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Abstract—The purpose of linkage identification in genetic
and evolutionary algorithms is to detect the strongly related
variables of the fitness function. If such linkage information
can be acquired, the crossover or recombination operator can
accordingly mix the discovered sub-solutions effectively without
disrupting them. In this paper, we propose a new linkage iden-
tification technique, called inductive linkage identification (ILI),
employing perturbation with decision tree induction. With the
proposed scheme, the linkage information can be obtained by first
constructing an ID3 decision tree to learn the mapping from the
population of solutions to their corresponding fitness differences
caused by perturbations and then inspecting the constructed
decision tree for variables exhibiting strong interdependencies
with one another. The numerical results show that the proposed
technique can accomplish the identical linkage identification task
with a lower number of function evaluations compared to similar
methods proposed in the literature. Moreover, the proposed
technique is also shown being able to handle both uniformly
scaled and exponentially scaled problems.

I. INTRODUCTION

The encoding of solutions is of vital importance to the
success of applying genetic and evolutionary algorithms. If
the variables bearing strong relationship are encoded loosely
on the chromosome representation, unless certain sophisticated
mechanism is adopted for compensation, crossover operators
tend to cause disruptions of promising sub-solutions, which
are often referred to as building blocks (BBs), rather than to
properly mix them. However, the knowledge to the problem at
hand is not always sufficient to avoid this pitfall. For the situ-
ations with insufficient linkage information, some specifically
designed techniques are needed to detect the structure of the
fitness function and to identify the interdependent variables.

In order to overcome the building block disruption problem,
a variety of techniques have been proposed and developed,
which can be roughly classified into three categories:

1) Evolving representations or operators;
2) Probabilistic modeling for promising solutions;
3) Perturbation methods.

The objective of the first class of techniques is to manipulate
the representation of solutions during the search process such
that members of the promising sub-solutions are less likely to
be separated by crossover operators. Various reordering and
mapping operators were proposed. In this line of research, the
messy GA (mGA) [1] and its more efficient descendant—the
fast messy GA (fmGA) [2]—identify linkage by exploiting
building blocks. The problem of techniques in this category is
that reordering operators are often too slow and lose the race
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against selection, resulting in the premature convergence to
local optima. Another technique in this category, the linkage
learning GA (LLGA) [3], employs a two-point crossover over
circular representation of strings to maintain tight linkage.
While LLGA works well on exponentially scaled problems,
it is inefficient in handling uniformly scaled problems [3] [4].

The approaches in the second category are often referred
to as estimation of distribution algorithms (EDAs) [5]. These
methods construct probabilistic models of promising solutions
and utilize the built models to generate new solutions. Early
EDAs, such as the population-based incremental learning
(PBIL) [6] and the compact genetic algorithm (cGA) [7],
assume no interaction between variables, i.e. variables are
independent. Subsequent studies start from capturing pair-
wise interactions, such as mutual-information-maximizing in-
put clustering (MIMIC) [8], Baluja’s dependency tree ap-
proach [9], and the bivariate marginal distribution algorithm
(BMDA) [10], to modeling multivariate interactions, such as
the extended compact genetic algorithm (ECGA) [11], the
Bayesian optimization algorithm (BOA) [12], the factorized
distribution algorithm (FDA) [13], and the learning version
of FDA (LFDA) [14]. The model construction processes in
these algorithms require no additional function evaluations.
Thus, they can perform effectively especially for the situations
in which the performance are bounded by fitness function
evaluations. However, it is difficult for them to correctly model
low salience (small fitness contribution) building blocks [15].

The methods in the third category examine the fitness
differences by conducting perturbations on the variables to
detect dependencies among them. For example, the gene
expression messy GA (GEMGA) [16] employs a perturbation
method to detect the sets of tightly linked variables represented
by weight values assigned to each solution. GEMGA records
fitness changes caused by perturbation of every variable for
strings in the population and detects relations among variables
according to the possibilities that the variables may con-
struct the local optima. Linkage identification by nonlinearity
check (LINC) [17] detects nonlinearity by using pairwise
perturbations in order to identify the linkage information.
It assumes that nonlinearity exists within variables to form
a building block. If the fitness difference by simultaneous
perturbations at a pair of variables is equal to the sum of
fitness differences by perturbation at each variable in the pair,
then these variables can be viewed as to reside within different
and independent subproblems, and therefore, these variables
can be optimized separately. Linkage information identified
by LINC is represented as sets of variables. Each set contains
tightly linked variables forming a building block and such a
set is called a linkage set. The descendant of LINC, linkage
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identification by non-monotonicity detection (LIMD) [18],
adopts non-monotonicity instead of nonlinearity and detects
linkage by checking violations of the monotonicity conditions.
Although perturbation methods require extra fitness function
evaluations in addition to the running of GA, they have the
advantage of being able to identify low salience building
blocks. Heckendorn and Wright [19] generalized this category
through a Walsh analysis.

An interesting algorithm combining the ideas of EDA and
perturbation method, called the dependency detection for dis-
tribution derived from fitness differences (D), was developed
by Tsuji et al. [15]. D° detects the dependencies of variables
by estimating the distributions of strings clustered according
to fitness differences. For each variable, D® calculates fitness
differences by perturbations at that variable for the entire popu-
lation, then cluster the strings into sub-populations according
to the obtained fitness differences. The sub-populations are
examined to find the k variables with the lowest entropies,
where k is the pre-defined problem complexity (the number
of variables in a linkage set). These k variables are assumed
to be tightly linked to form a linkage set. D® can detect
dependencies for a class of functions that are difficult for
EDAs (i.e. functions contain low salience building blocks)
and requires less computational cost than other perturbation
methods do. However, its major constraint is that it relies on
an input parameter k£ which may not be available due to the
limited information to the problem structure. As a side-effect
to the parameter k, D® might be fragile in the situation where
the problem is composed of subproblems of different sizes.

In this paper, we propose a new linkage identification
technique based on perturbation, called inductive linkage iden-
tification (ILI). Similar to D, the population-wise perturbation
approach is adopted, but different from D®, instead of using
clustering to obtain a biased sub-population, we use a super-
vised learning method well-established in the field of machine
learning, ID3 [20], to construct a decision tree for the task of
predicting the fitness difference after perturbation based on
some parts of the solution. By inspecting the learned tree,
we can obtain a set of variables exhibiting strong relationship
with the perturbed variable. The advantages of the proposed
approach are that it needs a lower number of function eval-
uations and requires no problem complexity parameter (% in
DY), thus is robust against problems composed of different-
sized building blocks.

The rest of this paper is organized as follows. In section II,
the background of the linkage in GA and the decomposability
of problems is briefly introduced. Section III gives a review
of the ID3 decision tree learning algorithm. In section IV,
we illustrate the proposed approach by using an example.
Section V describes our algorithm in detail. Section VI shows
the empirical results. Finally, section VII concludes this paper.

II. LINKAGE AND BUILDING BLOCKS

In this section, we briefly review some definitions and
terminologies which will be used through out this paper. As
stated in [21], “two variables in a problem are interdependent
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if the fitness contribution or optimal setting for one variable
depends on the setting of the other variable,” and such relation-
ship between variables is often referred as linkage in the GA
literature. In order to obtain the full linkage information of a
pair of variables, the fitness contribution or optimal setting of
these two variables shall be examined on all possible settings
of the other variables.

Although obtaining the full linkage information is com-
putationally expensive, linkage should be estimated using
a reasonable amount of efforts if the problem at hand is
decomposable. According to the Schema theorem [22], short,
low-order and highly fit substrings increase their share to be
combined, and also stated in the building block hypothesis,
GAs implicitly decompose a problem into sub-problems by
processing building blocks. It is considered that combining
small parts is important for GAs and consistent with human
innovation [23]. These lead to a problem model called the
additively decomposable function (ADF), which can be written
as a sum of low-order sub-functions.

Let a string s of length ¢ be described as a series of
variables, s = s159---Sp. We assume that s = s189--- Sy
is a permutation of the problem variables x = zj2z2 -2/ to
represent the encoding scheme in use. The fitness of string s
is the defined as

1) =2 filsu)

where m is the number of sub-functions, f; is the i-th sub-
function, and s,, is the substring to f;. Each v; is a vector
specifying the substring s,,. For example, if v; = (1,2,4,8),
Sy, = S1525458. If f; is also a sum of other sub-functions,
it can be replaced by those sub-functions. Thus, here, each
sub-function f; can be considered as a nonlinear function.

By eliminating the ordering property of v; , we can obtain a
set V; containing the elements v;. The variables from the same
set of V; should be interdependent because f; is nonlinear.
Thus, we refer to the set V; as a linkage set. A related term,
building blocks (BBs), is referred to as the candidate solutions
to some sub-function f;. In this paper, only a subclass of the
ADFs is considered. We concentrate on non-overlapping sub-
functions. That is, V;NV; = 0 if ¢  j. In addition, the strings
are assumed to be composed of binary variables.

III. DECISION TREE LEARNING: ID3

Decision tree learning is one of the most widely used
and practical methods for inductive inference. It has been
successfully applied to a broad range of tasks from learning
to diagnose medical cases to learning to assess credit risks of
loan applicants. Decision tree learning approximates discrete-
valued target functions, in which the learned function is
represented by a decision tree.

In this paper, the ID3 decision tree learning algorithm [20] is
used and we consider only its ability in classification problems.
In a classification problem, a training instance is composed of
a list of attribute values describing the instance and a target
value that the decision tree is supposed to predict after training.
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In our case, as you can see in section 1V, the list of attribute
values is the solution string, and the target value is the fitness
difference caused by perturbation.

In its most basic form, ID3 constructs the decision tree top-
down without backtracking. To construct a decision tree, each
attribute is evaluated using a statistical property, called the
information gain, to measure how well it alone classifies the
training instances. The best attribute is selected and used as
the test at the root node of the tree. A descendant of the root
is then created for each possible value of this attribute, and
the training instances are split into the appropriate descendant
node. The entire process is then repeated using the training
instances associated with each descendant node to select the
best attribute to test at that point of the tree.

The statistical property, information gain, of each attribute
is simply the expected reduction in the impurity of instances
after classifying the instances using that attribute. The impurity
of an arbitrary collection of instances is often called entropy
in the information theory. Given a collection D, containing
instances of c different target values, the entropy of D relative
to this c-wise classification is defined as

c

Entropy(D) = Z —pilogy pi ,
i=1

where p; is the proportion of D belonging to class ¢. In all
calculations involving entropy, we define 0log, 0 to be 0.
Then, in terms of entropy, the information gain can be
defined as follows. The information gain, Gain(D, A), of an
attribute A relative to a collection of instances D, is

D,|
Ent D
B Entropy(D.)

where Val(A) is the set of all possible values for attribute A,
and D, is the subset of D for which attribute A has value v.

Gain(D, A) = Entropy(D) — Z
veVal(A)

IV. EXEMPLARY ILLUSTRATION

Before describing the proposed linkage identification tech-
nique in detail, in this section, we first illustrate the idea behind
the algorithm by using the following example. Consider a trap
function of size kt:

k
ftrapk,(5152 ce Sk) = trapk(u = Si)
i=1
K if u = k;
1 k—1—wu, otherwise. ’

where v is the number of ones in the string s153-- - sg.
Suppose that we are dealing with an eight-bit problem

f(s182++-88) = firaps (5152535455) 4 firaps (565788)

where s1s9 - - - sg is an individual. Our goal is to identify two
linkage sets V7 = {1,2,3,4,5} and V2 = {6,7,8}.

In the beginning, a population of strings is randomly gener-
ated as listed in Table I(a). The first column lists the solution

TThe proposed algorithm does not require this parameter of problem
complexity, but for explanation, we use the k-traps as sub-problems.
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[[sis2---ss [ f [ dfi | [s1s2---ss [ f [ df]
01111011 [ 0 [ -5 00000 100 | 5 1
00011 001 | 3 1 00001 011 | 3 1
00100 000 | 5 1 00001 000 | 5 1
01001 111 | 5 1 00100 000 | 5 1
T1111 000 | 7 5 00100 010 | 4 1
01101 101 | 1 1 00100 100 | 4 1
00110 011 | 2 1 01000 010 | 4 1
01101 110 | 1 1 01000 001 | 4 | 1
00001 011 | 3 1 01001 111 | 5 1
10100 111 | 5 | -1 01100 010 | 3 1
11110101 | 0 | -1 01101 101 | 1 1
T1111 110 | 5 5 01101 110 | 1 1
11011 010 | 1 -1 00011 001 | 3 1
01000 010 | 4 1 00011 001 | 3 1
00100 010 | 4 1 00110 011 | 2 1
00001 000 | 5 1 00111 010 | 2 1
01100 010 | 3 1 01111 011 | 0 -5
10000 101 | 3 | -1 o1 111 | 3| -5
00000 100 | 5 1 01111110 | 0| -5
11011 110 | © -1 10000 101 | 3 -1
00011 001 | 3 1 10100 111 | 5 | -1
00111 010 | 2 1 10100010 | 3 | -1
00100 100 | 4 1 10100001 | 3 | -1
10110 000 | 3 | -1 10110000 | 3 | -1
T1100 000 | 3 | -1 11100000 | 3 | -1
o111 111 | 3 -5 11110 101 | O -1
10100 010 | 3 -1 11111000 | 7 5
10100 001 | 3 -1 11111 110 | 5 5
01000 001 | 4 1 11011 010 | 1 1
01111110 | O -5 11011110 | 0 1

(a) Original population. (b) Rearranged population.

TABLE I
POPULATION OF STRINGS.

strings, and the second column lists the fitness values of the
corresponding strings. After initializing the population, we
perturb the first variable s; (0 — 1 or 1 — 0) for all strings
in the population in order to detect the linkage set in which
the variables are related to s; (that is, V7). The third column
of Table I(a) records the fitness differences, df;, caused by
perturbations at variable s;.

Then, we construct an ID3 decision tree by using the
population of strings as the training instances. Each variable
in $182---sg is an attribute to the instances, and the target
values are the fitness differences df;. By having this setup,
we can obtain an ID3 decision tree as shown in Figure 1.
By gathering all decision variables of the non-leaf nodes, we
can identify as a group si, S2, S3, S4, and s5 which are the
variables corresponding to linkage set V. As a consequence,
the linkage set V; is correctly identified.

Readers might think this result a little too sudden. We may
consider the rearranged population listed in Table I(b) for a
clearer view. In Table I(b), strings from different blocks are
bearing different patterns. For example, s; and s4 of the strings
from the first block are all 0’s. In the fourth block, values of
51 are 1’s, and values of s5 are 0’s. Such an observation can
be extended to other blocks as well. In fact, these patterns
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s1s2---ss | [ | dfe
01111011 | 0 3
00011 001 1
00100 000 1
01001 111 3
11111 000 1
01101 101 -1
00110 011 3
01101 110 -1
00001 011 3
10100 111 3
11110 101 -1
11111 110 -1
11011 010
01000 010
00100 010
00001 000
01100 010
10000 101
00000 100
11011 110
00011 001
00111 010
00100 100
‘ N ) 10110 000
Fig. 1. An ID3 decision tree constructed according to Table I(a). 11100 000
01111 T11
10100 010
10100 001
01000 001
01111 T10

ALWLWLWLLWANWOSUWWLURAR R RNV WFRNRIWUL WOV W
—_

are corresponding to the paths from leaf nodes of the tree in
Figure 1 to the root. To put it in another way, because during
the construction of the decision tree, the ID3 algorithm selects
variables showing strong relationship to the target values, i.e.
the fitness differences caused by perturbations, the variables
belonging to the same sub-function as the perturbed variable,
s1, tend to be selected under this mechanism.

—_ e ) e e

(=}
'

TABLE 11
POPULATION OF STRINGS.

A more accurate explanation can be given as follows.
Consider the fitness difference df; of a certain string s =
$182 - - - sg perturbed at variable sp:

df1(s) f(s182---58) — f(5182- " 58) )

ftrapS (51 52535455) + ftrapg (568758)
— firaps (5152535485) — firaps (S65758)

= firaps(5152535455) — firaps (S152535455) .

As shown in Equation (1), the fitness difference df; is in-
dependent of the variables sg, s7, and ss. df; depends only
on si, So2, ..., S5. Therefore, for a large enough population
showing strong statistical evidences, the independent variables
will not be chosen as decision variables in the decision tree. On
the other hand, because f,q;, is a function with nonlinearity,
all five variables tend to be identified given a large enough
population which contains nonlinear points of f;,qps.

For the remainder of this example, since V; is already cor-
rectly identified, we proceed at sg. The fitness differences after
perturbations at variable s¢ are shown in Table II. Applying
the same procedure, an ID3 decision tree is constructed as
presented in Figure 2. By inspecting the tree, we obtain the Fig. 2. An ID3 decision tree constructed according to Table II.
related variables sg, s7, and sg which form the size 3 linkage
set V5. The example illustrates that the proposed algorithm can
handle problems composed of different-sized sub-problems.
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Algorithm 1 Inductive Linkage Identification
procedure IDENTIFYLINKAGE(f, ¢)
Initialize a population P with n string of length ¢.
Evaluate the fitness of strings in P using f.
Ve—{1,...,¢}
m«— 0
while V £ () do
m«m+1
Select v in V' at random.
Vi — {v}
V—V—{v}
for each string s! = s¢s}--- st in P do
Perturb st .
df? « fitness difference caused by perturbation.
end for
Construct an ID3 decision tree using (P, df).
for each decision variable s; in tree do
Vi = Vi U {5}
V<V -{j}
end for
end while
return the linkage sets Vi, V5, --
end procedure

'st

V. INDUCTIVE LINKAGE IDENTIFICATION

In this section, the idea demonstrated in the previous section
is formalized as an algorithm, which is called inductive linkage
identification (ILI) and presented in Algorithm 1. ILI consists
mainly the following three steps:

1) Calculate the fitness differences by perturbations;
2) Construct an ID3 decision tree;
3) Examine the decision tree to obtain a linkage set.

The three steps repeat until all the variables of the objective
function are classified into their corresponding linkage sets.
ILI starts at initializing a population of strings. After
initialization, ILI identifies one linkage set at a time using
the following procedure: (1) a variable is randomly selected
to be perturbed; (2) an ID3 decision tree is constructed
according to the fitness differences caused by perturbations;
(3) by inspecting the constructed tree, the variables used in
the decision tree are collected and considered as a linkage set.
As clearly shown in Algorithm 1, the number of fitness
function evaluations required to accomplish the task of linkage
identification is proportional to the number of the linkage sets
of the problem. Suppose that we are dealing with an ADF f
in which the length of solution string is £ = k X m, where m
is the number of subfunctions forming f, and k is the size of
each subfunction. In this case, using the notation of Tsuji et
al. [15]%, LINC needs O(¢?) = O(k?m?) function evaluations,

[15] separates the discussion of population size and additional function
evaluations used in linkage detection. To discuss the number of function
evaluations spent on linkage identification, it’s assumed that the population
size is large enough to capture all nonlinearity of the fitness function which
is the premise for perturbation methods such as LINC to work correctly.
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[ Problem Size | Population Size [ Function Evaluations

100 573 12033
200 675 27675
300 600 36600
400 675 54675
500 750 75750
600 825 99825
700 863 121683
800 788 126868
900 863 156203
TABLE III

SETTINGS AND RESULTS OF INDUCTIVE LINKAGE IDENTIFICATION ON
UNIFORMLY SCALED PROBLEMS

D® needs O(¢) = O(km) function evaluations, and ILI needs
O(m) function evaluations. As a consequence, both ILI and
D® need a number of evaluations growing linearly with the
problem size, but ILI needs fewer evaluations by a factor of
the building-block size k. The numerical results presented in
the next section verify this theoretical computation.

VI. NUMERICAL EXPERIMENTS

The empirical results are presented in this section. The
experiments are designed to show the behavior of the proposed
technique, ILI, on binary ADFs with non-overlapping sub-
functions. For the considered problems, the scalability of the
proposed algorithm is investigated and compared to LINC and
D®. Furthermore, the numerical results on uniformly scaled
functions and exponentially scaled functions are also presented
to examine the flexibility of ILI.

A. Uniformly Scaled Functions

This subsection describes the experimental settings and re-
sults of the proposed algorithm on uniformly scaled functions.
The experiment is performed on the functions composed of
traps subfunctions:

m
f(s) = Z ftraps (85.(i—1)+1 " * 85.(i—1)+5)
i=1
where m ranges from 20 to 180. That is, the problem size
ranges from 100 bits to 900 bits.

For each problem instance, the goal is to correctly identify
all the linkage sets in 10 consecutive and independent runs.
The population size is determined by starting at a medium
value and gradually grow (if the identification is unsuccessful)
or shrink (if it succeeds for ten independent runs) until
it reaches a minimum size. The settings used and number
of function evaluations spent are shown in Table III. It is
noted that the population sizes reported are not monotonically
increasing with the problem sizes. Due to the random nature
of population initialization, in some runs, the initial population
can reveal all nonlinearities of the objective function, but
in other runs, the initial population fail to reveal sufficient
nonlinearities, resulting in the failure of identification process.
In this aspect, the criterion of successful identifications in ten
consecutive and independent runs can be viewed as a bound
to prevent underestimation of population sizes.
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Fig. 3. Numerical results of ILI compared to that of LINC and D® [15] on  Fig. 4. Numerical results of ILI on exponentially scaled problems and com-
uniformly scaled problems. The number of function evaluations needed by  pared to that of ILI on uniformly scaled problems. ILI needs approximately
ILI grows linearly with the problem size. the same number of function evaluations for the same size of problems.

[ Problem Size | Population Size | Function Evaluations |
138 ;‘g 1?(5)32 For each problem instance, the objective is to identify all
150 525 16275 linkage sets correctly in 10 consecutive and independent runs
200 600 24600 and the population size is determined in the same way as
250 750 38250 described in the previous subsection. The results are listed
in Table IV(a). The results of ILI are compared to that of

(a) Exponentially Scaled
ILI on uniformly scaled functions presented in Table IV(b)

and plotted in Figure 4. It can be observed that ILI needs

| Population Size [ Function Evaluations

[ Problem Size
50 441 4851 ) . .
100 373 12033 approximately the same number of function evaluations for
150 554 17174 the same size of problems. It indicates that ILI is independent
200 675 27675 of different building block scalings.
250 788 40188
(b) Uniformly Scaled VII. DISCUSSION AND SUMMARY
TABLE IV
In this paper, we proposed an algorithm, called inductive

SETTINGS AND RESULTS OF INDUCTIVE LINKAGE IDENTIFICATION ON

EXPONENTIALLY SCALED PROBLEMS. linkage identification (ILI), to identify linkage for a class of

problems. The algorithm utilizes a supervised learning model,
ID3, as the task-force to estimate linkage sets. It starts at
The results of ILI are compared to that of LINC and D® [15] perturbing the values of a variable for the entire population
and plotted in Figure 3. The number of function evaluations Of solutions and record the fitness differences caused by
needed by ILI grows linearly with the problem size and is perturbations. According to the fitness differences, an ID3
much lower than that needed by LINC. It is also lower than D5  decision tree is constructed. Then based on the created tree, a
about a factor of the building-block size. The results confirm linkage group can be identified.
the theoretical computation presented in the previous section. A technical detail worth mentioned is that in this work
we use ID3 without backtracking. As we know from the
classification literature, using ID3 without backtracking (or
other techniques to constraint the growth of the tree) can lead
to significant over-fitting of the training data. However, in our
test problems, since no noise is presented in the objective
function, using no backtracking is harmless. For clarity of the

B. Exponentially Scaled Functions

In this subsection, the results for exponentially scaled func-
tions are presented. As in the experiment on uniformly scaled
functions, the ¢raps function is used as the subfunction to

compose more complicated functions:
mo idea and keeping the focus of the text, we omitted the analysis
f(s) = Z 271 x ftmps(55-(z>1)+1 c 55-(i—1)+5) , for noisy fitness functions and over-fitting, but readers should
i=1 be aware that for the case of noisy fitness functions such as real
world problems in which measurement errors exist, pruning or

where m ranges from 10 to 50. That is, the problem size ranges
from 50 bits to 250 bits. other techniques should be used to avoid over-fitting.
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ILI improves the previous methods, including LINC and
D®, in two aspects. First, the number of function evaluations
for identifying linkage sets is reduced. Second, the algorithm
requires no input parameter regarding the information of the
problem structure or problem complexity, such as the building
block size k. Moreover, the function evaluations required
by the proposed algorithm is proportional to the number of
linkage sets in the problem.

The proposed technique can be used in two possible areas.
First, it can serve as a preprocessing step of a running GA.
By obtaining the information of linkage sets, the crossover
operator can be designed to perform effective mixing of sub-
solutions. Second, it can be used as a tool for understanding the
structure of totally unknown or partially understood problems.
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