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Abstract

To meet ever-increasing demands for higher performance and lower power consumption, many high-end digital signal processors
(DSPs) commonly employ non-orthogonal architecture. This architecture typically is characterized by irregular data paths, heteroge-
neous registers, and multiple memory banks. Moreover, sufficient compiler support is obviously important to harvest its benefits. How-
ever, usual compilation techniques do not adapt well to non-orthogonal architectures and the compiler design becomes much more
difficult due to the complexity of these architectures. The entire code generation process for non-orthogonal architecture must include
several phases. In this paper, we extend our previous study to propose a code generation algorithm Rotation Scheduling with Spill Codes

Avoiding (RSSA), which is suitable for various DSPs with similar architectural features. As well as introducing detailed principles and
algorithms of RSSA, we select several DSP applications and evaluate it under Motorola DSP56000 architectures. The evaluation results
clearly demonstrate the effectiveness of RSSA, which can obtain scheduling results with minimum length and fewer spill codes compared
to related work. In addition, in order to study the influence of different number of resources on the scheduling result, we also define a
hypothetical machine model to represent a scalable non-orthogonal DSP architecture. After evaluating RSSA on various target archi-
tectures, we find that adding additional accumulators is the most efficient way to reduce spill codes. Meanwhile, for instruction-level par-
allelism exploration, numbers of data ALUs and accumulators have to be concurrently increased. Furthermore, based on our analysis,
RSSA is not only effective but also quite efficient compared to related studies.
� 2006 Published by Elsevier Inc.
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1. Introduction

Most scientific and digital signal processing (DSP) appli-
cations, such as image processing and weather forecasting,
are iterative and usually represented by uniform nested
loops (Hsu and Jeang, 1993; Kung, 1988; Madisetti,
1995). A digital signal processor (DSP) is a special-purpose
microprocessor that is designed to achieve high perfor-
mance in DSP applications (Eyer and Bier, 2000). In order
to meet stringent speed and power requirements for embed-
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ded applications, DSPs commonly employ non-orthogonal

architectures that are typically characterized by irregular
data paths, heterogeneous register sets, and multiple mem-
ory banks (Cho et al., 2002). For the data path this archi-
tecture has multiple small register files dedicated to
different sets of function units instead of a large number
of centralized homogeneous registers. In addition, parallel
access, enabled by multi-bank memory, is useful to explore
the potential of higher memory bandwidth but gives rise to
the problem of how to partition variables into the multiple
memory banks (Cho et al., 2002; Lee and Chen, 2004; Leu-
pers and Kotte, 2001; Saghir et al., 1994; Saghir et al.,
1996; Shiue, 2001; Sudarsanam and Malik, 2000; Wang
and Hu, 2004; Zhuge et al., 2001). Therefore, to harvest
the benefits provided by this non-orthogonal architecture,
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adequate compiler support is obviously essential (Lapsley
et al., 1996; Madisetti, 1995).

Many researchers seek to design code generation algo-
rithms for specific DSP architectures to use their features
fully. The complete code generation process for non-
orthogonal architecture must include several phases, such
as intermediate representation, code compaction, instruc-
tion scheduling, memory bank assignment (or variable par-
tition), and accumulator/register assignment (Sudarsanam
and Malik, 2000). In our previous study, we proposed
two scheduling methods for multi-bank memory architec-
ture that cover all phases except accumulator/register
assignment (Lee and Chen, 2004). Next, we also propose
a code generation algorithm that contains all of the above
phases (Lee and Chen, 2005). From our evaluation,
although the algorithm proposed in Lee and Chen (2005)
is relatively efficient and effective, it was not scalable and
specifically designed for an embedded DSP Motorola
DSP56000. Therefore, we want to extend it to a more
general algorithm, which is suitable for various DSPs with
similar architectural features.

Due to strict resource constraints of the non-orthogonal
DSP architecture, accumulator/register spills will occur
very often. If more spill codes are added to the final sche-
dule, not only the scheduling length may be lengthened,
but also costs more power consumption to execute those
additional instructions. That is, in addition to increase
the instruction-level parallelism, how to avoid generating
too many spill codes is also an important issue of designing
the code generation algorithm for non-orthogonal DSP
architecture. Moreover, although using an effective code
generation algorithm can obtain scheduling results with
shorter length and less spill codes, increasing the number
of resources is essentially a more direct way to achieve
the same goal. Therefore, in this paper, we will propose
an effective code generation method, and deep study the
influence of differing number of resources on the scheduling
result.

In order to do above studies, we need a parameterized
architecture to model a scalable non-orthogonal DSP.
Many parameterized architecture models have been devel-
oped to explore and investigate advanced compiler and
architecture research (MESCAL; OptimoDE; ORC; Ten-
silica; Trimaran). However, none of them can faithfully
represent the irregularity of non-orthogonal DSP architec-
ture, especially its two main features multiple memory
banks and heterogeneous register sets. Thus, we define a
hypothetical machine model extended from the Motorola
DSP56000, in which more resources will be included. Our
proposed method is named Rotation Scheduling with Spill

Codes Avoiding (RSSA). It is extended from our previous
study (Lee and Chen, 2005), and its scheduling goal is to
achieve shorter schedule length and avoid generating spill
codes as far as possible. RSSA mainly contains five parts
with following features. First, it contains a procedure to
generate uncompacted codes directly from a high-level lan-
guage. In most other related methods, this is not included
and is done by existing tools (Cho et al., 2002; Sudarsanam
and Malik, 2000; Shiue, 2001). Next, memory bank assign-
ment is performed before code compaction as in Lee and
Chen (2005). This execution sequence makes memory
accesses be scheduled with information of variable parti-
tioning, which can avoid extra cycles to fetch variables.
Then, RSSA separately schedules ALU and memory load
instructions in different parts. This strategy makes registers
unfilled while dealing with accumulator spills, which is ben-
eficial for temporarily storing overwritten ALU results.
Compared to store and reload overwritten ALU results
in memory, this mechanism requires less spill codes to
resolve accumulator spills. It can be shown that using
RSSA can obtain scheduling results with minimum length
and fewer spill codes compared with related work. The rea-
son is that it first generates the schedule without consider-
ing resource constraints and lengthens the schedule only
when required.

After introducing the general algorithm, we selected sev-
eral multi-dimensional data flow graphs (MDFGs) repre-
senting DSP applications for evaluation. Two metrics
including schedule length and instruction count are used
to evaluate the performance at the same time. From the
evaluation results, our method actually can obtain shorter
schedule lengths and less spill codes than those of related
studies under the Motorola DSP56000 architecture. These
results represent that our method is really effective on both
evaluation metrics. In addition, we further analyze the
effectiveness of RSSA itself. When the target architecture
consists of more than one data ALU, RSSA can produce
a schedule with length equal to or less than the critical path
of the given MDFG. If there is only one data ALU, it still
can produce the schedule with length equal to the number
of ALU instructions of the given MDFG. As for the
instruction count, RSSA also generates quite few spill
codes. Meanwhile, these additional spill codes will be
compacted with regular codes as far as possible, which
can prevent lengthening the final schedule length and cost
less power consumption. Then, the proposed method is
evaluated on various target architecture to study the influ-
ence of differing number of resources on the scheduling
result. It shows that accumulator is the most critical
resource in non-orthogonal DSP architecture, because
increasing the number of it is necessary to improve perfor-
mance on both evaluation metrics. From our evaluation
results, if the target architecture contains more than four
accumulators, it is sufficient to keep most ALU results
and eliminate almost all spill codes. Using more input reg-
isters or memory banks also can slightly reduce the instruc-
tion count. However, implementing additional memory
banks and associated data buses requires heavy hardware
costs. Thus, in view of their cost-performance, we recom-
mend using additional accumulators to reduce the instruc-
tion count. As for instruction-level parallelism exploration,
we conclude that numbers of data ALUs and accumulators
must be concurrently increased. If only more data ALUs
are added, accumulator spills will occur much frequently



for i = 1 to m
for j = 1 to n

D[i, j] = B[i-1, j] × C[i-1, j-2] ;
A[i, j] = D[i, j] × 0.5 ;
B[i, j] = A[i, j] + 1 ;
C[i, j] = A[i, j-1] + 2 ;

  end 
end
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Fig. 1. The MDFG example. (a) Nested loop in C code, (b) corresponding
MDFG, (c) node types.
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and incur many spill codes. Besides, from evaluation results
it also shows that two data ALUs in the target architecture
is actually sufficient, since using our RSSA can generate
shortest schedules in most MDFGs. Finally, we compare
the efficiency among our method and some previous work.
After analyzing execution complexities of scheduling
phases for each method separately, it shows that RSSA is
the most efficient one.

The remainder of this paper is organized as follows. Sec-
tion 2 surveys the fundamental background and related
studies. Our hypothetical target architecture and design
motivations are also presented. Detailed principles and
algorithms for the proposed method are introduced in Sec-
tion 3. Section 4 contains our preliminary performance
evaluations and brief description. Finally, conclusions
and plans for future work are presented in Section 5.

2. Fundamental background

In this section, we describe some fundamentals, such as
the program model, the retiming technique, and the target
machine model. After surveying related studies, our design
motivations are introduced.

2.1. Program model

Because multimedia and DSP applications are usually
represented by uniform nested loops, they are commonly
modeled by an MDFG. We define the MDFG to be the
same as in Lee and Chen (2005), which is slightly different
from previous studies (Lee and Chen, 2004; Zhuge et al.,
2001).

Definition 2.1. An MDFG G = (V,E,X,d,P) is a node-
weighted and edge-weighted direct graph, where V is the set
of computation nodes; E � V · V is the edge set that
defines the precedence relations; X(e) represents the vari-
able accessed by an edge e; d(e) is a function from E to Zn

representing the multi-dimensional delays between two
nodes, where n is the number of dimensions; and P(v)
represents the node type (see Fig. 1(c)).

Fig. 1 shows an example of a nested loop and its corre-
sponding MDFG. Nodes in the MDFG include ALU
(multiplications and additions), memory access (load/store
variable and load constant), and register transfer instruc-
tions. Note that an edge, e, that does not involve a memory
access does not have a label X(e). An MDFG is realizable if
there exists a schedule vector s, such that s Æ d P 0, where d

are loop-carried dependencies (Lamport, 1974). An itera-

tion is equivalent to executing each node in V exactly once.
The cycle period is the period during which all nodes in an
iteration are executed without resource constraints. It is
also the maximum execution time among paths that have
no delay, which will dominate the entire execution time
of a nested loop. Note that many MDFGs can represent
a single DSP application, depending on its representation
by nested loops.
2.2. Retiming technique (Leiserson and Saxe, 1991)

Retiming is a popular technique used in loop scheduling
that redistributes nodes in consecutive iterations to
enhance the execution performance. The retiming vector

r(u), a function from V to Zn, represents the offset between
the original iteration and that after retiming. An MDFG
Gr = (V,E,X,dr,P) is created after applying r, where the
difference between G and Gr is only the delay vectors. Delay
vectors will be changed accordingly to preserve the original
dependencies.

A prologue is the instruction set that must be executed to
provide necessary data for the iterative process. An epi-

logue is the complementary set that will be executed to
complete the process. If the nested loop contains sufficient
iterations, the time required for prologue and epilogue are
negligible.

2.3. Hypothetical machine model

To conduct advanced compiler and architecture
research, many parameterized architecture models are
developed for simulation and evaluation (MESCAL; Opti-
moDE; ORC; Tensilica; Trimaran). Most of them are ori-
ented towards EPIC (explicitly parallel instruction

computing) or superscalar architectures, and support novel
features such as prediction, control and data speculation,
and memory hierarchy. However, none of them supports
features like multiple memory banks and heterogeneous
register sets. Therefore, in the following, we define a hypo-
thetical machine model to represent a scalable non-orthog-
onal DSP architecture.

Fig. 2 shows the system overview of the Motorola
DSP56000 (Motorola). This DSP is an example of non-
orthogonal architecture, and is commonly used in practice



Fig. 2. Motorola DSP56000 architecture.
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and research. As shown in Fig. 2, this processor consists of
two memory banks, one data ALU, two accumulators, and
four input registers (two for each memory bank). Our
hypothetical machine model is generalized from the Moto-
rola DSP56000. That is, in our design and experiments, we
assume the target architecture contains N memory banks
(M1 . . .MN), k data ALUs (ALU1 . . .ALUk), k · m accumu-
lators (acc11 . . .acc1m, . . . ,acck1 . . .acckm), and N · n input
registers (reg11 . . . reg1n, . . . , regN1 . . . regNn). Similar to the
Motorola DSP56000, the source operands for all ALU
operations, except multiplication, must be input registers
or accumulators and the destination operand must always
be an accumulator. For multiplication, two source oper-
ands must always be input registers.

In the Motorola DSP56000 architecture, up to two
move operations (including memory access, register trans-
fer, and immediate load) and one data ALU instruction
may be executed simultaneously in one cycle. Independent
move operations executed in the same cycle are called par-

allel moves. However, due to the nature of the target archi-
tecture, only independent instructions satisfied parallel
move conditions can be performed in parallel. In the follow-
ing, we inherit these parallel move conditions and extend
them to fit our assumed target architecture: (1) up to N

independent move operations and k ALU instructions
can be executed simultaneously in one cycle; (2) the N

move operations reference data in different memory banks;
(3) the N destination registers are different; (4) the Mi mem-
ory access load into restricted locations regi1 . . . regin, or all
accumulators. Besides, about k ALU instructions being
executed simultaneously, we define three conditions as fol-
lows: (1) 2k source operands must be read from different
input registers or accumulators; (2) k destination operands
must be stored in different accumulators; (3) the ALU
instruction executed by ALUi must store the generated
ALU result in accumulators acci1 . . .accim. Note that we
only list conditions specifically considered in the proposed
method. Detailed parallel move conditions of the Motorola
DSP56000 can be found in (Motorola).
2.4. Related work

A complete code generation algorithm for the architec-
ture with multiple memory banks and a heterogeneous
register set must include five phases: intermediate represen-
tation, code compaction, instruction scheduling, memory

bank assignment (or variable partition), and register/accu-

mulator assignment (Sudarsanam and Malik, 2000). These
five phases can be performed in various sequences because
they are logically independent. In addition, due to their
extreme data dependences, more than one phase also can
be considered simultaneously. However, code generation
algorithms with tightly coupled phases are very time con-
suming, so we do not use this mechanism in our design
method.

A number of papers have investigated the use of multi-
bank memory to achieve maximum instruction level paral-
lelism. (Leupers and Kotte, 2001; Saghir et al., 1994) focus
on designing variable partitioning mechanisms, which try
to evenly distribute memory accesses and explore the
potential of higher memory bandwidth. For heterogeneous
register sets, (Daveau et al., 2004; Scholz and Eckstein,
2002; Zhuang et al., 2004) present specific register alloca-
tion algorithms to fit their irregularity. Methods proposed
in Lee and Chen (2004), Saghir et al. (1996), Wang and Hu
(2004), Zhuge et al. (2001) solve both instruction schedul-
ing and memory bank assignment problems, but do not
consider the limitation of registers/accumulators. In addi-
tion, five methods (Cho et al., 2002; Kessler and Bednarski,
2002; Lee and Chen, 2005; Sudarsanam and Malik, 2000;
Shiue, 2001) contain all above phases, and all except (Kess-
ler and Bednarski, 2002) select Motorola DSP56000 as the
target architecture. We describe three methods of them in
some detail as follows.

In Cho et al. (2002), the main idea is applying the graph

coloring approach to treat variable partition and register/
accumulator assignment. For register/accumulator assign-
ment, this phase is specially decoupled into two steps. It
first classifies physical registers into a set of register
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classes, and allocates each temporary variable to one of
the register classes. Next, the graph coloring algorithm is
applied to assign each temporary variable a physical regis-
ter within the register class previously allocated to it. After
generating compacted codes, a weighted undirected graph
is constructed based on the sequence of variables refer-
enced in these codes. Then, it identifies the maximum span-

ning tree (MST) of this graph, and assigns variables to
each memory bank also using the graph coloring
algorithm.

Sudarsanam and Malik (2000) is an example that simul-
taneously considers two phases. Because the Motorola
DSP56000 has a heterogeneous register set, the memory
access to each memory bank must load in a restricted set
of locations. Therefore, (Sudarsanam and Malik, 2000)
claims that variable partition and register/accumulator
assignment phases should be performed simultaneously to
maximally explore available parallelism among move oper-
ations. After generating compacted codes, an undirected
graph is constructed representing constrained conditions
on the register and memory bank assignments. Then, an
algorithm based on graph labeling is used to determine both
memory bank and register/accumulator assignments
simultaneously.

Lee and Chen (2005) is our previous work, which con-
tains features as follows. First, it has a procedure to gener-
ate uncompacted codes directly from a high-level language.
In other related methods, this step is usually not included
and performed using an existing tool. Second, it performs
memory bank assignment before code compaction. In this
case, memory accesses are scheduled with information of
memory bank assignment. That is, the location conflict
for parallel moves, in which two memory accesses are
assumed to be executed in parallel but actually cannot
be, will not occur. Third, it predicts the occurrence of accu-
mulator spills and generates corresponding spill codes
before code compaction. This feature forces spill codes to
be scheduled in parallel with other instructions, which
can prevent extension of the schedule length. Forth, it con-
siders the limited number of registers during scheduling, so
no extra action is required to check and handle the occur-
rences of register spills. Finally, it applies the retiming tech-
nique to reassign delays to explore the embedded
parallelism of a loop.

2.5. Design motivation

After surveying related methods, we introduce our
design motivations. In Lee and Chen (2005) we list two
motivations: performing memory bank assignment before
code compaction and predicting the occurrence of accumu-
lator spills. We retain the former in the proposed method
because it certainly can avoid the occurrence of spill codes.
However, when the target architecture is not specific, using
topological analysis of the input MDFG to predict accu-
mulator spills becomes much more difficult and inaccurate.
Therefore, in the new proposed method, we design another
mechanism to solve accumulator spills and not predict their
occurrence.

Next, we will consider the resolution of accumulator/
register spills. When the register spill occurs, a variable cur-
rently residing in a register should be overwritten and
reloaded again when required. If the overwritten variable
is an ALU result transferred from an accumulator, it must
be temporarily stored in the memory. As for the accumula-
tor spill, except in memory, the overwritten ALU result can
also be temporarily stored in a register before being used.
Consider the following example. Assume the target archi-
tecture is the Motorola DSP56000, and we apply the
method proposed in Cho et al. (2002) to schedule it.
Fig. 3(a) and (b) show the sequence of assembly codes
before and after doing code compaction. During the accu-
mulator/register assignment phase, an accumulator spill is
found at I3. At that time, all variables residing in the four
input registers will be used later (this algorithm schedules
operations ASAP), so the overwritten ALU result, m, must
be stored temporarily in memory. Later another memory
access is added to reload m before I8. Fig. 3(c) lists the final
scheduling result using the method described in Cho et al.
(2002). However, as shown in Fig. 3(d), if we move instruc-
tion i13 to I5, variable m can be transferred to register Y0
instead of memory. In this case, one extra spill cost is elim-
inated and the schedule length reduces. From this example,
we have found that it is preferable for an overwritten ALU
result to be transferred to an input register when an accu-
mulator spill occurs. In the new proposed method we will
follow this principle to resolve accumulator spills.

In order to give an overwritten ALU result high priority
to be temporarily stored in a register, input registers must
be unfilled as far as possible while dealing with accumula-
tor spills. However, according to the scheduling steps of
(Cho et al., 2002; Sudarsanam and Malik, 2000; Shiue,
2001), accumulator spills are resolved after all operations
been scheduled. In this case input registers will be occupied
by source operands, which is unfavorable for inserting
additional register transfers. Therefore, in the proposed
method we divide the instruction scheduling phase into
two steps, and let ALU operations be scheduled before
memory accesses. Based on this mechanism, input registers
can remain unfilled to store overwritten ALU results dur-
ing dealing with accumulator spills, which is able to reduce
additional spill costs.

Finally, we consider the time that register/accumulator
been resolved during the entire code generation process.
In Cho et al. (2002) and Sudarsanam and Malik (2000)
they both perform this action at last, which means during
instruction scheduling and code compaction the number
of registers/accumulators are assumed to be unlimited.
We think this case could have two flaws. One is the sche-
dule length may be lengthened, because additional spill
codes cannot be scheduled in parallel with other instruc-
tions. The scheduling result shown in Fig. 3(c) is such an
example. Another is about its execution complexity.
Although in Cho et al. (2002) and Sudarsanam and Malik



MOVE a, reg0 (i0)

MOVE b, reg1 (i1)

MPY acc0, reg0, reg1 (i2)

MOVE c, reg2 (i3)

ADD acc1, acc0, reg2 (i4)

MOVE d, reg3 (i5)

ADD acc2, acc1, reg3 (i6)

MOVE acc2, p (i7)

MOVE e, reg4 (i8)

ADD acc3, acc1, reg4 (i9)

ADD acc4, acc3, reg3 (i10)

MOVE acc4, r (i11)

ADD acc5, acc3, reg0 (i12)

MOVE f, reg5 (i13)

ADD acc6, acc5, reg5 (i14)

ADD acc7, acc0, acc6 (i15)

MOVE acc7, t (i16)

MOVE X: a, reg0 Y: b, reg1 (I0)

MPY acc0, reg0, reg1 X: c, reg2 Y: d, reg3 (I1)

ADD acc1, acc0, reg2 X: e, reg4 Y: f, reg5 (I2)

ADD acc2, acc1, reg3 (I3)

ADD acc3, acc1, reg4 acc2, X: p (I4)

ADD acc4, acc3, reg3 (I5)

ADD acc5, acc3, reg0 acc4, Y: r (I6)

ADD acc6, acc5, reg4 (I7)

ADD acc7, acc0, acc6 (I8)

MOVE acc7, X: t (I9)

MOVE X: a, X0 Y: b, Y0 

MPY A, X0, Y0 X: c, X1 Y: d, Y1 

ADD B, A, X1 X: e, X1 Y: f, Y0 

MOVE A, X: m 

ADD A, B, Y1 

ADD A, B, X1 A, X: p 

ADD B, A, Y1 

ADD B, A, X0 B, Y: r 

ADD A, B, Y0 

MOVE X: m, X0 

ADD B, A, X0 

MOVE B, X: t 

MOVE X: a, X0 Y: b, Y0 

MPY A, X0, Y0 X: c, X1 Y: d, Y1 

ADD B, A, X1 X: e, X1 

MOVE A, Y0 

ADD A, B, Y1 

ADD A, B, X1 A, X: p 

ADD B, A, Y1 Y: f, Y1 

ADD B, A, X0 B, Y: r 

ADD A, B, Y1 

ADD B, A, Y0 

MOVE B, X: t 

a b

c d

Fig. 3. An example of code compaction. (a) Uncompacted code, (b) compacted code, (c, d) two scheduling results after resource assignment.
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(2000) they do not present detailed mechanisms to insert
spill codes, they definitely require an independent step to
do this action. If the system contains strict resource con-
straints, this step may cost considerable time. Therefore, in
the new proposed method, we want to not only design effi-
cient mechanisms to determine and resolve register/accumu-
lator spills, but also integrate them into the instruction
scheduling and code compaction phases. That is, during
instruction scheduling we have considered resource con-
straints already, and then no extra action is required to insert
spill codes. Detailed descriptions of instruction scheduling
and spill codes inserting will be listed in the next section.

3. Rotation scheduling with spill codes avoiding (RSSA)

In this section, we introduce our proposed method
named Rotation Scheduling with Spill Codes Avoiding

(RSSA). Section 3.1 contains some basic assumptions and
scheduling principles. Detailed steps of RSSA are intro-
duced in Section 3.2.
3.1. Preliminaries

To correctly execute an MDFG, its data dependencies
cannot be violated. Because the non-orthogonal architec-
ture has additional constraints on the use of resources, reg-
isters and accumulators must be used very carefully to
preserve data dependencies. An operand residing in a reg-
ister/accumulator obviously cannot be overwritten before
being used. Corresponding to the nature of our hypotheti-
cal architecture in Section 2.3, we list three scheduling prin-
ciples to satisfy the above rule. For convenience, we only
permit a variable loaded from memory to be stored in an
input register.

1. For an edge eij of an MDFG with zero delay, if
P(vi) = L/C/T and P(vj) = M/A, vj must be executed
no later than the next n node (in the same memory bank
as vi) with type L/C/T.

2. For an edge eij of an MDFG with zero delay, if
P(vi) = M/A and P(vj) = S/T, vj must be executed no



for i = 1 to m
0 1
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later than the next m ALU instructions (in the same data
ALU as vi).

3. For an edge eij of an MDFG with zero delay, if vi and vj

are both ALU instructions and executed in the same
data ALU, at most m � 1 ALU instructions can be exe-
cuted between vi and vj.

We will propose our code generation algorithm RSSA
consistent with these principles. Moreover, some operands
of ALU instructions may be constants in DSP applications.
These constants can be intuitively loaded using immediate
load instructions. However, due to parallel move condi-
tions, an immediate load is rarely executed in parallel with
other independent move operations. Therefore, we use load
constant instead of immediate load in our method. We
assume constants are stored in all memory banks at specific
locations in advance. The load constant instruction will
load constants directly from a specific address, which is
essentially equivalent to the original load variable instruc-
tion. Meanwhile, the load constant can be scheduled for
any memory bank to increase performance.

3.2. Detailed algorithms of RSSA

From the related fundamentals and preliminaries above,
we introduce our general code generation algorithm RSSA
in the following. As mentioned in Section 1, both exploring
the instruction-level parallelism and avoiding generating
too many spill codes are important issues to design an effec-
tive code generation algorithm for non-orthogonal DSP
architecture. In our RSSA we will achieve these two goals
at the same time. As shown in Fig. 4, we divide the overall
algorithm into five main parts: MDFG construction,
TDAG construction, instruction scheduling (I), instruction
scheduling (II), and initial schedule retiming. Note that
RSSA is also an extension of our previous study. Thus,
we will inherit some definitions and algorithms from Lee
and Chen (2005) and then design new mechanisms to
improve it.

3.2.1. MDFG construction

The first part essentially contains two phases, including
MDFG construction and memory bank assignment. Both
two phases are inherited from Lee and Chen (2005). In
1. Gc = Construct MDFG; 

2. Partition variables to memory banks; 

3. Unfold or tile Gc if necessary; 

4. Gt = Construct TDAG (Gc);

5. S = Schedule all instructions except memory loads (Gt);

5.1. Gop = Construct DAG Gop (Gt);

5.2. S = Schedule nodes in Gop (Gop);

5.3. S = Determine and solve accumulator spills (S, Gop);

6. S = Schedule memory load instructions (S, Gt);

7. S = Retime the initial scheduling result (S, Gt);

Fig. 4. The overall scheduling algorithm.
addition, during the construction of the MDFG, operands
are stored in memory and reloaded into registers only when
they are required for use. That is, an ALU instruction in
high-level language corresponds to four nodes in the
MDFG, and three of these are move operations. This
mechanism appears burdensome but is really used in some
DSP compilers, because the number of registers is limited
in DSP and memory is the only safe repository. We use
Fig. 5 to illustrate the relationship between the high-level
language and the MDFG in Fig. 1.

For memory bank assignment the three mechanisms pro-
posed in Lee and Chen (2004) and Zhuge et al. (2001) can be
chosen. Similarly, if we select the mechanisms proposed in
Lee and Chen (2005), the MDFG must be unfolded or tiled
according to the number of memory banks.

3.2.2. TDAG construction

According to the algorithm we use to construct the
MDFG, clearly register and accumulator spills will not
occur if all operations in the MDFG are scheduled. How-
ever, this MDFG is too complete to degrade the computa-
tional performance, because ALU results can be
temporarily stored in accumulators or registers. In Lee
and Chen (2005) we define a translated data acyclic graph

(TDAG) constructed from the original MDFG, which is
used to remove possible unnecessary memory accesses. In
this method, we retain the definition and slightly modify
the constructing algorithm of a TDAG. Fig. 6 shows the
modified TDAG construction algorithm, and Fig. 7(a) is
the TDAG corresponding to the MDFG in Fig. 1(b).

Definition 3.1. A translated data acyclic graph (TDAG)
G = (V,E,X,P) is a node-weighted and edge-weighted
direct graph, where V is the set of computation nodes;
E � V · V is the edge set that defines the precedence
relations over the nodes in V; X(e) represents the variable
accessed by an edge e; P(v) represents the type of node v

(see Fig. 1(c)).

Note that in this construction algorithm, if an operand
is shared by an addition and a multiplication, a register
transfer instruction is inserted before addition as shown
for j = 1 to n
D[i, j] = B[i-1, j] ×  C[i-1, j-2] ;
A[i, j] = D[i, j] ×  0.5 ;
B[i, j] = A[i, j] + 1 ;
C[i, j] = A[i, j-1] + 2 ;

end 
end
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Fig. 5. The relationship between high-level language and the MDFG.



1. Input: Gc = (Vc, Ec, Xc, d, Pc);

2. Output: Gt = (Vt, Et, Xt, Pt);

3. Vt = Vc; Et = {e | e ∈Ec, d(e) = (0,…, 0)};

4. Assume that vi, vj, vk, vl, vm, vn ∈Vc, and their types are M, A, S, L, M, and A

respectively;

4.1. If (∃a path vi → vk → vl → vm ∈Gt) // M → M

Insert node vx into Vt (set Pt (vx) = T); Insert edge eix into Et;

∀elm ∈Et delete edges elm from Et, insert edges exm into Et;

Delete node vl from Vt; Delete edge ekl from Et;

If (∃ekl ∈Ec such that d(ekl) ≠(0,…, 0)) ; // retain vk, eik

Else delete node vk from Vt, delete edge eik from Et;

4.2. If (∃a path vj → vk → vl → vm ∈Gt) // A → M

Insert node vx into Vt (set Pt(vx) = T); Insert edge ejx into Et;

∀elm ∈Et delete edges elm from Et, insert edges exm into Et;

Delete node vl from Vt; Delete edge ekl from Et;

If (∃ekl ∈Ec such that d(ekl) ≠(0,…, 0)) ; // retain vk, ejk

Else delete node vk from Vt, delete edge ejk from Et;

4.3. If (∃a path vi → vk → vl → vn ∈Gt) // M → A

∀eln ∈Et delete edges eln from Et, insert edges ein into Et;

Delete node vl from Vt; Delete edge ekl from Et;

If (∃ekl ∈Ec such that d(ekl) ≠(0,…, 0)) ; // retain vk, eik

Else delete node vk from Vt, delete edge eik from Et;

4.4. If (∃a path vj → vk → vl → vn ∈Gt) // A → A

∀eln ∈Et delete edges eln from Et, insert edges ejn into Et;

Delete node vl from Vt; Delete edge ekl from Et;

If (∃ekl ∈Ec such that d(ekl) ≠(0,…, 0)) ; // retain vk, ejk

Else delete node vk from Vt, delete edge ejk from Et;

5. Xt(e) = Xc(e), if e is remained in Et;

6. Pt (v) = Pc (v), if v is remained in Vt;

7. Return Gt;

Fig. 6. The TDAG constructing algorithm.
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in Fig. 7(b). That is, although node E actually can be
scheduled consecutively with node A, it will be delayed at
least one time step to wait the execution of node F.
3.2.3. Instruction scheduling (I)
As described in Section 2.5, we wish to schedule ALU

instructions before memory accesses to reduce spill costs
incurred by accumulator spills. This mechanism was
applied in our previous study (Lee and Chen, 2005) and
in RSSA we modify it further to become more efficient.
In the third part of RSSA, we schedule all instructions
except those with type L/C. This part contains three
phases: constructing graph Gop, scheduling nodes in Gop,
and resolving accumulator/register spills. In the following,
we introduce each of them in detail.

Definition 3.2. A DAG Gop = (V,E,X,P) is a direct graph,
where V is the node set representing ALU instructions,
register transfers, and store variables; E � V · V is the edge
set that defines the precedence relations over nodes in V;
X(e) represents the variable accessed by an edge e; P(v)
represents the type of node v.

The graph Gop defined above is constructed from the
TDAG that contains nodes of types M, A, T, and S.
Fig. 8(a) is another example of TDAG Gt, and its corre-
sponding Gop is shown in Fig. 8(b). Next, we simply sche-
dule the nodes in Gop using list scheduling, assuming the
number of accumulators/registers are unlimited. Because
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the limited quantities of accumulators/registers are not yet
considered, the current Gop scheduling result has minimum
length len. Fig. 9(a) shows the scheduling result of Gop in
Fig. 8(b) with only one data ALU.

Then, we describe the new mechanism to resolve accu-
mulator spills. Before doing this the time steps at which
accumulator spills occur must be determined. Our idea is
to calculate the number of accumulators and input registers
used at every time step, and determine accumulator/regis-
ter spills from these results. Six variables defined for this
mechanism are listed in Table 1.

We describe the time interval for which a value must
reside in an accumulator or input register for a correct sche-
dule. If an ALU result is defined at time step p and used at
time step q, it will occupy the accumulator from time steps p

to q � 1. Similarly, if a variable (or constant) is loaded from
memory at time step p and used at time step q, it will occupy
the register from time steps p to q � 1. Fig. 9(a) also shows
variables defined in Table 1 for that Gop scheduling result.
In this example, assume the target architecture contains
two accumulators acc11 and acc12, we find that accumulator
spills occur at time steps 6–9 and 12.

As described in our design motivation, overwritten ALU
results are preferably stored in input registers when accu-
mulator spills occur. Therefore, in this mechanism we first
transfer all overwritten ALU results to input registers, and
temporarily store them to memory only when the number
of registers is insufficient. We use the example in Fig. 9(a)
to illustrate this. At time step 6, in order to release an accu-
mulator for node 11, we must select a node v from acc-

list_1(6) and transfer the ALU result generated by v to a
register. In this situation, we want to transfer a value that
will release an accumulator with the longest time free of
use. After checking the content of uselist(u) for all nodes
u in acclist_1(6), node 9 is selected to transfer its value from
accumulator to input register. Next, an additional register
transfer, X9, is scheduled at memory bank M2 at time step
6, because reg_1(6) is smaller than reg_2(6). All variables
defined in Table 1 are changed accordingly. Then, we select
other nodes to transfer if necessary until all accumulator
spills are resolved. In this example, X1 is scheduled to M1

at time step 8. Fig. 9(b) shows the modified Gop scheduling
result without accumulator spills.

From Fig. 9(b), assume there are four input registers,
reg11, reg12, reg21, and reg22, in the target architecture, we
find that register spills occur at time steps 8–9 at M1 and
time steps 7–10 at M2. Therefore, some values need to be
stored temporarily in memory and reloaded before use.
Note that registers regij are dedicated for use for referencing
data from Mi in our hypothetical architecture, therefore
register spills occurring at each memory bank have to be
resolved separately. At time step 8, we must select a node
v from reg_1(8) to store temporarily. In this situation, we
also want to store a value that will be used at latest, in order
to release an input register with the longest time interval.
After checking the content of uselist(u) for all nodes u in reg-

list_1(8), node X3 is selected. Then, operations S3 and L3

are scheduled at time steps 7 and 11 respectively, because
this value is used by nodes 12 and 15. Similarly, we change
variables defined in Table 1 accordingly, and repeat this
step until all register spills are resolved. The Gop scheduling
result without any accumulator/register spill is shown in
Fig. 9(c). Moreover, if a value selected to temporarily store
is not yet used, the added store operation can directly
replace the corresponding register transfer. The operation
S9 in Fig. 9(c) is such an example.



Fig. 9. Scheduling result. (a) Gop nodes only without resource constraints, (b) Gop nodes only with unlimited number of input registers, (c) Gop nodes only
without accumulator spills, (d) the initial scheduling result of Gt and (e) the retimed scheduling result of Gt.
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Consider the variability of the schedule length. After
resolving accumulator spills using only additional register
transfers, the schedule will not be lengthened. That is, the
length of obtained Gop scheduling result is also len if regis-
ter spills never occur. However, while resolving register
spills, an additional memory access may not be successfully
scheduled due to insufficient time steps. In this situation an
extra time step is inserted to schedule this instruction indi-
vidually as late as possible. Because we only lengthen the
schedule when required, the obtained Gop scheduling result
still has minimum length. Until this phase we obtain a sche-
dule with length len’ that contains all nodes in Gt except
those with types L/C. In the next part, the remaining mem-
ory load instructions will be inserted to complete the initial
schedule of Gt.
3.2.4. Instruction scheduling (II)

Before scheduling memory load instructions, we present
the theoretical minimum schedule length of Gt that can be
achieved. Strictly speaking, the minimum schedule length
of Gt equals to len’ + 1, where the additional time step is
used to load source operands for the first ALU operation.
Therefore, the goal of this part is to keep the schedule
length no longer than len’ + 1 if possible.

We inherit the scheduling mechanism for memory load
instructions from (Lee and Chen, 2005). Its main feature
is to consider the limited number of registers during sched-
uling, therefore no extra action is required to check and
deal with register spills. In the following we list our sched-
uling rules for memory accesses.

1. According to the execution sequence of ALU instruc-
tions, schedule their predecessors as soon as possible.

2. Scheduling principle 1 listed in Section 3.1 must be sat-
isfied, and reg_i(t) cannot exceed the number of registers
at any time step.

3. If a memory load instruction cannot be scheduled suc-
cessfully due to insufficient registers, a variable currently
residing in a register is selected for storing and reloading
using the mechanism described in Section 3.2.3.

4. For previous rule, if the selected variable is not trans-
ferred from an accumulator, the additional store vari-
able instruction is unnecessary.



Fig. 9 (continued)
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5. If a memory load instruction cannot be scheduled
successfully due to insufficient time steps, an
additional time step is inserted to schedule this ins-
truction individually as late as possible as in Section
3.2.3.
Based on the above rules, all memory load instructions
can be successfully scheduled. Fig. 9(d) shows the schedul-
ing result of Gt in Fig. 8(a). The schedule is still lengthened
only when required; consequently, the obtained Gt schedul-
ing result is also with minimum length. Finally, because we



Table 1
Variables defined for solving accumulator/register spills

Variable Type Definition

sch(v) integer the time step that Gop node v is executed
uselist(v) integer list time steps that Gop node v is used
acc_i(t) integer the number of accumulators accij,

for j = 1 . . .m, been used at time step t

acclist_i(t) node list Gop nodes with types M or A whose
generated ALU results reside in accumulators
accij, for j = 1 . . .m, at time step t, except the
one that are executed in ALUi at time step t

reg_i(t) integer the number of registers regij, for j = 1 . . .n,
been used at time step t

reglist_i(t) node list Gop nodes with type T whose transferred ALU
results reside in registers regij, for j = 1 . . .n,
at time step t
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have already considered accumulator/register spills, an
appropriate assignment of physical accumulators/registers
certainly exists.

3.2.5. Initial schedule retiming

From the previous four parts an initial schedule of Gt

without any accumulator/register spills is obtained. In the
last part of RSSA, we use the retiming technique to explore
potential parallelism among iterations. After applying the
retiming technique to redistribute nodes in consecutive
iterations, the length of the final scheduling result may be less
than the critical path of the original Gt. If we assume the tar-
get architecture contains unlimited resources, instructions
can be rescheduled as soon as possible without violating pre-
cedence relations. However, in the real design case, the use of
accumulators/registers has to be considered. Therefore, the
requirement to guarantee an appropriate assignment of
physical accumulators/registers still exists for the retimed
scheduling result, and the use of resources cannot exceed
their limited number at any time step. Assume that the Gt

scheduling result obtained above has length len_f. Variables
defined in Table 1 are also used to determine at which time
step a retimed instruction can be scheduled.

We first describe after rescheduling an instruction at
time step t, the time interval that its corresponding value
must reside in an accumulator or register. If the retimed
instruction is of type L/C/T it must occupy a register from
time step t to len_f because this value will be used for the
later iteration. Similarly, the retimed ALU instruction must
occupy an accumulator from time step t to len_f. For a ret-
imed instruction, we reschedule it at the earliest time step
that satisfies precedence relations and will not cause any
accumulator/register spill. Meanwhile, variables defined
in Table 1 are also updated after rescheduling an ALU
instruction, because some resources will be released by its
predecessors. In addition, a load constant can be resched-
uled for any memory bank to achieve higher performance,
because we store constants in all memory banks in
advance. The final retimed Gt scheduling result of
Fig. 9(d) is shown in Fig. 9(e).
4. Preliminary performance evaluation

In Section 4.1, we evaluate the proposed RSSA and
compare it with previous work using several selected
MDFGs. Then, RSSA is experimented with various hypo-
thetical architectures in Section 4.2 to study the influence of
different number of resources. After presenting evaluation
results, some brief summaries of the effectiveness and effi-
ciency of our method are presented in Section 4.3.

4.1. Comparison with previous work

At first we set our machine model equivalent to the
Motorola DSP56000 to compare RSSA with related work.
Several one-dimensional or two-dimensional MDFGs are
selected from previous studies, which represent nested
loops with depth one or two, used in DSP applications.
Nevertheless, our RSSA can be easily extended to cover
nested loops with depths greater than two. Basically, based
on three variable partitioning mechanisms proposed in
algorithms RSVR (Zhuge et al., 2001), RSF (Lee and
Chen, 2004), and RST (Lee and Chen, 2004), using our
method can obtain three scheduling results. However, for
one-dimensional MDFG only the first two mechanisms
are applied since algorithm RST is designed specifically
for nested loops with depths greater than two. As men-
tioned in Section 2.4, many previous studies only consider
specific code generation phases of non-orthogonal DSP
architecture due to their independent character. In this
paper we compare our method with three methods pre-
sented in Cho et al. (2002), Shiue (2001), and Sudarsanam
and Malik (2000), because these methods are all design for
Motorola DSP56000 and contain code generation phases
similar to ours. In addition, methods presented in Lee
and Chen (2004) are also compared and evaluated, after
inserting necessary spill codes.

In this paper, we use two metrics including schedule
length and instruction count to evaluate the performance
at the same time. Shorter schedule length obviously indi-
cates shorter execution time for the given nested loop. On
the other hand, less instructions been executed indicates
not only less power consumption, but also less memory
space required to store (smaller code size). Table 2 lists
schedule lengths of one iteration for selected MDFGs.
Note that some values in this table are fractional. This is
because the MDFG is unfolded or tiled using two variable
partitioning mechanisms proposed in Lee and Chen (2004),
and we show the average schedule length in an original iter-
ation. In Table 2 we can see that our RSSA usually gets the
shortest schedule lengths compared to other methods. The
main reason is the usage of retiming technique, which reas-
signs instructions in consecutive iterations to explore
potential parallelism among iterations. As more compact
codes are generated, system resources are fully utilized
and schedule lengths are shortened.

Table 3 displays the instruction count in each iteration.
From this table we can find that both RSSA and Cho et al.



Table 2
Schedule lengths obtained by different code generation algorithms

Benchmarks [1] [2] [3] [4] [5] [6] [7] [8] [9]

Wave digital filter 7 9 9 8 6 8.5 6 5 5.5
Filter 8 13 13 9 11.5 9 6 5.5 5
IIR filter 2D 20 29 33 25 27.5 28 16 16 16
Forward-substitution 7 12 12 9 10 11.5 5 5.5 5
THCS 6 8 8 6 6.5 5.5 4 4 4
DFT 16 21 21 18 21 18.5 13 12.5 13
Floyd-Steinberg 20 36 37 29 32.5 32 18 17.5 17
Transmission line 15 20 21 19 18 18 12 12 12
IIR filter 1D 11 15 15 11 14 – 8 8 –
Differential equation solver 16 20 21 18 21.5 – 13 11.5 –
All-pole lattice filter 21 37 37 35 28 – 17 16 –
Elliptic filter 42 62 66 56 69 – 36 34 –

[1] Cho et al. (2002).
[2] Sudarsanam and Malik (2000).
[3] Shiue (2001).
[4] Lee and Chen, 2004 (with RSVR mechanism).
[5] Lee and Chen, 2004 (with RSF mechanism).
[6] Lee and Chen, 2004 (with RST mechanism).
[7] Proposed (with RSVR mechanism.
[8] Proposed (with RSF mechanism).
[9] Proposed (with RST mechanism).

Table 3
Number of operations really executed in an iteration obtained by different code generation algorithms

Benchmarks [1] [2] [3] [4] [5] [6] [7] [8] [9]

Wave digital filter 14 16 16 16 15.5 16 14 13 13
Filter 11 16 16 16 16 16 11 10.5 10.5
IIR filter 2D 37 64 68 64 64 64 37 37 37
Forward-substitution 11 20 20 18 17.5 18 11 10.5 10.5
THCS 10 16 16 14 14.5 14 10 9.5 10
DFT 33 48 49 44 44 44 32 30 31.5
Floyd-Steinberg 39 68 70 59 59 59.5 39 39.5 39.5
Transmission line 28 48 48 42 42 42 29 29 29
IIR filter 1D 20 32 32 30 29.5 – 18 18 –
Differential equation solver 25 44 44 37 37 – 26 25.5 –
All-pole lattice filter 37 60 60 51 51.5 – 35 34.5 –
Elliptic filter 77 136 136 125 116.5 – 75 72 –
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(2002) generate much less instruction counts than other
methods. The reason caused this result is whether methods
use accumulator/register to store temporary variables.
Except our proposed method and Cho et al. (2002), all
other algorithms schedule instructions directly based on
MDFGs. That is, operands are stored in memory and
reloaded into registers only when they are required for
use. As we have introduced in Section 3.2.2, although spill
codes are rarely inserted during scheduling in this case,
many memory accesses are really unnecessary. RSSA con-
tains steps to remove such memory accesses and Cho et al.
(2002) also has similar mechanism. Therefore, instruction
counts generated by these two algorithms can be kept rela-
tively low. In Section 4.3 we will further describe the effec-
tiveness of our proposed algorithm on both two metrics.

4.2. The influence of resources

To harvest the benefits provided by the non-orthogonal
DSP architecture, an effective code generation algorithm
which can fully utilize system resources is obviously essen-
tial. However, in order to explore the instruction-level par-
allelism and reduce occurrences of accumulator/register
spills, increasing the number of resources is a more direct
way. Thus, in the following, we set our parameterized
machine model to simulate architectures with different
number of resources, and evaluate MDFGs using the gen-
eral method RSSA. Scheduling results affected by different
kinds of resources will be studied on both evaluation
metrics.

We first list some preliminaries. All instructions are still
assumed that can be completed in one time step. After
transferring selected MDFGs to TDAGs using RSSA,
Table 4 lists the number of ALU instructions, the critical
path length, and the number of nodes in every TDAG.
These data can be used as lower bounds of scheduling
results. If the schedule length is equal to or less than the
critical path of the corresponding TDAG, it indicates that
the shortest schedule can be obtained. The reason to
achieve a schedule with length shorter than critical path



Table 4
Characteristics of selected TDAGs

Benchmarks Number of ALU nodes in Gt Critical path of Gt Number of nodes in each TDAG

original unfold 2 tiled 2 · 1 unfold 3 tiled 3 · 1

Wave digital filter 4 6 14 13 13.5 12.6 13.3
Filter 4 7 11 10.5 10.5 10.3 10.3
IIR filter 2D 16 7 34 34 34 34 34
Forward-substitution 5 6 11 10.5 10.5 10.3 10.3
THCS 4 4 10 9.5 10 9.3 10
DFT 12 7 32 28 30 26.6 29.3
Floyd–Steinberg 17 12 38 37.5 37.5 37.3 37.3
Transmission line 12 10 26 26 26 26 26
IIR filter 1D 8 6 17 17 – 16.6 –
Differential equation solver 11 11 25 22.5 – 21.6 –
All-pole lattice filter 15 18 33 29 – 27.6 –
Elliptic filter 34 19 65 58 – 55.6 –
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is the usage of retiming technique. On the other hand, if an
iteration consists of exactly the same number of nodes as
the corresponding TDAG, no spill codes are inserted. In
Tables 5–8 shown below, we use shaded values to represent
a schedule with shortest length or without any spill code.
Moreover, when either the schedule length or the number
of executed operations is improved by additional resources,
the improved result is shown as a bold value.

Table 5 shows results of different number of accumula-
tors. In this table we find that the instruction count
decreases obviously when the target architecture contains
more accumulators. This result indicates that accumulator
spills occur very often. If more ALU results can reside in
additional accumulators, spill codes will be reduced due
to less occurrences of accumulator spill. Furthermore, since
Table 5
Experimental results, with target architectures contains different number of ac
fewer overwritten ALU results are temporarily stored in
input registers, occurrences of register spill also can be
reduced. As for the schedule length, it is only slightly short-
ened. This result presents that to increase the number of
accumulators cannot explore the instruction-level
parallelism.

Then, Table 6 shows results of different number of input
registers. These results indicate that neither the schedule
length nor the instruction count can be obviously
improved. Similarly, the instruction-level parallelism can-
not be explored by using more input registers. We also find
that the accumulator spills will not occur less, because the
number of accumulators has not been increased in this
table. After transferring overwritten ALU results to input
registers, although more of them can be temporarily stored
cumulators



Table 6
Experimental results, with target architectures contains different number of input registers

Table 7
Experimental results, with target architectures contains different number of data ALUs
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in input registers instead of memory, additional register
transfer instructions are still inserted. Therefore, if we only
increase the number of input registers, spill codes cannot be
efficiently reduced.

In Table 7 we show result of different number of data
ALUs. In this case we do not add more accumulators with
the number of data ALU increasing, which means both
architectures contain only two accumulators. That is, when
the target architecture has two data ALUs, an accumulator
is specifically allocated to a data ALU to store all destina-
tion operands calculated from it. From Table 7, schedule
lengths are obviously shortened because the second data
ALU is beneficial to explore instruction-level parallelism.
However, instruction counts increase in some MDFGs as



Table 8
Experimental results, with target architectures contains different number of data ALUs
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asterisked in the table, which represents more spill codes
are inserted. Apparently these additional spill codes are
mainly incurred from frequently occurred accumulator
spills, since only one dedicated accumulator is capable to
store destination operands calculated from a data ALU.
If an ALU result will be used later than next ALU instruc-
tion been executed, it must be temporarily stored into input
registers or memory to avoid being overwritten. Therefore,
from these results we conclude that increasing the number
of data ALUs only is not an appropriate way to explore
instruction-level parallelism.

Similarly, Table 8 still shows results of different number
of data ALUs. This time we increase the number of accu-
mulators to four, and evenly allocated them when the
architecture contains two data ALUs. Compared to Table
7, clearly that not only schedule lengths are further short-
ened, but also spill codes are inserted infrequently since
many values in Table 8 are shaded. These results are
essentially the combination of results shown in Tables 5
and 7. Using more data ALUs is beneficial to shorten
schedule lengths, and adding additional accumulators
can reduce occurrences of spill codes efficiently. Therefore,
if we want to explore instruction-level parallelism, both
numbers of data ALUs and accumulators must be
increased.

Finally, in Table 9 we show results of increasing the
number of memory banks. Both architectures consist of
six input registers, and they will be evenly allocated to each
memory bank. From these results, we find that schedule
lengths are hardly improved without additional data
ALUs. As for the instruction count, using more memory
banks seems helpful due to many bold and shaded values
in this table. The reason is that when the target architecture
contains N memory banks, up to N move operations can be
executed simultaneously. With the number of memory
banks increasing, more independent memory accesses, as
well as register transfers inserted to resolve accumulator
spills, can be executed in one cycle. In this situation,
instruction-level parallelism among move operations will
be explored, which is beneficial to reduce occurrences of
register spills. However, implementing additional memory
banks, associated with dedicated data buses, definitely
requires heavy hardware costs. Besides, recall that before
using variable partitioning mechanisms proposed in RSF
or RST, the TDAG is unfolded or tiled with factor equal
to the number of memory banks. A larger TDAG also
costs longer time doing code generation. Therefore, we
do not recommend using more memory banks to reduce
the instruction count, because the cost-performance is not
worth.

4.3. Brief summaries

After showing our RSSA is quite effective compared to
previous work under the Motorola DSP56000 architecture,
we present its effectiveness on both two evaluation metrics
in some detail as follows. As shown in Tables 7 and 8, using
RSSA can get schedule lengths no longer than their critical
paths in most selected MDFGs when the target architec-
ture consists of two data ALUs. These results represent
lower bounds of schedule lengths are usually achieved.
Besides, if there is only one data ALU, it still can almost
obtain schedule lengths equal to the number of ALU
instructions in the corresponding TDAGs. This situation
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indicates that these scheduling results cannot be shortened
further, because all ALU instructions must be executed on
the single data ALU. On the other hand, according to
Tables 4–9, the proposed method really can generate quite
few spill codes especially when the architecture has more
than four accumulators. This is because we give an over-
written ALU result higher priority to be temporarily stored
in a register, and insert spill codes only when required. In
addition, we compact spill codes with other regular codes
as far as possible during the scheduling process to prevent
lengthening the final schedule length. Whereas on both
evaluation metrics the proposed RSSA achieves usually
optimal results, we conclude that it is quite effective.

Then, we summarize the influence of differing number of
resources on the scheduling result. According to descrip-
tions in Section 4.2, we find that accumulator is the most
critical resource in non-orthogonal DSP architecture. Add-
ing more accumulators can keep more ALU results for fur-
ther using, which is the most efficient way to reduce spill
codes. From our evaluation results, almost all spill codes
can be eliminated if the target architecture contains more
than four accumulators. Other than accumulator, increas-
ing the number of input registers or memory banks is also
useful for reducing the instruction count, but its improve-
ment is not as obvious as using more accumulators.
Besides, implementing additional memory banks and asso-
ciated data buses needs heavy hardware costs. Thus, due to
their unworthy cost-performance, we think a target archi-
tecture that consists of two memory banks and four input
registers, two for each memory bank, is appropriate. As for
exploring instruction-level parallelism, adding additional
data ALUs is certainly necessary. Based on evaluation
results shown in Table 8, we find that two data ALUs
are actually sufficient, because RSSA generates the shortest
schedules in most MDFGs. Using more than two data
ALUs no doubt can further shorten obtained scheduling
results, but the improvement will be clearly slight.
Meanwhile, in additional to data ALU, the number of
accumulators has to be increased concurrently for instruc-
tion-level parallelism exploration. Many spill codes may be
incurred if adding more data ALUs only, where the reason
we have already listed in previous subsection. Furthermore,
with the generality of our hypothetical machine model and
proposed method, they can be used to determine how many
resources are required for an application to achieve its opti-
mal schedule. From the detailed scheduling results, we also
find that the variable partitioning mechanism proposed in
RSF is unsuitable for one-dimensional MDFGs. This is
because loop-carried data dependences in one-dimensional
MDFGs are usually with distance one, and most memory
accesses will reference variables from the same memory
bank after applying loop unfolding. Thus, a memory access
may easily fail to be scheduled successfully in time, which
will lengthen the schedule.

In the following, we evaluate the efficiency of RSSA
and compare to our previous study (Lee and Chen,
2005). Recall that both methods mainly contain following
phases: constructing the MDFG, partitioning variables,
constructing the TDAG, constructing Gop, scheduling
instructions (I), resolving accumulator spills, scheduling
instructions (II), and retiming the initial schedule. Among
these phases, resolving accumulator spills is the most time-
consuming one. In Lee and Chen (2005), we design a
relatively complicated mechanism to predict accumulator
spills by analyzing the topology of given TDAG. In
RSSA, this phase is completed based on variables listed



Y.-H. Lee, C. Chen / The Journal of Systems and Software 80 (2007) 410–428 427
in Table 1, which are constantly maintained during entire
code generation process. Apparently, mechanism used in
RSSA is more efficient. Moreover, it is also more general,
accurate, and will not generate possibly unnecessary spill
codes. Except how to resolve accumulator spills, other
phases of these two methods are very similar in essence.
Therefore, we conclude that RSSA is efficient than Lee
and Chen (2005).

Compared with two related studies (Cho et al., 2002;
Sudarsanam and Malik, 2000), our RSSA still has advan-
tages. Because Cho et al. (2002) and Sudarsanam and
Malik (2000) do not contain procedures to generate
uncompacted codes, we also omit complexities of con-
structing the MDFG and the TDAG. In addition, all
three methods use list scheduling to schedule instructions,
so we focus on discussing their complexities in partitioning
variables, allocating accumulators/registers, and resolving
accumulator/register spills. In Sudarsanam and Malik
(2000), it uses graph labeling to assign variables and accu-
mulators/registers simultaneously. After that, it requires a
mechanism to determine and resolve accumulator/register
spills, although this mechanism is not presented in detail.
However, despite which mechanism is used to insert spill
codes, this method suggests applying simulated annealing

to solve the graph labeling problem. Because simulated

annealing is a well-known time-consuming algorithm, it
makes the entire method much more complicated. Next,
in Cho et al. (2002), it uses graph coloring to partition
variables and allocate accumulators/registers separately.
Similarly, it does not present the mechanism to determine
and resolve accumulator/register spills, but it is definitely
required. This method itself also contains a heuristic to
solve the graph coloring problem. Therefore, no matter
how it inserts spill codes, the method proposed in Cho
et al. (2002) is clearly efficient than that in Sudarsanam
and Malik (2000). Finally, we consider the complexity of
our RSSA. Three variable partitioning mechanisms we
applied are all very simple, especially the two proposed
in Lee and Chen (2004) that assign variables directly based
on array indices. Moreover, we insert spill codes according
to variables defined in Table 1, which is clearly quite effi-
cient. After resolving accumulator/register spills, the phys-
ical assignment of accumulators/registers becomes trivial.
Therefore, the proposed RSSA is not only effective but
also efficient.

5. Conclusions and future work

In this paper, we propose a code generation algorithm
Rotation Scheduling with Spill Codes Avoiding (RSSA) to
schedule uniform loops on non-orthogonal DSP architec-
ture. It is extended from our previous study, and its sched-
uling goal is to achieve shorter schedule length and avoid
generating spill codes as far as possible. RSSA mainly con-
tains following features: generating uncompacted codes
directly from a high-level language, performing variable
partition before code compaction, separately scheduling
ALU and memory load instructions, and applying the ret-
iming technique to explore potential parallelism between
iterations. According to evaluation results, RSSA actually
achieves its scheduling goal under the Motorola
DSP56000 architecture. In addition, we also define a hypo-
thetical machine model to represent a scalable non-orthog-
onal DSP architecture. After evaluating RSSA on our
hypothetical machine models, we can study the influence
of different number of resources on the scheduling result.
Evaluation results show that using more accumulators
can efficiently reduce spill codes. Increasing the number
of input registers or memory banks has similar improve-
ment, but is not as obvious as adding more accumulators.
As for exploring instruction-level parallelism, both num-
bers of data ALUs and accumulators must be concurrently
increased. Adding more data ALUs only will incur many
unwished spill codes, which is not an appropriate way to
shorten the schedule length. Furthermore, compared to
related work, our RSSA is not only quite effective on both
evaluation metrics, but also an efficient algorithm.

Apart from the features described above there remain
several promising issues for future research. In Lee and
Chen (2005) we list two future research issues including
designing a general algorithm and considering memory off-
set assignment. The former is completed in this paper and
we will continue studying the later. After including two
phases of memory offset assignment and address register
allocation, our code generation algorithm will become more
complete. In addition, in addition to high data throughput,
low power consumption is also a significant factor in DSP
architecture. In today’s systems, software constitutes a
major component and its role is projected to grow even fur-
ther. Therefore, there is a clear need for considering the
power consumption from the point of view of software. Soft-
ware affects the system power consumption at various levels
of the design. Among these, power analysis at the instruction
level is the most interesting, because it is sufficiently accurate
and will not cost too much time to analyze. Therefore, in the
near future, we will study instruction level power models and
try to design new code generation algorithms that optimize
both schedule length and power consumption as well.
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