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The point-defect coupling under the tight-binding approximation is introduced to describe the behavior of
dispersion relations of the guided modes in a single photonic crystal waveguide (PCW) and two coupled
identical PCWs. The cross-coupling coefficient S8 of a point defect in one PCW to the nearest-neighboring
(NN) defect in the other PCW causes the split of the dispersion curves, whereas the cross-coupling coefficient
7y to the next-NN defects causes a sinusoidal modulation to the dispersion curves. Furthermore, the sign of 8
determines the parities of the fundamental guided modes, which can be either even or odd, and the inequality
|B| <|29/ is the criterion for the crossing of split dispersion curves. The model developed in this work allows
for deriving the coupled-mode equations and the coupling length.
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I. INTRODUCTION

A photonic crystal waveguide (PCW) is formed by intro-
ducing a line defect in the perfect photonic crystal (PhC) to
create a guided mode or group of guided modes within the
band gap.' Interest is especially focused on the electromag-
netic (EM) wave being guided within the waveguide by the
mechanism of band-gap confinement. The PCWs are the
most promising elements of PhCs for building large-scale
photonic integrated circuits (PICs), because the EM waves
can be transmitted,? sharply bent,® split,* and dispersion
compensated® by means of specific PCW designs.

Waveguide coupling is a fundamental mechanism for de-
signing various optical filters and switches for PICs. Re-
cently, PCW coupling® has received much attention, since
numerous photonic devices based on this mechanism have
been proposed and demonstrated, e.g., filters,” switches,® and
multiplexers and/or demultiplexers.”!? Typically, the wave-
guide coupling is handled by the coupled-mode theory
(CMT),"" which is a straightforward and simple method to
give approximate solutions in coupled (perturbed) wave-
guide systems. The wave behaviors of the coupled system
are derived from the eigenmodes of the isolated (unper-
turbed) waveguides. The concept of CMT has also been ap-
plied to interpret the coupling of PCWs.

Two characteristics of the eigenmodes in coupled
waveguides are derived from the CMT.'? First, the funda-
mental guided mode is of even parity and the second mode is
of odd parity. Second, the dispersion curves of eigenmodes
of the coupled system should not cross (see Sec. IT). Boscolo
et al.'® argue that these characteristics exist in coupled
PCWs. However, this argument has been challenged, because
the dispersion curves derived from the plane-wave expansion
(PWE) method reveal that the fundamental guided mode can
be odd and the dispersion curves do cross; i.e., the eigen-
modes are degenerate and the waveguides are decoupling.'’
An asymptotic model has been employed to demonstrate
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theoretically that the fundamental mode can be even or odd
(depending on the number of partition rows).!* On the other
hand, it is proposed that the change of the “effective parities”
of the eigenmodes causes the crossing of the dispersion
curves.'> Evidently, the conventional CMT is inadequate to
depict the PCW coupling. A correct waveguide theory in
PCWs has to be developed for the characteristics of the
eigenmodes.

In this paper, we explore the properties of PCW via the
coupling of point defects wunder the tight-binding
approximation,'® which assumes that the field distribution (or
wave function) of an individual point defect is strongly lo-
calized around this point defect. The dispersive behavior of a
single PCW can be described by the coupling with the neigh-
boring point-defect modes. We further consider the point-
defect coupling between two identical PCWs to describe the
PCW coupling. The parity of eigenmodes and the crossing of
dispersion curves of coupled PCWs depend on the signs and
values of the point-defect coupling coefficients across the
PCWs. The coupled-mode equations and coupling length are
derived based on the point-defect coupling.

II. INSUFFICIENCY OF COUPLED MODE THEORY

Let two conventional waveguides be identical and de-
noted as I and II. Since the isolated eigenmode is indepen-
dent of the propagating distance, say, along vy, the

waveguides are coupled uniformly. The coupled mode equa-
tions derived from CMT are expressed as

and
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FIG. 1. (Color online) (a) Point-defect coupling to the pth
neighboring defect in an isolated PCW and (b) cross coupling to the
qth neighboring point defects in the other PCW. The circles repre-
sent the defects in a 2D perfect PhC.

2
C= 1k As(x)a(x)b(x)dx, )

where U(y) and V(y) are the slowly varying amplitudes of
the waveguides I and II, C is the coupling coefficient, a(x)
and b(x) are the distribution functions of isolated eigen-
modes in the transverse direction x, Ae(x) is the difference of
spatial-dependent dielectric constants of the unperturbed
(single waveguide) system and the perturbed (coupled wave-
guide) system, and &, and k are the propagation constants of
free space and the isolated PCW, respectively.

Because the perturbed system contains two identical
waveguides, its eigenmodes possess even and odd parities.
Under the weak coupling approximation, they can be ex-
pressed in terms of superpositions of U and V. The disper-
sion curves split, since the even and odd eigenmodes of the
same frequency have propagation constants (k, and k,),
whose difference is k,—k,. In this case, the total power
launched into one waveguide will be transferred completely
to the other if the EM wave propagates a coupling length
l.=/|k,~k,|, in which |k,—k,| equals 2C. The degeneracy
of even and odd modes, i.e., k,=k,, implies C=0. From Eq.
(2), C=0 appears only if Ae(x)=0, meaning that the
waveguides are merged into one waveguide. Therefore, the
conventional CMT does not suggest the crossing of disper-
sion curves, which exists in coupled PCW system.'”

III. ISOLATED PHOTONIC CRYSTAL WAVEGUIDE:
COUPLING BETWEEN CONSECUTIVE POINT DEFECTS

We begin our analysis by considering a periodic sequence
of identical coupled defects, as shown schematically in Fig.
1(a). The distance between successive point defects (or
primitive cells) is a. Furthermore, we assume that each de-
fect mode is single mode, oscillating at an eigenfrequency
wo. The EM mode of each defect in isolation is given by
E(r,)=u(t)E(r), where E(r) and u(t)=U exp(—iwyt) rep-
resent the spatial and time-varying functions of the defect
eigenmode. Here, U is a constant. Evidently, because of
proximity, finite coupling should exist between successive
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defects in a linear PCW. Hence, the dispersion relation of the
guided mode results from the coupling of longitudinally
shifted point-defect modes; namely, each point defect, say
the defect site n, is coupled with other defects at sites n+p,
where p is an integer. Under the tight-binding approximation,
the field vector E,(r) at the defect site n is not perturbed
much by the presence of the other defects and can be ex-
pressed as E,(r)=Eq(r—nay), where ¥ is the unit direction
vector along the line defect. Therefore, the total field is a
summation over the field vectors of all defect sites as
E(r,1)=2u,(t)E,(r), where u,(z) is the time-varying ampli-
tude of the perturbed field at site n. We derived the coupled

equation under the slowly varying  amplitude
approximation'” as
0
U, = (wO - CO)un - Z Cp(un+p + un—p) (3)
ot =

to relate u,, with u,,, (the amplitude of the £p™ neighboring
defect site from the defect site n), where ¢, is the coupling
coefficient between point defects n and n+p [illustrated in
Fig. 1(a)] and is written as

W, f Ae(r)Eo(r — nay) - Eo[r — (n + p)ayld’r

. @)

c,=
f [t Lo — )P+ el Eo(r — nag) 2l

where Ae(r)=g¢’(r)—e(r) is the difference of spatial-
dependent dielectric constants of the unperturbed system
(single defect) (r) and the perturbed system (coupled de-
fects) €'(r), and p=0,1,2,.... Thus, ¢, with p=0 represents
a small shift to the eigenfrequency w, of the isolated point
defect due to the dielectric perturbation of the neighboring
defects, to which the eigenfield of the isolated point defect
extends. Let u,,(f)=U, exp(ikna—iw,t), where k is the propa-
gation constant and Uy is the constant amplitude. Substitut-
ing this into Eq. (3), we obtain the dispersion relation of a
PCW as

w;(k) = wy—co— E 2¢,, cos(pka). (5)

p=1

The term 2c), cos(pka) is attributed to the polarization at site
n by the field at £pth neighboring defects.

Assume the PCW consists of a line defect of reduced rods
in a two-dimensional PhC with a square array of circular
rods. Let the dielectric constant g, of the rod be 12, the
radius of the rod 0.2a, the radius of the defect (reduced rod)
0.1a, and the dielectric constant of air ,=1. The dispersion
curve and the wave function of a single PCW with E polar-
ization (i.e., the electric field is parallel to the dielectric rods)
can be calculated using the PWE method, in which the fully
vectorial eigenmodes of Maxwell’s equations with periodic
boundary conditions are computed on a plane-wave basis.'8
The dotted data shown in Fig. 2 are the discrete values of the
dispersion calculated using PWE. The resolution is deter-
mined by how many plane waves or k’s are used in the
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FIG. 2. (Color online) Dispersion curves of a reduced-rod PCW
in a square lattice (inset), calculated by PWE (data dots) and fitted
with the formula considering the point-defect only coupling to NN
defects (dashed line) and coupling up to the third NN defects (solid
line).

expansion. Since the eigenfield distribution extends more
than the nearest-neighboring (NN) site (Fig. 3), the disper-
sion does not fit well with the formula

wy(k) = wy = ¢y = 2¢, cos(pka). (6)

This describes the so-called coupled-resonator optical wave-
guide (CROW),!%20 in which the defects are not consecutive
(i.e., are well separated) and are weakly coupled. The cou-
pling in a CROW is so weak that the wave hops to its NN
defects (p==+1) due to the overlapping of the evanescent
waves; therefore, only the NN defects are involved in the
dispersion relation (shown as the dashed curve in Fig. 2).
However, the dispersion is well fitted as long as the cou-
plings up to the third NN defects are taken into account
(shown as the solid curve in Fig. 2). Therefore, we truncate
Eq. (5) as

w;(k) = wy— co—2¢, cos(ka) — 2¢, cos(2ka) — 2c; cos(3ka),
(7)

hereafter to describe a consecutive line-defect PCW.

As the point defects are not well separated, their eigen-
fields do extend over three lattice constants away in the con-
secutive line-defect PCW, as shown in Fig. 3 for a reduced-
rod PCW in a square lattice and in Fig. 4 in a triangular
lattice. Therefore, up to the third NN coupling has to be
considered to fit the dispersion curve well. On the other
hand, we can directly integrate the overlap integrals of Eq.
(4) to obtain the coupling coefficients of Eq. (7). Basically, it
should give the same results since the fitting is quite good.
Although the change of dielectric constant is a negative step
function [Ae(r)=g,—g,, <0 at all defect sites and 0 other-
wise], there is no simple way to accurately calculate ¢, with-
out the complicated integration using Eq. (4) because the
field is not symmetrical and not located at the center of each
dielectric rod (see Figs. 3 and 4). Furthermore, because Eq.
(7) contains only four coupling coefficients (fitting param-
eters), several (=5) discrete k’s in the first Brillouin zone are
enough, which reduces the computation time for calculating
the dispersion curves.
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FIG. 3. (Color online) (Upper panel) The electric eigenfield pat-
tern of a reduced-rod defect in a square lattice, where circles indi-
cate the equivalent sites of the NN (¢=0) and next-NN defects (g
=+1) when the other PCW is separated by one and two partition
rows. (Lower panel) The projected profiles (denoted as A, B, and C)
passing through various sites of neighboring defects. The gray scale
represents the electric field intensity with white for positive and
black for negative.

IV. TWO COUPLED IDENTICAL PHOTONIC CRYSTAL
WAVEGUIDES: COUPLING AMONG A NETWORK
OF POINT DEFECTS

As presented in the previous section, a single PCW can be
regarded as a chain of coupled point defects, and its field
distribution is no longer uniform along the propagation di-
rection but involves localization. Similarly, the coupled
PCWs can be regarded as a network of coupled point defects,
so that the concept of point-defect coupling should be able to
describe the behavior of coupled PCWs. In addition to the
longitudinal coupling with point defects within the native
PCW, the “cross coupling” with the point defects across from
the other PCW is involved, as shown in Fig. 1(b). We con-
sider two parallel identical PCWs (denoted as I and II) sepa-
rated by some rows of partition rods (or by a distance d).
Conceivably, the cross coupling with the NN defect (¢=0)
and the next-NN defects (g==1) are dominant and will be
taken into account. Let 8 and vy represent the cross-coupling
coefficients of site n with defects g=0 and g=+1. Note that
B and y have the same form as Eq. (4), while Ej[r—(n
+p)ay] is replaced by Eg[r—(n+gq)ay+dxX], where d is the
distance between two line defects. The couplings with the
farther defects (¢ =2) are negligible, since the corresponding
coefficients are relatively smaller than B and y (we will show
later, in a specific case, that the coupling coefficient with g
=2 is only 1/7 of ). The coupled equation of an isolated
PCW [Eq. (7)] can be extended for two coupled PCWs,
given as
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FIG. 4. (Color online) (Upper panel) The electric eigenfield pat-
tern of a single reduced-rod defect in a triangular lattice, where
circles indicate the equivalent sites of the NN and next-NN defects
when the other PCW is separated by one and two partition rows.
(Lower panel) The projected profiles (denoted as A and B) passing
through various sites of neighboring defects.

3

9
l%“n = ((1)0 - CO)un - E Cp(un+p + un—p) - an - 7(vll+l
p=1

+ vn—l)’ (8)

3
d

igvn = (0)0 - CO)vn - E Cp(vn+p + Un—p) - ﬁun - 7(un+1
p=1

+ un—l) ’ (9)

where u,(r) and v,(f) represent the amplitudes at specific
point defects in PCWs I and II, respectively. Let the solutions
be u,(1)=U,expl(ikna—iw,t) and v,(t)=V, exp(ikna—iwst)
and be substituted into Egs. (8) and (9). The characteristic
equations of the coupled PCWs are obtained as

(wz—wl)U0+[ﬁ+ 2'yCOS(ka)]V0=0, (10)

((,()2—(1)1)‘/0+[B+ Zycos(ka)]U():O, (11)

where w;(k) is the fitted dispersion relation of the isolated
PCW given in Eq. (7). Again, U, and V,, are the constant
field amplitudes of PCWs I and II, respectively. Therefore,
the dispersion relations of the coupled PCWs can be obtained
from the characteristic equations [Egs.(10) and (11)] as

w,(k) = w*(k) = w,(k) £[B+ 2y cos(ka)]. (12)

The dispersion of the identical (degenerate) PCWs is split
into two curves, denoted as w*(k) and w™(k), due to the cross
coupling.
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Obviously, the cross coupling with the g=0 defect leads
only to a relative shift of eigenfrequency by +£3, and that
with neighboring defects g=1 and —1 leads to the sinusoidal
modulation [+2vy cos(ka)] of the dispersion curves. There is
competition between B (the contribution from the ¢g=0 de-
fect) and the term =27y cos(ka) (from g==1 defects). If | 3]
<[29| (i.e., the total cross-coupling strength of g==+1
defects surpasses that of the g=0 defect), the intersection
of dispersion curves occurs at wave number k=[cos™!
(=B/2vy)]/a, where B+2vycos(ka)=0. This implies that the
cross couplings with g=0 and both =1 defects are exactly
canceled out. Accordingly, the three curves of w;, w*, and w~
are bound to the crossing point (w*=w), where the split
guided modes are degenerate and the PCWs are decoupled
(implying that the presence of the second PCW can be ig-
nored). The inequality |B| < |29/ is a necessity for the disper-
sion crossing that originates from the cross coupling with the
g==1 neighboring defects, due to the nonuniform nature
along the propagation direction of the mode function of in-
dividual PCWs. Such a cross coupling does not exist in con-
ventional waveguides, since the wave functions of conven-
tional waveguides are uniform along the propagation
direction. Therefore, the dispersion curves of two identical
conventional waveguides can never cross.

Substituting Eq. (12) into Egs. (10) and (11) we obtain the
corresponding eigenvectors for describing the constant am-
plitudes of the two dispersion relations w*(k) and w™ (k) as

<U(J;)—(1) f k) = w*(k d
Ve =\_, or w,(k) =w*(k) an

(U6>—<1> fi k)=w (k 13
v )=ly) rew=v®, (13)

respectively. The eigenmode of w*(k) has odd parity, while
that of w™(k) has even parity. Thus, w* (w”) is the fundamen-
tal guided mode, if B3 is negative (positive). Here, the funda-
mental guided mode is referred to as the guided mode with
lowest frequency at k=0. Therefore, the parity of the funda-
mental guided mode (determined by the sign of B) can be
either even or odd, consistent with the asymptotic model.'*

A. Reduced-rod defects in square lattices

B and y govern the properties of coupled PCWs, since the
system can be regarded as a network of coupled point de-
fects. According to Eq. (4), 8 and 7y are proportioned to the
autocorrelation of the eigenfunction with origins shifted rela-
tive to dX and dX+ay [or denoted as S(dX) and S(dx+ay)],
calculated at the defect sites and then multiplied by the nega-
tive step function Ag, where again X and § are the unit vec-
tors along the x and y directions. Therefore, the eigenfield of
a single defect can deliver much information on coupled
PCWs. For the case of a single reduced-rod defect in a
square lattice, the eigenfield of E polarization derived by
PWE is localized at the defect center and decreases rapidly
with radial distance (see the upper panel of Fig 3). The radial
field profiles along various directions are shown in the lower
panel of Fig. 3. The peaks and valleys alternately appear
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TABLE 1. Crossing vs /27y and parity of fundamental mode vs sign of B for coupled PCWs with
reduced-rod and void-rod defects in square and triangular lattices.

Defect rods Reduced Void
Lattice Square Triangular Square
Partition rows 1 2 1 2 1 2
Crossing by PWE?* No No Yes Yes Yes No
18/29] Estimated with Eq. (4) 4.6 2 0.9 N.A. 1.2 0.96
7 Fitted with Eq. (12) 5.2 14 0.75 0.67 0.69 1.15
Parity of fundamental mode by PWE?* Odd Even Odd Even Odd Even
Estimated with Eq. (4) — + — + - +
Sgn(B) . .
Fitted with Eq. (12) = + - + — +

“Determined by the parity of the electric field patterns.

approximately at the rods. The |B/27| estimated with the
peak values of the eigenfield at the sites g=0 and g=1 is
4.64, indicating that the dispersion curves do not cross (Table
I), as there is one partition row. It is worth noting that the
field is confined on the line of rods along the x and y axes
(assumed the single defect is located at the origin of the
coordinate) to minimize the field energy. Also, the field drops
rapidly apart from the axes; hence, the field decreases dra-
matically with ¢g. The field at the site g=2 is only 1/7 of that
at the site g=1, so the coupling with the defects g=2 can be
omitted without significant influence to the determination of
crossing and/or anticrossing of dispersion curves. Further-
more, the field S(dX) at the site ¢=0 is remarkably higher
than S(dX+ay) at the sites g= =1, resulting in |8 >|27/|. Be-
cause the field S(dX) is positive and the Ae(r) is a negative
step function for air defects, 8 must be negative. Hence, the
eigenvalue w*(k) at k=0 [see Egs. (12) and (13)] has the
lowest photon energy and the fundamental guided mode is
odd. With the same argument as the case of one partition
row, the dispersion curves with two partition rows are not
crossing because the |8/29] is estimated to be 2. However,
the fundamental guided mode is of even parity because the
field S(2dx) at the site ¢=0 is negative; thus, B is positive.
We conclude that the parity of the fundamental mode is odd
and/or even as there are odd and/or even rows between the
PCWs in square lattices.

Alternatively, we can more accurately determine S and y
by fitting the split w*(k) and w™ (k) derived by PWE (discrete
data in Fig. 5). The dispersion curves are well fitted by Eq.
(12) (solid curves) without taking account the coupling with
defects ¢=2, as the dispersion of a single PCW w,(k) is
given by Eq. (7) (the dash curve). In addition, several k’s in
the PWE calculation are enough for fitting the coupling co-
efficients. The obtained ratios (|3/29]) are 5.23 and 1.3 for
one and two partition rows, respectively, indicating no cross-
ing as predicted by the estimated |3/27]. These results are
verified by the electric-field patterns derived by PWE. Here,
only the field patterns with one partition row are shown in
Fig. 5, in which no flip of their parities occurs, indicating
that the dispersion curves are not crossing and the fundamen-
tal guided mode has odd parity. Our arguments for the parity
of fundamental modes (odd and/or even as the number of

partition rows is odd and/or even) and no crossing of disper-
sion curves (see Table I) are supported by PWE.

B. Reduced-rod defects in triangular lattices

The eigenfield of a single defect in a triangular lattice
appears in a higher sixfold symmetry. The parities of the
fundamental mode follow the rule mentioned above, since
again the peaks and valleys appear alternately at the rods
similar to that in a square lattice. The difference between the
eigenfields S(dX) at the site g=0 and S(dX+ay) at g==+1 is
rather small (see Fig. 4). Therefore, the |3/27| estimated by
peak values with one partition row is only 0.9 (|8 <|2v]).
With two partition rows, there is no rod for g=0 at the x axis,
and |B/27] is effectively much smaller than 1 (ie., |8
<[29]). Hence, the w*(k) and w™(k) curves in the triangular
lattice always cross, which does not occur for coupled PCWs
in a square lattice with reduced-rod defects. Again, these
results in terms of the parities of fundamental modes and
crossing and/or anticrossing of dispersion curves in a trian-
gular lattice are consistent with that of PWE by analyzing the
field patterns of the guided modes (Fig. 6). In addition, the
coupled void-rod PCWs in a triangular lattice show similar
behavior (not shown here) as the reduced-rod PCWs and can
also be well interpreted by the coupling of point defects.

04
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FIG. 5. (Color online) Split dispersion curves of coupled
reduced-rod PCWs (inset at left top) calculated by PWE (data dots)
with the electric-field guided mode patterns at the specified k’s and
fitted by Eq. (12) (solid curve) and the dispersion curve of one
isolated PCW (dashed curve) in a square lattice.
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FIG. 6. (Color online) Split dispersion curves of coupled
reduced-rod PCWs (inset at left top) calculated by PWE (data dots)
with the electric-field guided mode patterns at the specified k’s and
fitted by Eq. (12) (solid curve) and the dispersion curve of one
isolated PCW (dashed curve) in a triangular lattice.

C. Void-rod defects in square lattices

As the point defect is a void rod in square lattices, the
eigenfield (Fig. 7) is less localized than the fields of defects
in the higher-symmetry triangular lattices and of the reduced-
rod defect in a square lattice. Therefore, it is unsuitable for
determining |3/27| by the peak and/or valley values. The
|B/27] values are 0.69 and 1.15 for one and two partition
rows in a square lattice, respectively, derived by fitting the
discrete data from PWE by Eq. (12). Hence, the |8/27] val-
ues indicate that the w*(k) and w (k) curves are crossing
and/or anticrossing when the number of partition rows is odd
and/or even, in accordance with the results in Ref. 15.
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£ 2
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FIG. 7. (Color online) (Upper panel) The electric eigenfield pat-
tern of a single void-rod defect in a square lattice, where circles
indicate the equivalent sites of the NN (¢=0) and next-NN defects
(g==+1) when the other PCWs is separated by one and two partition
rows. (Lower panel) The projected profiles (denoted as A, B, and C)
passing through the various sites of neighboring defects.
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Based on the theory of point-defect coupling, the parity of
fundamental modes and crossing and/or anticrossing of dis-
persion curves can be interpreted by eigenfields of single
defects. Although the cross coupling coefficients can be cal-
culated more accurately either by using Eq. (4), which has to
integrate over all the defects of the perturbed PCWs or at
least those to where the eigenfield extends, or by fitting the
discrete data derived by PWE, they can be estimated with the
eigenfields of single defects (as long as the field distribution
is not too extended). Note that the PWE calculation (e.g., the
MPB program from the MIT group or commercial packages
such as the “RSOFT”) only gives discrete data (k’s) of disper-
sion curves, generally, and presents “anticrossing” results
even for the “crossing” cases. Whether it “anticrosses” or
“crosses” is normally determined by the symmetry of the
eigenfunctions before and after the “skeptical” degenerate
point.

The local maxima with alternate signs (peaks and valleys)
of eigenfields occur at the dielectric rods, which can be used
to determine the parity of the fundamental modes. The parity
is odd (even) as the number of the partition row is odd
(even), whether the lattice is square or triangular, and the
defect is reduced rod or void rod. In triangular lattices, be-
cause the eigenfield has a sixfold symmetry, resulting in
|8l <|29|, the w*(k) and w™(k) curves are always crossing.
With void-rod defects in square lattices, 8 and vy calculated
by fitting the discrete data from PWE are more reliable for
determining either crossing or anticrossing.

V. POWER TRANSFER AND COUPLING LENGTH

In this section, we derive the power transfer and coupling
length, making use of the eigenmode expansion of the
coupled PCWs. The wave function or field distribution in
any one of the coupled PCWs on any transverse plane, e.g.,
at the site n, can be expressed as the superposition of the
eigenfunctions of the coupled PCWs. The amplitudes in each
PCW can be written as

(U")—A(Ug> (ik )B(’f") (ikna), (14)
v, )=\ v exp(ik na) + Ve exp(ik,na),

where U, and V, represent the field amplitudes in PCWs 1
and II, respectively, and A and B are the modal amplitudes of
the eigenmodes with propagation constants k, and k,. Again,
U, Uy, Vi, and V; are obtained according to Eq. (13). The
derivative of U, with respect to the propagation distance y
can be written as

du U, ,-U, ik -1
= _ n+1 n —A exp(ikona) exp(z ona)
dy a a
exp(ik -1
+ B explik na) SRk = 1 (15)
a

Assume that ka<<1 and y=na, the discrete equations [Egs.
(14) and (15)] can be rewritten as the continuous equations,

U(y) = A exp(ik,y) + B exp(ik,y), (16)
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dU
) _ kA expli ) + kB explie]. (1)
y
Similarly, V(y) and its derivative can then be written as
V(y) = - A explik,y) + B exp(ik,y)., (18)
dv(y)

gy =" ik, A exp(ik,y) + kB exp(ik,y)].  (19)
y

From Egs. (16) and (18), we can express exp(ik,y) and
exp(ik,y) in terms of U(y) and V(y); therefore, the differen-
tial coupled equations [Egs. (17) and (19)] of field functions
in the individual PCWs I and II can be expressed as

dU
% =iKU(y) +iMV(y), (20)
A%
ﬁ=iKV(y)+iMU(y), (21)
dy
where
ke + ko |ke - ko|
K=——and M=—"", (22)
2 2

with K and M corresponding to the effective propagation
constant and the effective mutual coupling coefficient, re-
spectively.  Let U(y)=U'(y)exp(iKy) and  V(y)
=V'(y)exp(iKy); substituting them into Egs. (20) and (21),
we obtain the coupled mode equations of the field envelopes
for the individual PCWs I and II as

dl{d_')fy) =iMV'(y) and i) =iMU'(y). (23)
The solution to Eq. (23) is
[Uf(y) } ~ [ cos(My) isin(My) } [U(')} (24)
V'(y) |~ Lisin(My) cos(My) Vil

where Uj=U’'(0) and V,=V’(0) represent the initial condi-
tions. It implies that complete power transfer from one PCW
to the other occurs when cos(My)=0; that is, My=(m
+1/2)7, where m is an integer. The minimal distance of
complete power transfer, i.e., the coupling length /., satisfies
l=ml2M)=/|k,~k,|.

We have reduced the differential coupled equations [Egs.
(17) and (19)] to the coupled mode equations [Egs. (20) and
(21)] or Eq. (23), which corresponds to Eq. (1). The EM
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wave propagates along the coupled PCWs with an effective
propagation constant equal to the average of the propagation
constants of the eigenmodes of the system, and the coupling
length I, equal to w/|k,~k,| is identical to that of the con-
ventional CMT. However, the decoupling when M=0 is a
result of cancellation among the cross couplings to the NN
(g=0) and the next-NN (¢g=+1) defects, which do not result
in the loss of guiding in the individual waveguides, as occurs
in the conventional coupled waveguides, which use only a
single coupling coefficient C [Eq. (2)] in the CMT. There-
fore, the tight-binding approximation method based on the
coupling of point defects is more appropriate for deriving the
coupled-mode equations and coupling length in terms of the
power transfer between coupled PCWs.

VI. CONCLUSION

We introduce the concept of point-defect coupling to de-
rive the dispersions of PCWs under the tight-binding ap-
proximation and apply it to formulate the EM wave propa-
gation along the coupled PCWs. The dispersive behavior of
coupled PCWs can be interpreted by the cross couplings due
to the NN and the next-NN defects in the other PCW. The
former leads to splitting of the dispersion curve of coupled
PCWs. The parities of the fundamental modes are deter-
mined by the sign of its cross-coupling coefficient 8 and can
be even or odd. The dispersion curves are further modulated
by the cross coupling due to the next-NN defects. The in-
equality |8 < |29/ is the criterion for the crossing of the dis-
persions (leading to the decoupling of PCWs), which occurs
at k=[cos™!(=8/27)]/a. The decoupling effect, which cannot
be deduced by the conventional CMT, is a result of a balance
of the cross coupling due to the NN and the next-NN defects.

The cross-coupling coefficients are strongly related to the
eigenfield distribution of the single defects. Hence, the be-
havior of coupled PCWs with various partition rows in dif-
ferent lattices (i.e., square and triangular) can be interpreted
by the distribution and symmetry of the eigenfields. Further-
more, the theory can obtain the coupled-mode equations and
the expression for the coupling length, which is identical to
the result of conventional CMT.
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