro-
posed procedure for additional projects.

� In the two cases studies, the difference between rec-
ommended bid price and actual bid price is utilized
to demonstrate the benefits of the proposed proce-
dure in addressing real-world situations. The recom-
mended bid price corresponds to a probability of win-
ning (1 − Px). Future research should extend the cur-
rent procedure to derive a bid price that meets the
goal of maximizing the probability of winning and ex-
pected profit.

7 CONCLUSION

To fit real-world situations closely, bid price decisions
should be considered via a series of criteria evaluations

given that project construction costs are variable. Thus,
this study presents a new bid price determination pro-
cedure that comprises a simulation-based cost model to
assess cost uncertainties and a multi-criteria evaluation
model to evaluate numerous decision criteria.

The proposed procedure adds value for the two appli-
cation projects as it improves the bid price decision qual-
ity (in considering multi-criteria evaluations and cost un-
certainties) while producing a recommended bid price
close to the submitted estimate. However, the effect of
the tendering method or the project type (e.g., M/E ver-
sus C/S/A) on procedure performance warrants further
investigation. For instance, is the proposed procedure
more suited to a project tendered using the lowest-bid
method (e.g., case study II) than one tendered with a
multi-criteria evaluation bid-award method (e.g., case
study I)? Furthermore, as indicated earlier, the two ap-
plications of the proposed procedure were conducted af-
ter bid prices were submitted. Future work should apply
this procedure to other projects prior to bid submission.
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