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Abstract

We calculate the absorption amplitudes of a closed string state at arbitrary mass level leading to two open string states on the D-brane at high
energies. As in the case of Domain-wall scattering we studied previously, this process contains only one kinematic variable. However, in contrast
to the power-law behavior of Domain-wall scattering, its form factor behaves as exponential fall-off in the high energy limit. After identifying
the geometric parameter of the kinematic, we derive the linear relations (of the kinematic variable) and ratios among the high energy amplitudes
corresponding to absorption of different closed string states for each fixed mass level by D-brane. This result is consistent with the coexistence of
the linear relations and exponential fall-off behavior of high energy string/D-brane amplitudes.
© 2007 Elsevier B.V. All rights reserved.

It is well-known that there are two fundamental characteristics of high energy string scattering amplitudes, which make them
very different from those of field theory scatterings. The first one is the softer exponential fall-off behavior of the form factors of
string scatterings in the high-energy limit [1] in contrast to the power-law behavior of point-particle field theory scatterings. The
second one is the existence of Regge-pole structure in the high energy string scattering amplitudes [2] due to the infinite number of
resonances in the string spectrum.

Recently high-energy, fixed angle behavior of string scattering amplitudes [3–5] was intensively reinvestigated for massive
string states at arbitrary mass levels [2,6–12]. An infinite number of linear relations, or stringy symmetries, among string scattering
amplitudes of different string states were obtained. An important new ingredient of these calculations is the zero-norm states (ZNS)
[13–15] in the old covariant first quantized (OCFQ) string spectrum. The existence of these infinite linear relations constitutes
the third fundamental characteristics of high energy string scatterings, which is not shared by the usual point-particle field theory
scatterings. These linear relations persist for string scattered from generic Dp-brane [16] except D-instanton and Domain-wall. For
the scattering of D-instanton, the form factor exhibits the well-known power-law behavior without Regge-pole structure, and thus
resembles a field theory amplitude. For the special case of Domain-wall (D24-brane for the case of bosonic string) scattering, it
was discovered [17] recently that, in contrast to the common wisdom of exponential fall-off behavior [18], its form factor behaves
as power-law with Regge-pole structure. This discovery makes Domain-wall scatterings an unique example of a hybrid of string
and field theory scatterings. Moreover, it was shown [17] that the linear relations break down for the Domain-wall scattering
due to this unusual power-law behavior. This result gives a strong evidence that the existence of the infinite linear relations, or
stringy symmetries, of high-energy string scattering amplitudes is responsible for the softer, exponential fall-off high-energy string
scatterings than the power-law field theory scatterings. It is crucial to note that there is only one kinematic variable for the Domain-
wall scatterings in contrast to two for other generic Dp-brane scatterings with p � 0. This is one of the main reasons that force the
high energy behavior of Domain-wall scattering to be the unusual power-law one.
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Fig. 1. Kinematic setting up.

In this Letter, we calculate the absorption amplitudes of a closed string state at arbitrary mass level leading to two open string
states on the D-brane at high energies. The corresponding simple case of absorption amplitude for massless closed string state
was calculated in [19] (the discussion on massless string states scattered from D-brane can be found in [18,20]).The inverse of
this process can be used to describe Hawking radiation in the D-brane picture. As in the case of Domain-wall scattering discussed
above, this process contains one kinematic variable (energy E) and thus occupies an intermediate position between the conventional
three-point and four-point amplitudes. However, in contrast to the power-law behavior of high energy Domain-wall scattering which
contains only one kinematic variable (energy E), its form factor behaves as exponential fall-off at high energies. It is thus of interest
to investigate whether the usual linear relations of high energy amplitudes persist for this case or not. As will be shown in this
Letter, after identifying the geometric parameter of the kinematic, one can derive the linear relations (of the kinematic variable) and
ratios among the high energy amplitudes corresponding to absorption of different closed string states for each fixed mass level by
D-brane. This result is consistent with the coexistence [17] of the linear relations and exponential fall-off behavior of high energy
string/D-brane amplitudes.

We first briefly review the high energy scatterings of four open string states. At a fixed mass level M2
op = 2(n − 1) of 26D open

bosonic string theory, it was shown that [9,10] a four-point function is at the leading order at high-energy limit only for states of the
following form

(1)|n,2m,q〉 ≡ (
αT−1

)n−2m−2q(
αL−1

)2m(
αL−2

)q |0, k〉,
where n � 2m + 2q,m,q � 0. Note that, in the high energy limit, the scattering process becomes a plane scattering. The state in
Eq. (1) is arbitrarily chosen to be the second vertex of the four-point function. The other three points can be any string states. We
have defined the normalized polarization vectors of the second string state to be [6,7]

(2)eP = 1

Mop
(E2,k2,0) = k2

Mop
,

(3)eL = 1

Mop
(k2,E2,0),

(4)eT = (0,0,1)

in the CM frame contained in the plane of scattering. By using the decoupling of two types of ZNS,

(5)Type I: L−1|x〉, where L1|x〉 = L2|x〉 = 0, L0|x〉 = 0 and

(6)Type II:
(

L−2 + 3

2
L2−1

)
|x̃〉, where L1|x̃〉 = L2|x̃〉 = 0, (L0 + 1)|x̃〉 = 0,

in the high energy limit, it was shown that there exists infinite linear relations among string scattering amplitudes [9,10]

(7)T (n,2m,q) =
(

− 1

Mop

)2m+q(
1

2

)m+q

(2m − 1)!!T (n,0,0).

Moreover, these linear relations can be used to fix the ratios among high energy scattering amplitudes of different string states at
each fixed mass level algebraically. Eq. (7) explicitly shows that there is only one independent high-energy scattering amplitudes at
each fixed mass level.

To study the high energy process of Dp brane (2 � p � 24) absorbs (emits) a massive closed string state leading to two open
strings on the Dp brane, we set up the kinematic for the massive closed string state to be

eP = 1
(E,kc cosφ,−kc sinφ,0) = kc

,

M M
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eL = 1

M
(kc,E cosφ,−E sinφ,0),

eT = (0, sinφ, cosφ,0),

(8)kc = (E,kc cosφ,−kc sinφ,0).

For simplicity, we chose the open string excitation to be two tachyons with momenta (see Fig. 1)

(9)k1 =
(

−E

2
,−kop

2
cos θ,0,−kop

2
sin θ

)
,

(10)k2 =
(

−E

2
,−kop

2
cos θ,0,+kop

2
sin θ

)
.

Our final results, however, will remain the same for arbitrary two open string excitation at high energies. Conservation of momentum
on the D-brane implies

(11)
1

2
(kc + D · kc)︸ ︷︷ ︸

(kc)‖

+k1 + k2 = 0 ⇒ kc cosφ = kop cos θ,

where Dμν = diag{−1,1,−1,1}. It is crucial to note that, in the high energy limit, kc = kop and the scattering angle θ is identical
to the incident angle φ. One can calculate θ

eT · k1 = eT · k2 = eT · D · k1 = eT · D · k2 = −kop cos θ sinφ

2
= −kc sinφ cosφ

2
,

eL · k1 = eL · k2 = eL · D · k1 = eL · D · k2 = 1

M

[
kcE

2
− kopE

2
cos θ cosφ

]
= kcE

2M
sin2 φ,

eT · D · kc = 2kc sinφ cosφ,

(12)eL · D · kc = −2kcE

M
sin2 φ,

which will be useful for later calculations. We can define the kinematic invariants

(13)t ≡ −(k1 + k2)
2 = M2

1 + M2
2 − 2k1 · k2 = −2(2 + k1 · k2) = 2k1 · kc = 2k2 · kc,

(14)s ≡ 4k1 · k2 = 2M2
1 + 2M2

2 + 2(k1 + k2)
2 = −2(4 + t),

and calculate the following identities

(15)k1 · kc + k2 · D · kc = k2 · kc + k1 · D · kc = t,

(16)kc · D · kc = M2 − 2t.

Note that there is only one kinematic variable as s and t are related in Eq. (14) [19]. On the other hand, since the scattering angle θ

is fixed by the incident angle φ, φ and θ are not the dynamical variables in the usual sense.
Following Eq. (1), we consider an incoming high energy massive closed state to be [16,17] (αT−1)

n−m−2q(αL−1)
m(αL−2)

q ⊗
(α̃T−1)

n−m′−2q ′
(α̃L−1)

m′
(α̃L−2)

q ′ |0〉 with m = m′ = 0. The amplitude of the absorption process can be calculated to be

A =
∫

dx1 dx2 d2z · (x1 − x2)
k1·k2(z − z̄)kc·D·kc (x1 − z)k1·kc

× (x1 − z̄)k1·D·kc (x2 − z)k2·kc (x2 − z̄)k2·D·kc

× exp
{〈[

ik1X(x1) + ik2X(x2) + ikcX̃(z̄)
][

(n − 2q)ε
(1)
T ∂XT + iqε

(1)
L ∂2XL

]
(z)

〉
(17)+ 〈[

ik1X(x1) + ik2X(x2) + ikcX(z)
][

(n − 2q ′)ε(2)
T ∂̄X̃T + iq ′ε(2)

L ∂̄2X̃L
]
(z̄)

〉
linear terms

}
= (−1)q+q ′

∫
dx1 dx2 d2z · (x1 − x2)

k1·k2(z − z̄)kc·D·kc (x1 − z)k1·kc

× (x1 − z̄)k1·D·kc (x2 − z)k2·kc (x2 − z̄)k2·D·kc

×
[
ieT · k1

x1 − z
+ ieT · k2

x2 − z
+ ieT · D · kc

z̄ − z

]n−2q

·
[
ieT · D · k1

x1 − z̄
+ ieT · D · k2

x2 − z̄
+ ieT · D · kc

z − z̄

]n−2q ′

(18)×
[

eL · k1

(x1 − z)2
+ eL · k2

(x2 − z)2
+ eL · D · kc

(z̄ − z)2

]q

·
[

eL · D · k1

(x1 − z̄)2
+ eL · D · k2

(x2 − z̄)2
+ eL · D · kc

(z − z̄)2

]q ′

.
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Set {x1, x2, z} = {−x, x, i} to fix the SL(2,R) gauge and use Eq. (12), we have

A = (−1)n+M2/2+t/22M2−2−5t/2 ·
+∞∫

−∞
dx · x−t/2−2(1 − ix)t+1(1 + ix)t+1

×
[− kc sinφ cosφ

2

1 − ix
+ − kc sinφ cosφ

2

1 + ix
+ 2kc sinφ cosφ

2

]n−2q

×
[− kc sinφ cosφ

2

1 + ix
+ − kc sinφ cosφ

2

1 − ix
+ 2kc sinφ cosφ

2

]n−2q ′

(19)×
[ kcE

2M
sin2 φ

(1 − ix)2
+

kcE
2M

sin2 φ

(1 + ix)2
+ − 2kcE

M
sin2 φ

4

]q

·
[ kcE

2M
sin2 φ

(1 + ix)2
+

kcE
2M

sin2 φ

(1 − ix)2
+ − 2kcE

M
sin2 φ

4

]q ′

= (−1)n+M2/2+t/22M2−2−5t/2 · (kc sinφ cosφ)2n−2(q+q ′)
(

−kcE sin2 φ

2M

)q+q ′

(20)×
+∞∫

−∞
dx · x−t/2−2(1 + x2)t+1

[
x2

1 + x2

]2n−2(q+q ′)[
1 − 2(1 − x2)

(1 + x2)2

]q+q ′

.

By using the binomial expansion, we get

A = (−1)n+M2/2+t/22M2−2−5t/2 · (E sinφ cosφ)2n

(
− 1

2M cos2 φ

)q+q ′

×
q+q ′∑
i=0

i∑
j=0

(
q + q ′

i

)(
i

j

)
(−2)i(−1)j

(21)×
∞∫

0

d
(
x2) · (x2)−t/4−3/2+2n−2(q+q ′)+j (1 + x2)t+1−2n+2(q+q ′)−2i

.

Finally, to reduce the integral to the standard beta function, we do the linear fractional transformation x2 = 1−y
y

to get

A = (−1)n+M2/2+t/22M2−2−5t/2 · (E sinφ cosφ)2n

(
− 1

2M cos2 φ

)q+q ′

×
q+q ′∑
i=0

i∑
j=0

(
q + q ′

i

)(
i

j

)
(−2)i(−1)j

1∫
0

dy · y−3t/4−3/2+2i−j · (1 − y)−t/4−3/2+2n−2(q+q ′)+j

= (−1)n+M2/2+t/22M2−2−5t/2 · (E sinφ cosφ)2n

(
− 1

2M cos2 φ

)q+q ′

× �
(− 3t

4 − 1
2

)
�

(− t
4 − 1

2

)
�(−t − 1)

q+q ′∑
i=0

i∑
j=0

(
q + q ′

i

)(
i

j

)
(−2)i(−1)j

(
3

4

)2i−j(1

4

)2n−2(q+q ′)+j

= (−1)n+M2/2+t/22M2−2−5t/2 ·
(

E sinφ cosφ

4

)2n

(22)×
(

− 2

M cos2 φ

)q+q ′
�

(− 3t
4 − 1

2

)
�

(− t
4 − 1

2

)
�(−t − 1)

.

In addition to an exponential fall-off factor, the energy E dependence of Eq. (22) contains a pre-power factor in the high energy
limit. To obtain the linear relations for the amplitudes at each fixed mass level, we rewrite Eq. (22) in the following form

(23)
T T n−2qLq ,T n−2q′

Lq′

T T n,T n =
(

− 2

M cos2 φ

)q+q ′

.

One first notes that Eq. (23) does not contradict with Eq. (7), which predict the ratios (− 1
2M

)q+q ′
. This is because for the absorption

process we are considering, there is only one kinematic variable and the usual Ward identity calculations do not apply. To compare
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Eq. (23) with the “ratios” of the Domain-wall scattering [17]

(24)
T T n−2qLq ,T n−2q′

Lq′

T T n,T n

∣∣∣∣
Domain

=
(

E sinφ

M

√
|M2

1 − 2M2 − 1| cos2 φ

)q+q ′

,

one sees that, in addition to the incident angle φ, there is an energy dependent power factor within the bracket of q + q ′. Thus there
is no linear relations for the Domain-wall scatterings. On the contrary, Eq. (23) gives the linear relations (of the kinematic variable
E) and ratios among the high energy amplitudes corresponding to absorption of different closed string states for each fixed mass
level n by D-brane. Note that since the scattering angle θ is fixed by the incident angle φ, φ is not a dynamical variable in the usual
sense. Another way to see this is through the relation of s and t in Eq. (14). We will call such an angle a geometrical parameter in
contrast to the usual dynamical variable. This kind of geometrical parameter shows up in closed string state scattered from generic
Dp-brane (except D-instanton and D-particle) [16,17]. This is because one has only two dynamical variables for the scatterings, but
needs more than two variables to set up the kinematic due to the relative geometry between the D-brane and the scattering plane at
high energies. We emphasize that our result in Eq. (23) is consistent with the coexistence [17] of the linear relations and exponential
fall-off behavior of high energy string/D-brane amplitudes. That is, linear relations of the amplitudes are responsible for the softer,
exponential fall-off high-energy string/D-brane scatterings than the power-law field theory scatterings.
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