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Abstract: This paper presents a novel biometric system for real-time walker 
recognition using a pyroelectric infrared sensor, a Fresnel lens array and 
signal processing based on the linear regression of sensor signal spectra. In 
the model training stage, the maximum likelihood principal components 
estimation (MLPCE) method is utilized to obtain the regression vector for 
each registered human subject. Receiver operating characteristic (ROC) 
curves are also investigated to select a suitable threshold for maximizing 
subject recognition rate. The experimental results demonstrate the 
effectiveness of the proposed pyroelectric sensor system in recognizing 
registered subjects and rejecting unknown subjects. 
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1. Introduction 

With the recent advances in optical and digital technologies, novel sensors, and matching 
algorithms, a variety of biometric systems have attracted increasingly research attention. A 
functional biometric system requires the specific human characteristics in use to be universal 
among all human subjects under examination, distinctive between any two human subjects, 
characteristic invariant over a period of time, and feasible for quantitative measures [1].  

In conventional biometric systems, the complex structure of certain body parts of each 
subject, such as a human iris, fingerprints, facial, or hand geometry, are measured optically, 
analyzed digitally, and converted into a digital code. When a human walks, the motion of 
various components of the body, including the torso, arms and legs, produces a characteristic 
signature. From the thermal perspective, each person acts as a distributed infrared source 
whose thermal distribution is determined by his/her geometric shape and the IR emission from 
the body. The average human frame radiates about 100 W/m2 of power [2, 3], peaking at 9.55 

mμ [4]. A constant heat exchange between a human body and the environment is caused by 
the temperature difference. Combined with the idiosyncrasies in how individuals move 
themselves, their body heat impacts a surrounding sensor field in a unique way.   

The pyroelectric infrared (PIR) sensor has a high detection capability for IR radiation and 
has been used for a wide range of applications [5-8]. The PIR detector used for this work is 
low cost, $ 2 per piece, has low power consumption, 2 mW, and is sensitive in a range of 5~14 

mμ  [9]. In this study, we used the dual element PIR sensors. A summary of different 
parameters of this PIR detector is shown in Table 1. The dual element detectors have the 
inherent advantage that the output voltage is the difference between the voltages obtained 
from each of the elements of the detector, such that the impact of environmental temperature 
fluctuation can be neutralized [9]. In Ref. [8], the pyroelectric sensors were used for vehicle 
detection. Therefore, the performance of this dual element PIR sensor system is robust to the 
environmental temperature, and suitable for both indoor and outdoor working environments. 
However, each detector element has a small detection area (2 mm2), the amount of the heat 
collected by the sensor is only a small fraction of the incident thermal radiation. In this 
system, a Fresnel lens array has been employed to improve both the collection efficiency and 
spatial resolution of the sensor [10]. 

In Ref. [11], we proposed a concept to use a pyroelectric IR sensor and a Fresnel lens 
array for human identification. We also developed a prototype real-time walker identification 
system that can discriminate the registered subjects in both path-dependent and path-
independent modalities [12]. However, it cannot reject unknown intruders because its 
identification algorithm is based on statistics of the compressed data, discrete events, of a 
sensor array that inevitably discards quite an amount of discriminative information. In this 
paper, we have developed a prototype real-time walker recognition system that can detect the 
unknown intruders. To increase the detection rate for not only registers but also unknown 
intruders, during the data training, we employed a maximum likelihood principal components 
estimation (MLPCE) method to cluster feature data with respect to the different registered 
subjects walking at different speed levels. This method provides a general way to incorporate 
a variety of error structures into the clustering problem. The MLPCE can be sub-divided into 
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two steps: a principal components analysis (PCA) followed by a maximum likelihood 
estimation (MLE) [13, 14]. In the real-time testing phase, the feature data of subjects walking 
along the same path used in training, yet at random speeds, were tested against the pre-trained 
feature clusters to determine their identities. For such a detection system, the selection of a 
threshold for each registered subject becomes an important issue. Receiver Operating 
Characteristic (ROC) curve analysis is hence employed. The ROC analysis has been used in 
signal detection [15], medical diagnostics [16, 17] and machine learning [18, 19] to optimize 
the decision thresholds. The tradeoff between recognition rate and false alarm using different 
thresholds is visualized in a ROC curve. By using the ROC plots, we can select a suitable 
rejection threshold for a group of registered subjects. 
 

Table 1. Summary of parameters of PIR detector 

Parameter Value 

Supply Voltage 2.5~15 (V ) 

Output  3900 ( ppmV ) 

Offset Voltage  1.0 (V ) 

Noise 20  ( ppVμ ) 

Operating Temperature -30~70  ( o C ) 

 

2. Analysis 
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Fig. 1. The diagram of the recognition process 

Figure 1 outlines the recognition process which contains training and testing phases. In the 
training stage, we would like to find a regression vector R, such that the identity of unknown 
feature data can be estimated by an inner product of vector R and the feature data F, i.e.,  

 
                                    M F R= i .                                                                  (1) 

However, in reality, several measurements of the same quantity on the same subject will 
not in general be the same. This may be because of detected signal with noise, natural 

variation in the subject, or variation in the measurement process. A general calibration model 
then is  
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                   �M F R ε= +i ,                                                              (2) 
 

where �F  is the error free feature data and residual ε  is the measurement error vector having 
the same dimension as M. In this paper, the MLPCE method will be utilized to find an 
optimum regression vector R that maps feature data into the decision plane.   

MLPCE can be divided into two steps: a principal components analysis (PCA) followed 
by a maximum likelihood estimation (MLE). PCA is a spectral decomposition of the matrix F, 
retaining only the factors that have large values. The remaining factors associated with small 
values are assumed to be noise, and therefore omitted from the regression phase. The singular 
value decomposition (SVD) of a spectral matrix F can be represented by  

 
               T

m n m m m n n nF U V× × × ×= Σ ,                                                       (3) 
 

where the U and V are orthogonal matrices, m is the number of samples, n is the number of 
points of one feature signal data and Σ  is diagonal with nonnegative singular values in 
descending order.  

The spectrum matrix F can be approximated by its first k singular values, assuming 
singular values whose order is larger than k are negligible. k is typically determined by cross-
validation. The remaining factors associated with small singular values are assumed to be 
from noise. The resulting truncation gives:   

          � � � �

T
k k km k n kF F U V×× ×≈ = Σ ,                                               (4) 

with ,k m n� .  
The spectrum matrix F also can be defined as 

TF PJ≈ ,                                                            (5) 

Where � �

k km km kP U ××× = Σ , �

n kJ V ×= , FJ P= . 
P is the score matrix and J is the factor matrix. In other words, J can be viewed as a new 

set of orthogonal coordinates spanning the inherent (true) dimensionality of the feature data 
matrix F, and P is the projection (scores) of F onto the new coordinate system. For 
convenience, we will call it k-space.  

Once we obtain the underlying factor and their corresponding scores, MLE is performed to 

find regression vector � 1kR ×  in k-space. Hence, Eq. (2) can be written as 

� �

1 11 k mm m kM P R ε× ×× ×= + .                                                  (6) 

In the classification process, the feature data is first projected onto those factors obtained 
during training, and the resulting scores are correlated with the calibration vector obtained by 

MLE in k-space. We see from Eq. (6) that the measurement contains random error �ε , 
rendering it random too. The error could be Gaussian or Poisson. Here, we further assume that 

measurement error is zero mean Gaussian, i.e., �

�

~ (0, )C
ε

ε � , where 
�

C
ε

 is the covariance 

matrix. The maximum likelihood method tries to find a regression vector, which maximizes 
the conditional probability. Given a vector M of length m of observed measurements and the 
covariance matrix 

�

C
ε

 of Gaussian noise, the multivariate probability density function at M is 

given by 

�

�

�

�
1

1/ 2/ 2

1 1
exp[ ( ) ( )]

2(2 )

T

m
Q M PR C M PR

C
ε

ε
π

−= − − − ,                             (7) 

where 
�

Cε  is the determinant of 
�

C
ε

. 
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The maximum likelihood estimate �MLER  is the one that maximize Eq. (7) for given 

measurement M. In other words, when � �

MLER R=  in Eq. (7), the measurement M is most likely 
to be observed. In fact, maximizing the above probability density function is equivalent to 
minimizing the function  

�

�

�
1' ( ) ( )TQ M PR C M PR

ε
−= − − .                                             (8) 

Since Q’ in Eq. (8) is quadratic, �MLER  must satisfy the following equation 

�

�

�

�

� �

1( ) ( ) | 0
MLE

T

R R
M PR C M PR

R ε
−

=

∂ ⎡ ⎤− − =
⎣ ⎦∂

.                                (9) 

From Eq. (9),  

�

�
1( ) 0T

MLEP C M PR
ε
− − = .                                              (10) 

The maximum likelihood estimation of regression vector �MLER  in k-space is 
�

� �

1 1 1( )T T
MLER P C P P C M

ε ε
− − −= .                                         (11) 

Finally, from the Eq. (5) and Eq. (11) the regression vector R can be written as follows  
�

�

� �

� � �

�

� � � �

�

1,1

1 1 1

1 1 1
1

( )

( ) ( ) ( ) .

k MLEn n k

T T
n k

T T
k k k k k kn k m k m k m k m

R J R

V P C P P C M

V U C U U C M

ε ε

ε ε

×× ×

− − −
×

− − −
× × ×× × × × ×

=

=

⎡ ⎤= Σ Σ Σ⎣ ⎦

                (12) 

After the training phase, we obtain N regression vectors if there are N registered subjects. 
For the unknown intruders, we use a hypothesis H0 to represent “none-of-them”. To allow the 
multiple hypothesis testing to accommodate unknown subjects, we modified the multiple 
hypothesis model used in our previous paper [11]. In this real-time recognition system, 
multiple hypothesis model will be built for each registered subject with mean and covariance 
of the clustered training data of that register subject, [ 1

iμ , 2
iμ , …, i

Kμ ] and [ 1
iC , 2

iC , …, i
KC ], 

where i is the i-th register subject, K is the number of clusters. The mean can be calculated by 

1

n

ll
W

W
n

μ == = ∑ ,                                                         (13) 

where W is used to refer to the entire set of a cluster and W  is used to indicate the mean of 
the set  W. The subscripts on the symbol W are used to indicate a specific element in the set 
and the symbol n is used to refer to the number of elements in the set W. The covariance 
matrix for a set of data with two dimensions is 
 

cov( , ) cov( , )

cov( , ) cov( , )

p p p q
C

q p q q

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
.                                        (14) 

 
Each entry in the matrix is the result of calculating the covariance between two separate 
dimensions. The formula for covariance can be written by 

1
( )( )

cov( , )
( 1)

n

l ll
X X Y Y

X Y
n

=
− −

=
−

∑
.                                 (15) 

Therefore, we will have N+1 hypotheses, {H0, H1, …, HN}, to test an unlabeled 
measurement result vector m. The decision rule then is  
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0 , max{ ( | )}

: arg max{ ( | )}

i i
i

i i
i

H if p m H
m

H i p m H otherwise

γ<⎧⎪∈⎨ =⎪⎩

,                       (16) 

where γi is a selected rejection threshold for each registered object and the probability density 
can be calculated by 

1

1/ 2

1 1
( | ) exp[ ( ) ( )]

2(2 )
i i

i

T i
ip m H m C m

C
μ μ

π

−

= − − − .                   (17) 

3. Experimental results 

 

 
 

Fig. 2. A sensor module (including a PIR detector, a Fresnel lens arrary, Texas Instrument 
micro-controller (MSP430149) and RF transceiver (TRF6901) module) 

 
 

 
 

Fig. 3. The experiment setup for real-time walker recognition.  
 

This real-time walker recognition system was implemented by using the TI’s micro-controller 
(MSP430149) and RF transceiver (TRF6901) module. A sensor module is shown in Fig. 2. 
The sensory data are processed on the embedded micro-controller and then transmitted to the 
host computer. More details about the computation and communication platform 
implementation can be found in Ref. [7]. Figure 3 illustrates the experiment setup. A sensor 
module, which contains a pyroelectric IR sensor and a Fresnel lens array, is mounted on a 

Sensor Module 

Subject 
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pillar at a height of 80cm to detect the IR radiation from the subject. The sensory data was 
collected while different persons walked back and forth along a prescribed straight path, 3m 
away from and perpendicular to the sensor. The range of vertical field of view of the sensor 
module is 62~126 cm from the ground. Within this range, the sensor module can detect IR 
radiation from torso, arms, and legs of normal height human being at the same time. More 
detail discussion can be found in our previous paper [11].  

An important aspect of a human recognition system is to choose a suitable feature that 
discriminates individuals. Figure 4 shows the flow chart of the real-time feature extraction. It 
consists of three parts: event detection, feature extraction and feature validation. As one event 
happens, its data will be retrieved at once. The length of the event data is checked first to 
reject trivial events. In the process, a fast Fourier transform was utilized to generate the 
feature data. This feature is also checked against the universal background model to make sure 
of its validity before being tested against all the hypotheses. Figure 5 shows the process of 
event window detection. We obtained the windowed power spectrum density (WPSD) of the 
sensory data by using a windowed discrete Fourier transform (WDFT). Then, the signals can 
be further digitalized by threshold testing. Finally, the event window was created for each 
event data. In this example, the row data contains four event data sets. Once a window was 
formed, the corresponding event data would be retrieved immediately.     
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Fig. 4. Flow chart of real-time feature extraction. 
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Fig. 5. Event window detection from windowed power spectrum density of sensory data. (a) 
Raw data. (b) WPSD of the raw data. (c) Digitized signals. (d) Event windows. 

Figure 6 shows two event data sets generated by two different individuals walking across 
the field of view of the sensor. The corresponding spectral features are shown in Fig. 7. It can 
be seen that the features generated by two people walking at a similar speed are different. 
Meanwhile, for the same person, different speeds also produce spectral differences and hence 
we have to take the effects of speed into account. During the training, 120 data sets were 
collected for each person walking back and forth along a fixed-path at 3 different speed levels, 
namely fast, moderate, and slow, all within daily walking habits. The features of two human 
subjects are displayed in Fig. 8. Each column displays the feature data collected at the 
different walking speeds. Each subfigure contains 40 superimposed data sets which were 
gathered from 20 repetitive independent back and forth walks. From the degree of the feature 
overlap, we can see that the repeatability of the features generated by the same person at the 
same speed is high. 

In the training stage, we clustered all 120 data sets from each registered subject into 3 
clusters for three speed levels. Since we know the label (subject identity and walking speed) 
of each data set, the clustering process can be viewed as supervised training. Accordingly, we 
can map these 3 clusters to 3 points equally distributed along a circle by linear regression. The 
resultant regression vector for each registered subject, obtained from MLPCE, defines the 
boundary between the data sets. The covariance matrix 

�

C
ε

 we used for forming the regression 

vector is diagonal and the standard deviation for each diagonal element is 0.1. To determine 
the dominant factors k used in each of the models, leave-one-out cross-validation was used. In 
this approach, the calibration model is constructed using all but one sample in the calibration 
data set, which is then predicated with the model. This procedure is repeated for all feature 
data during training. The number of factors can be decided by calculation the root mean 
squared error of prediction (RMSEP) as a function of k. The RMSEP is computed as: 

 

�
2 2

1 1

( )
n n

ii i
i i

M M e
RMSEP

n n
= =

−
= =

∑ ∑
,                 (18) 

 

(a) 

(b) 
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where iM  is the actual value of M  for feature data i and � iM  is the value for feature data i 

predicted with the model under evaluation, ie  is the residual for feature data i (the difference 

between the predicted and the actual M-value) and n is the number of feature data for which 
�M  is obtained by prediction. It is usually a convex function, and we are looking for the 

optimal dominant number k where the minimum occurs. 
Using different k in constructing regression vector yields different prediction results. We 

are looking for the number of factors where the minimum occurs. As shown in Fig. 9, for y-
axis mapping, when k equals to 10 for construction the regression vector can achieve the best 
prediction result for Jason’s data. However, the optimal number of dominant factors may vary 
for different data structures. The best prediction result for Bob’s data is obtained when k 
equals to 12. After the procedure of selecting the factor k, we can construct optimum 
regression vector for each registered subject. Figure 10 shows the clustering results for the 
data sets in Fig. 8. The contours of the probability density distributions (pdfs) associated with 
these clusters ranging from 0.1 to 1, are also illustrated in the figure. We further test the 
performance of regression vector when the signal with increasing noise. The range of standard 
deviation for additive detector noise is from 10-6~10-5. We test 120 signal sets gathered from 
Jason walking at three speed levels. Figure 11 illustrates the RMSEP results for different 
value of additive noise. The RMSEP increases from 0.2243 to 0.2558 with increasing the 
value of standard deviation from 10-6~10-5.    
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Fig. 6. Two event data sets generated by two different individuals.  
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Fig. 7. The spectral features for two different individuals derived from the event data in Fig. 6. 
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Fig. 8. Each column is for different speed levels. Each subfigure contains 40 superimposed data sets. 
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Fig. 9. Results for leave-one-out cross-validation of calibration data  
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Fig. 10. The supervised clustering results upon 3 labels for 120 data sets with contours of the 
probability density distributions. (a) From Jason’s training data. (b) From Bob’s training data. 
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Fig. 11. The RMSEP results for different value of additive noise. 
 

Another important issue of this real-time, walker recognition system for multiple 
hypothesis testing, is the selection of a threshold γ. In detection theory, if the output is above 
the threshold, the test is said to be positive, indicating that the target is present. For the target 
detection, a correct classification is called true, while an incorrect classification is called false. 
For example, if a registered subject walks across the FOV of the sensor system, and the test 
properly detects the condition, it is said to be a true-positive. On the other hand, if a 
registered subject does not walk across the FOV of the sensor system, but the test erroneously 
indicates that he/she appears, it is said to be a false-positive. For the threshold selection, a 
larger value of γ can reject unregistered subjects with higher rates, yet a smaller value of γ can 
achieve lower errors in detecting the presence of registered subjects. In order to select an 
appropriate γ , ROC curve can be utilized. Each point on the ROC curve corresponds to a 
different rejection threshold. The tradeoff, at different thresholds, between obtaining more 
true positives, at the expense of additional false positives, is visualized in an ROC curve by 
plotting the tradeoff for every possible threshold.  

For the demonstration of this real-time recognition system, four people were registered in 
the data base of the recognition system. Figure 12 shows the ROC plots of the four registered 
subjects, Jason, Bob, Doris, and Jane. The rejection threshold is largest at the starting point of 
an ROC curve, i.e. the true-positive and false-positive rates are zero. At the endpoint of an 
ROC curve the rejection rate is zero, true-positive and false-positive rate sum up to 100%. 
As indicated in the figure, an optimal γ  lies on the equal error rate (EER) line, where false 
alarms equals miss probabilities. The miss probability also named false rejection rate (FRR=1- 
true-positive rate), is the percentage of authorized individuals rejected by the system [15]. 
After selecting a γ  for each registered subject, the data of six unregistered people imitating 
the speeds and gaits of the four registered subjects were collected and tested. The recognition 
results are summarized in Table 2. It can be seen that in recognition among 4 registered 
subjects the average recognition rate is 82.5%. On the other hand, the average recognition rate 
for 6 unregistered intruders is 78.3%. If a recognition system can only identify the walker that 
belongs to a predefined set of known walkers, it is referred to as closed-set identification. By 
adding a ‘none-of-the-above’ option to closed-set identification we obtain open-set 
identification [20]. Compared with our previous results [12], this system can achieve open-set 
identification. We also computed the overall false-positive and true-positive by averaging 
over all the registered subjects and then choose the threshold for the system. The average 
recognition rate for registered subjects has been decreased from 82.5% to 78.75%. 

R
M

S
E

P
 

Standard deviation 

#79033 - $15.00 USD Received 16 January 2007; revised 7 March 2007; accepted 8 March 2007

(C) 2007 OSA 19 March 2007 / Vol. 15,  No. 6 / OPTICS EXPRESS  3282



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Jason

Bob

Doris

Jane

 
Fig. 12. ROC curves of four registered people 

 

Table 2. The recognition results of 4 registered and 6 unregistered subjects. During the experiment, each subject 
walks 20 rounds along a fixed path. The detection of unregistered subject yields a report of “Others”.  

Results Jason Bob Doris Jane Others 
Jason 82.5% 5% 0% 2.5% 10% 
Bob 5% 80% 5% 2.5% 7.5% 

Doris 2.5% 5% 82.5 2.5% 7.5% 
Jane 5% 2.5% 2.5% 85% 5% 

Others 5.8% 6.3% 5.4% 4.2% 78.3% 

 

4. Conclusion 

This paper presented a new biometric system for real-time walker recognition using a 
pyroelectric IR sensor and a Fresnel lens array. This real-time system was implemented by 
using the Texas Instrument micro-controller (MSP430149) and RF transceiver (TRF6901) 
module. This system has low cost, low power consumption, and illumination independence. 
The procedure for real-time feature extraction and the improved multiple hypothesis testing 
algorithm utilized are also described. In the training stage, MLPCE is used to create a 
regression vector for each registered subject, and ROC curves are studied for selecting 
suitable thresholds to maximize acceptance rates and minimize rejection errors. The 
experimental results demonstrate the open-set recognition capability of the system for a small 
group of 10 subjects (4 registered subjects and 6 unregistered intruders).  

In our previous paper [12], PIR detector arrays are used for generating digital sequential 
data to represent human motion features. The advantages of this HMM based system are in its 
less rigid training process, decreased sensitivity to walking speeds, and effectiveness in the 
path-independent identification mode. In this study, the analog feature of a PIR sensor’s 
temporal signal is used to represent the human motion features. It contains more detailed 
information about the thermal source, hence suitable for higher-security applications in human 
biometric verification and open-set identification. 

This human recognition system is based on the IR radiation from the human body. Among 
all the factors that affect the human heat radiation, the cloth that walkers wear is the most 
important one. From the experiment results, the system recognition capability is invariant to 
the clothes with similar style and kind of fabric. However, a person wearing clothes with 
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different kind of fabrics (e.g., a cotton garment for training and a polyester one for testing) 
will degrade the recognition rate. To alleviate this limitation, it may need the help of using 
multiple sensor nodes to get more information of subject from multiple perspectives or using 
multi-modal sensing technique after combining the conventional video devices with the 
pyroelectric sensors. However, the complexity of the system will be enhanced. It is a 
compromise between the recognition rate and complexity of the system. Besides, different 
weather situations (wind, rain snow, et al.) may influence the recognition rate. To find an 
effective way to offset those factors will be the aim of our following work. Our future work 
also includes simultaneous recognition of multiple people and performance improvement for a 
larger group of subjects, by using multiple sensor nodes.  
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