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Envelope ADI-FDTD Method and Its Application
in Three-Dimensional Nonuniform Meshes

Shu-Hai Sun and Charles T. M. Choi, Senior Member, IEEE

Abstract—The envelope alternating-direction-implicit finite
difference time domain (ADI-FDTD) method in 3-D nonuniform
meshes was proposed and studied. The phase velocity error for
the envelope ADI-FDTD and ADI-FDTD methods in uniform
and nonuniform meshes and different temporal increments
were studied. A cavity problem was studied using the envelope
ADI-FDTD and ADI-FDTD methods in graded meshes and the
conventional FDTD method in a uniform mesh. The simulation
results show that the envelope ADI-FDTD performs better than
the ADI-FDTD in numerical accuracy.

Index Terms—Courant—Friedrich-Levy (CFL) stability condi-
tion, envelope alternating-direction-implicit finite difference time
domain (ADI-FDTD) method, phase velocity.

1. INTRODUCTION

HE idea of coupling the wave-envelope technique [1] with
T the ADI-FDTD method was proposed [2]-[4]. The nu-
merical characteristic of the 3-D complex envelope ADI-FDTD
method was derived in analytic form [5] and studied by solving
a cavity problem [6]. However, the performance and efficiency
of the envelope ADI-FDTD method with nonuniform mesh dis-
tribution has not been studied. In this letter, the numerical accu-
racy of the 3-D envelope ADI-FDTD method with uniform and
nonuniform meshes were studied, and the simulation results of
a cavity problem are shown.

II. METHOD

With the envelope ADI-FDTD method, the wave envelopes
of the electromagnetic-field components are modeled, as op-
posed to the ADI-FDTD method, which simulates the actual
electromagnetic-field components. Applying the wave envelope
technique [1], the electromagnetic-field components are defined
as
E(.r,y,z,t) = Ea(.r,y,z,t) . e]w,t7 H(m,y,z,t) = Ha(.r,y,z,t) . ej?;;
where Ea and H « are the wave envelopes and w, is the carrier an-
gular frequency. Substituting (1) into Maxwell’s curl equations
and expanding in Cartesian coordinate into twelve differential
equations. Following the FDTD method and ADI technique, the
process of updating the electromagnetic-field components in a
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time step in the FDTD method are divided into two half-time
steps. These updating equations at each time step are shown as

eo(Ditjwe)Ent +oyENL =D, (HN2+HY2)  (2a)
co(Di+jwe) ENL+0. BN, = —D.(H)?,+H):.) (2b)
eo(Di+jwe) ENL +o. BN, =D, (HN2 + HD2.)  (20)

eo(Ditjwe) ENt 4o, Ent = =Dy (HN: +HY) (2d)
eo(Ditjwe) BN +o, ENY =D, (HY2+H)2) (20
) — Dy (H}3,+H)2) 2D

zaxr — yax yaz)
K Ny Ny _
50(Dt+ch Ezay+UyEzay_ Tay

po(Di+jwe) Ht +oyni Hyly = — Dy (EXL+EXS) (29)
po(Detjwe) HL +omg HYL = D (Ep2 +EjZ) - (2h)
po(Di+jwe) Hy +o.mp Ho = —=D. (BN +ENS) - (20)
po(Di+jwe) Hy + ooy Hyit, = Do (EXZ+ERE) - (2)

)
po(De+jw) H L +ouni Hol = — Do (Ep + Ee.) (2K)
)

( zax zax — yazr

po(De+jwe)HY +oyng HYY = Dy (ENZ+ENL)  (2D)
where D, D, D, and D; represent the first-order central fi-
nite-difference operators in x, y, z directions, and time domain,
respectively; ng is the free-space wave impedance, o is elec-
tric conductivity, and s = z,y, or z. Eﬁl‘y in (2a) means the
Eq, component locates at the N; time step. From the n time
step to the n+1 time step, N1, N2, IV3 in the first half-time step
are n+1/4, n+1/2, n, respectively; N1, No, N3 in the second
half-time step are n+3/4, n+1/2, n+1, respectively. The elec-
tromagnetic-field components are distributed in graded meshes
as shown in Fig. 1(a), and the discrete forms of (2e) and (2j) in
the first half-time step are shown below as examples:

zay Tay .ra,z)

n+1/2
zax (i, k+1/2)

J— n
= Cam,(i,j,k+1/2)Eza.r,(i,j,kﬂ/z)+Cbm,(vi,j,k+1/2)

n+1/2 n+1/2
X [Hyam,(i+1/z7j,k+1/z>+ Hyo (1724, k4+172)
. n+1/2 n+1/2

yaz,(i—l/Q,j,k+1/2)_Hyaz,(i—1/2,j,k+1/2)i| (3a)

n+1/2
Hyaz,(i+1/2,j,k+l/2)

= dag (i41/2,j,k+1/2) Hyar (i41/2.5.141/2)
+dbe (i11/2,5,k+1/2)"

n+1/2
X I:Ezam,('i+1,j7k+1/2) +E

n+1/2
(i er1/2) T

n+1/2
zay,(i+1,5,k+1/2)

n41/2 }

zay,(i,j,k+1/2) (3b)

where the coefficients are written as

Cs,(i,5,k)
_ 460 - 0—57(i7j7k)At - j€0wCAt
o deg + Us,(i,j,k)At + jeow At

(4a)
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Fig. 2. Normalized phase velocity versus the normalized frequency. The cell
size is co /(40f. ). The propagation direction is (a) A; to A and (b) By to Bs.

fe of 15 GHz was introduced at the source point which is located
at (151, 151, 151) in free space. Points A; and A, which are
located at (231, 151, 151) and (251, 151, 151), respectively, are
used to study the wave propagation along the z-axis (§ = 90°
and ¢ = 0°). Points B; and Bj, which are located at (231,

Da.(igk) 231, 231) and (251, 251, 251), respectively, are used to model
= 2At . the oblique wave propagation in xyz domain (§ = 45° and
: [As(i,j,k) (450 + 05 (i,j.0) A + jEOWCAt)] (4b) ¢ = 45°). At the end of the simulation, the numerical phase
da57 (i.5.%) velocity can be .cornp.uted [7]. o . .
dpo — 05,(i,j,k)n§At — JhowAt In the following discussion, the free space is discretized in
= 5 - (4c) an uniform mesh (model 1) and a nonuniform mesh (model
Ao + 05,31,y Mg A + Jpowe At 2). In model 1, the cell size A is cy/(40f.), and the max-
dbs,(i.j.k) imum temporal increment under the CFL stability condition
= 2At is Atcrr, = A/(V/3co). The model was simulated for the

- [As(i,j,k) (4u0 —I—crs,(i,j’k)n(z)At—i—juowCAt)] -t . (4d)

In these half-time steps, the implicit formulations can be solved
with a tridiagonal matrix [7]. At the conclusion of the simula-
tion, the wave envelope is modulated by the carrier to obtain the
actual wave propagation.

envelope ADI-FDTD and ADI-FDTD methods with different
temporal increments, and the numerical phase velocity nor-
malized by the speed of light versus frequency normalized by
the carrier frequency are shown in Fig. 2. Here, the theoretical
solution of the normalized phase velocity is 1. For the same
temporal increment, we can find the numerical accuracy of the
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Fig. 4. A 3-D cavity model. (a) Bird’s eye view. (b) Side view. (c) Under side
view, the cell distribution near the PEC fins.

TABLE I
RESULTS OF A 3-D CAVITY IN FIG. 4
Dilicr Resorllgnt Fre uencyzggﬂz) CPU time (s)
8 51.096 55.296 101574.520
16 51.096 55.296 52153.641
envelope 24 51.096 55.296 33844.640
ADI-FDTD 32 51.139 55.296 25053.016
40 51.139 55.296 20099.860
48 51.144 55.258 16674.938
8 51.052 55.166 38712.937
16 50.922 54.863 19145.515
ADL-FDTD 24 50.703 54.427 12980.250
32 50.359 53.867 9720.562
40 50.013 53.174 7786.750
48 49.537 52.438 6483.531
FDTDW) 2 51.096 55.209 218253.122
FDTD® 2 51.096 55.209 363966.750

diagonal propagation (f = 45° and ¢ = 45°) is better than that
of the normal propagation (§ = 90° and ¢ = 0°) in Fig. 2,
and this result is the same as the theoretical analysis published
in [5]. For the envelope ADI-FDTD method, the numerical
error for all the temporal increments as shown in Fig. 2 is less
than 2%, but the numerical error of the ADI-FDTD method is
much larger than 2% when temporal increment is 8 A¢cpy, and
normalized frequency is 1.0. In model 2, the distribution of a
nonuniform mesh is

As(i)=A, 1<i<237, 245<i<300
As(i) =A/2, i=238,244

As(i) =A/22, i =239,243

As(i) =A/23, 240 < i < 242

where s = x, y, or z. Since the maximum cell sizeis AX A x A
and the minimum cell size is A/8 x A/8 x A/8, the Atcry
here is 1/8 of Atcry, in model 1. This model was also modeled
with the envelope ADI-FDTD and ADI-FDTD methods, and
the simulation results are shown in Fig. 3. We can find each plot
in Fig. 3 almost identical to the corresponding plots in Fig. 2, the
envelope ADI-FDTD method also maintains good numerical
accuracy in 3-D nonuniform mesh distribution.

B. Application of a 3-D Cavity Problem

The specifications of the structure are shown in Fig. 4. The
thicknesses of the two fins are 0.15 mm. A Gaussian pulse
with bandwidth 8 GHz modulated with a carrier frequency of
54 GHz was introduced, and this problem was solved by using
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the ADI-FDTD, the envelope ADI-FDTD, and the traditional
FDTD methods. The mesh size in y direction is uniform at
0.1 mm and in z, z directions are nonuniform. The mesh
distribution near the PEC fin is shown in Fig. 4(c), where the
definition of the mesh size in z, z directions are 0.025 mm in
segment A, 0.050 mm in segment B, and 0.100 mm in other
mesh. This problem was solved by the ADI-FDTD and the
envelope ADI-FDTD methods in nonuniform mesh, and was
also solved by the conventional FDTD method in uniform mesh
where the cell size was 0.05 x 0.05 x0.05 mm?®. Here, Atcpr
is set as (0.025 x 1073 m)/(co\/3). The simulation time in the
ADI-FDTD and the envelope ADI-FDTD methods is 7.698 ns,
and that in the FDTD method is 7.698 ns(*) and 15.396 ns(?.
We recorded the values of E, field at the observation point,
then padded zeros of twice the simulation time were added, and
applied the discrete Fourier transform to compute the resonant
frequencies of the cavity. The resonant frequencies and CPU
time for all three numerical methods are listed in Table I.
Since the cavity was discretized by a uniform fine mesh in
the FDTD method, we took the results of the FDTD method
as the reference. For the first resonant frequency, it is found
that the relative error of the envelope ADI-FDTD method is
always less than that of the ADI-FDTD method with the same
CPU time. The envelope ADI-FDTD method also takes less
CPU time and obtains the same value of the first resonant
frequency which was solved by the FDTD method. Besides,
the numerical error of the ADI-FDTD method increases with
the temporal increment, but the envelope ADI-FDTD method
always maintains good performance even when the temporal
increment is large.

IV. CONCLUSION

The numerical accuracy and efficiency of the 3-D envelope
ADI-FDTD method were presented in this letter. Compared
with the ADI-FDTD method, the numerical phase velocity for
the envelope ADI-FDTD method is much more accurate than
that of the ADI-FDTD method. The numerical solutions of a
3-D cavity problem show that the efficiency of the envelope
ADI-FDTD method is better than that of the ADI-FDTD
method.
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