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Abstract

Electricity price forecasting is extremely important for all market players, in particular for generating companies: in the short term, they
must set up bids for the spot market; in the medium term, they have to define contract policies; and in the long term, they must define their
expansion plans. For forecasting long-term electricity market pricing, in order to avoid excessive round-off and prediction errors, this paper
proposes a new artificial neural network (ANN) with single output node structure by using direct forecasting approach. The potentials of
ANNs are investigated by employing a rolling cross validation scheme. Out of sample performance evaluated with three criteria across five
forecasting horizons shows that the proposed ANNs are a more robust multi-step ahead forecasting method than autoregressive error mod-
els. Moreover, ANN predictions are quite accurate even when the length of the forecast horizon is relatively short or long.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Since the beginning of floating electricity prices, electric-
ity price forecasting has become one of the main endeavors
for researchers and practitioners in energy markets. In
most commodity markets, the effects of production or sup-
ply chain on prices are dampened by surplus storage. By
contrast, the electricity market lacks storage for practical
purposes, which is an intrinsic source of volatility. The vol-
atility in currency markets makes electricity price forecast-
ing a difficult yet challenging task. To forecast accurately
these prices is critical for producers, consumers and retail-
ers. In fact, they must set up bids for the spot market in the
short term and define contract policies in the medium term,
and in addition, they must define their expansion plans in
the long term. For these reasons, all the decisions that each
market player must take are strongly affected by price
forecasts. Many of these problems can be modeled as
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mathematical programs. An overview of mathematical
programming problems in electricity markets can be found
in Conejo and Prieto [1].

Reported techniques to forecast day ahead prices
include autoregressive integrated moving average
(ARIMA) models [2–4], dynamic regression models [5],
other time series techniques [6,7], neural network proce-
dures [8–11] and wavelet transform models [12,13].
Recently, Nogales and Conejo [14] proposed a transfer
function model to predict electricity prices based on both
past electricity prices and demands. Lu et al. [15] proposed
a data mining based electricity price forecast framework,
which can predict the normal price as well as the price
spikes. Moreover, Conejo et al. [16] present a wavelet
transform and ARIMA hybrid model to forecast day
ahead electricity prices for the Spanish electricity markets.

Neural network applications for electricity price fore-
casting have yielded mixed results that may largely by
attributed to problems in data selection and sampling var-
iation. Most studies in the literature adopt the practice of
arbitrarily splitting available data into a training set for
model construction and a test set for model validation.
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Cross validation is a re-sampling technique that uses multi-
ple training and test sub-samples. Results from the cross
validation analysis will provide valuable insights into the
reliability or robustness of neural networks with respect
to sampling variation. A rolling validation scheme with
increasing length in the training series is used to examine
the sampling variation effect.

For long-term forecasting, however, one or more output
nodes can be used. If one output node is employed, then
the iterative forecasting approach is assumed, and the fore-
cast values are iteratively used as inputs for the next fore-
casts. On the other hand, if the number of output nodes
is equal to the length of the forecasting horizon, then the
direct forecasting approach is used in which we forecast
the future values directly from the network outputs [17].
The first approach may generate more prediction errors,
and the second approach can introduce serious round off
errors. This paper proposes an artificial neural network
model to predict m daily ahead electricity price on the
European Energy Exchange (EEX) market. The character-
istic of this model is to employ a single output node struc-
ture for m period ahead forecasts using the direct
forecasting approach in which we forecast the future values
directly from the network outputs. In general, the proposed
models can avoid excessive round off and prediction errors.
Long-term forecasting is useful for evaluating the robust-
ness of a forecasting technique.

The rest of this paper is organized as follows. Section 2
proposes a neural network model and focuses on long-term
forecasts using the direct forecasting approach. Section 3
outlines the research design and the data description. The
cross validation scheme and three out of sample perfor-
mance measures are described. Section 4 presents the
empirical findings. Conclusions and some further discus-
sions are given in Section 5.

2. Neural networks for time series forecasting

Neural networks are a class of flexible nonlinear models
that can discover patterns adaptively from the data. Theo-
retically, it has been shown that, given an appropriate num-
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Fig. 1. A three layer feed fo
ber of nonlinear processing units, neural networks can
learn from experience and estimate any complex functional
relationship. Empirically, numerous successful applications
have established their role for pattern recognition and fore-
casting [18]. Otherwise, time series forecasting linear mod-
els assume that there is an underlying process from which
data are generated and that the future values of a time ser-
ies are solely determined by the past and current observa-
tions. Neural networks are able to capture the
autocorrelation structure in a time series even if the under-
lying law governing the series is unknown or too complex
to describe.

The most popular and successful model is the feed for-
ward multilayer network. Fig. 1 shows a three layer feed for-
ward neural network with a single output unit, k hidden
units, n input units. wij is the connection weight from the
ith input unit to the jth hidden unit, and Tj is the connecting
weight from the jth hidden unit to the output unit. In its
applications, the data series is usually divided into a training
set (in sample data) and a test set (out of sample). The train-
ing set is used for construction of the neural network,
whereas the test set is used for measuring the predictive abil-
ity of the model. The training process is used essentially to
find the connection weights of the networks.

For a univariate time series forecasting problem, sup-
pose we have N observations y1, y2, . . . , yN in the training
set, yN + 1, yN + 2, . . . , yN + m in the test set and we need the
m period ahead forecasts. In order to avoid excessive round
off and prediction errors, this research proposes a network
with a single output node and p input nodes by using the
direct forecasting approach for m period ahead forecasting.
The N � m � p + 1 training patterns in the proposed
network are

ypþm ¼ f ðyp; yp�1; . . . ; y1Þ ð1Þ
ypþmþ1 ¼ f ðypþ1; yp; . . . ; y2Þ ð2Þ

..

.

yN ¼ f ðyN�m; yN�m�1; . . . ; yN�m�pþ1Þ ð3Þ

and the m testing patterns are
nits
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yNþ1 ¼ f ðyNþ1�m; yN�m; . . . ; yN�m�pþ2Þ ð4Þ
yNþ2 ¼ f ðyNþ2�m; yN�mþ1; . . . ; yN�m�pþ3Þ ð5Þ

..

.

yNþm ¼ f ðyN ; yN�1; . . . ; yN�pþ1Þ: ð6Þ

The training objective is to find the connection weights
such that an overall predictive error means (SSE) is mini-
mized. For this network structure, the SSE can be written
as:

SSE ¼
XN

i¼pþm

ðyi � ŷiÞ; ð7Þ

where ŷi is the output from the network. The number of in-
put nodes p corresponds to the number of lagged observa-
tions used to discover the underlying pattern in a time
series. Too few or too many input nodes can effect either
the learning or predictive capability of the network. Exper-
imentation with a pilot sample is often used to find the
appropriate numbers of hidden and input nodes.

3. Research methodology

This study focuses on the out of sample performance
of the proposed neural networks in electricity prices at
the EEX. As discussed earlier, multi-step ahead predic-
tions are modeled. More specifically, the following
research questions are addressed: (1) How robust is the
neural network out of sample performance with respect
to sampling variation and time frame? (2) What is the
forecasting ability of neural networks in the long and
short forecast horizons? (3) What is the out of sample
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Fig. 3. The autocorrelation function (ACF
performance of neural networks relative to the linear time
series models such as autoregressive error models (AUT-
OREG) [19]?

To answer these questions, first, we employ a 15-fold
rolling cross validation scheme with increasing length of
moving series to deduct the sampling variation effects. Sec-
ond, five different length forecast horizons with three per-
formance measures are utilized in this study. Finally,
AUTOREG models are applied to the data series and the
out of sample results are compared to those of neural
networks.

3.1. Data analysis

In Germany, the European Energy Exchange based in
Leipzig provides day ahead prices for electricity and also
forward contracts with varying maturities. Data on prices
can be downloaded from their respective websites:
www.eex.de. The electricity prices of the Phelix Base at
EEX applied here are 1096 daily data recorded in Novem-
ber 2002 through October 2005. Fig. 2 plots this time ser-
ies. Fig. 3 presents the autocorrelation function (ACF)
for this working series. Looking at the ACF, we see that
the ACF has spikes at lags 1, 7 and multiples of 7. This
implies that the time series observations separated by lags
of multiples of 7 time units have a strong positive linear
relationship. The information can be used to build linear
and nonlinear forecasting models.

3.2. Cross validation

Because the sample autocorrelations for electricity price
are statistically large at lags of multiples of 7, we choose
4 Jul-04 Oct-04 Jan-05 Apr-05 Jul-05 Oct-05

rom Dec-2002 to Dec-2004 at EEX.

77 84 91 98 105 112 119 126 133 140

g

) for daily electricity prices time series.
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yt�m, yt�m� 7, yt�m� 14, yt�m� 21 and yt�m� 28 as the
input nodes and yt as the corresponding output node to
build m period ahead forecasting models. The training
and testing patterns for the m period ahead forecasting neu-
ral networks are proposed in the following equations:
training pattern:

yt ¼ f ðyt�m�28; yt�m�21; yt�m�14; yt�m�7; yt�mÞ; and

t ¼ mþ 28þ 1; � � � ;N ; ð8Þ

testing pattern:

yp ¼ f ðyp�m�28; yp�m�21; yp�m�14; yp�m�7; yp�mÞ; and

p ¼ N þ 1; � � � ;N þ m ð9Þ

where W = N + m is the length of the time series in each
subset and N � m � 28 is the number of training data.
Assume the length of the available time series is always
longer than the selected time period W. Then, we employ
a cross validation scheme to evaluate the performance of
the proposed m period ahead forecasting structure in Eqs.
(3), (6) and (9). A rolling cross validation method with 15
test folds is utilized (see Fig. 4). By rolling, we mean that
the in sample periods are expanded sequentially starting
from observation one. Each successive fold has 45 obser-
vations added. For example, the first in sample period is
from y1 to y466�m, the second from y1 to y511�m and the
last from y1 to y1096�m. The first out of sample period
is from y466�m+1 to y466, the second from y511�m+1 to
y511 and the last from y1096�m+1 to y1096. Daily observa-
tion ym+28+1 is the first training output data. For out of
sample, we adopt five different time horizons of m = 7,
14, 21, 28 and 91 days to examine the effect of forecast
horizon. Table 1 shows the training and testing output
data of the 15 test folds under different forecasting hori-
zons. To avoid the effects of sampling variation for the
out of sample performance, the averages and standard
deviations of RMEs, MAEs, and MAPEs of the 15 fore-
Day index

                                       .......                                                    ******
Fold (1)

12

        Fold (2)

       

466-m45

Fig. 4. Rolling cross validation scheme (*

Table 1
The training and testing output data of 15 forecasting periods for each foreca

Forecasting horizon Fold 1 Fold 2

Training Testing Training

One week y36 . . . y459 y460 . . . y466 y36 . . . y504

Two weeks y43 . . . y452 y553 . . . y466 y43 . . . y497

Three weeks y50 . . . y445 y446 . . . y466 y50 . . . y490

Four weeks y57 . . . y438 y439 . . . y466 y57 . . . y483

Three months y120 . . . y375 y376 . . . y466 y120 . . . y42
casting periods are compared with autoregressive error
models.

3.3. ANN and AUTOREG models

Three layer feed forward neural networks are used to
forecast the electricity price. We use node biases except
for the input nodes. For m period ahead forecasting,
one output node with the training and testing patterns
in Eq. (9) is deployed using the direct forecasting
approach. We choose yt�m, yt�m� 7, yt�m� 14, yt�m� 21,
yt�m� 28 as the input nodes and yt as the corresponding
output node, where m is the forecasting horizon. Five
forecasting horizons, m = 7, 14, 21, 28 and 91, are exam-
ined in this study. The number of input nodes and the
number of hidden nodes are not specified a priori. More
than 50 experiments are conducted to determine the best
combination of learning rates, momentum, number of
input nodes and the number of hidden nodes. Throughout
the training, the NeuralWare [20] utility, ‘SAVEBEST’ is
used to monitor and save the lowest root mean square
(RMS) error from the training set. The best RMS error
results are obtained by using a learning rate of 0.08, a
momentum rate of 0.1, 5 input nodes: yt�m, yt�m� 7,
yt�m� 14, yt�m� 21, yt�m� 28 and 7 nodes in a single hid-
den layer that uses the generalized data learning rule
and a sigmoid transfer function (y = 1/(1 + e�x)). The best
architecture of the networks is {5:7:1}. The results are
reported in Table 2.

We also apply traditional autoregressive error models to
the electricity price data. When time series data are used in
regression analysis, often the error term is not independent
through time. If the error terms are autocorrelated, the effi-
ciency of ordinary least square parameter estimates is
adversely affected and standard error estimates are biased.
The autoregressive error model corrects for serial correla-
tion. The AUTOREG model equation is
**                      .... .                                                 ********

      Fold (15)

511466 1096-m 1096

: out of sample under different fold).

sting horizon

Fold 15

Testing . . . Training Testing

y505 . . . y511 . . . y36 . . . y1089 y1090 . . . y1096

y537 . . . y511 . . . y43 . . . y1082 y1083 . . . y1096

y530 . . . y511 . . . y50 . . . y1075 y1076 . . . y1096

y523 . . . y511 . . . y57 . . . y1068 y1069 . . . y1096

0 y421 . . . y511 . . . y120 . . . y1005 y1006 . . . y1096



Table 2
Out of sample comparison between neural networks and AUTOREG models

Forecasting horizon

One week Two weeks Three weeks Four weeks Three months

ANN AUTO ANN AUTO ANN AUTO ANN AUTO ANN AUTO

The averages of RMSE, MAE, and MAPE for 15 forecasting periods

RMSE 3.21 5.70 3.16 6.26 3.25 7.50 3.13 7.73 3.89 9.17
MAE 2.71 4.79 2.47 5.18 2.38 6.15 2.59 6.19 3.06 6.96
MAPE 9.02 15.16 8.24 15.24 8.59 16.39 8.36 16.98 8.85 20.55

The standard deviations of RMSE, MAE, and MAPE for 15 forecasting periods

RMSE 1.25 2.51 1.13 3.22 1.20 5.45 1.16 5.11 1.12 4.56
MAE 1.09 2.09 1.01 2.78 1.05 4.28 1.02 3.85 0.98 3.17
MAPE 3.18 7.59 2.41 6.04 2.33 6.55 2.30 5.97 2.05 4.42
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yt ¼ cþ mt ð10Þ
mt ¼ �w1mt�1 � w2mt�2 � � � � � wmmt�m þ et ð11Þ
et � INð0; r2Þ: ð12Þ

The notation et � IN(0,r2) indicates that each et is normally
and independently distributed with mean 0 and variance
r2. The cross validation method with 15 forecasting periods
is the same as in the neural network model. The averages
and standard deviations of RMSEs, MAEs, and MAPEs
of the 15 forecasting periods for each forecasting horizon
are compared with those of the ANN models.

3.4. Forecasting evaluation methods

For the purpose of evaluating out of sample forecasting
capability, we examine the forecasting accuracy by calcu-
lating three different evaluation statistics: the root mean
square error (RMSE), the mean absolute error (MAE)
and the mean absolute percentage error (MAPE). They
are expressed in the following:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

ðP i � AiÞ2=n

s
ð13Þ

MAE ¼
Xn

i¼1

jP i � Aij ð14Þ

MAPE ¼
Xn

i¼1

jðP i � AiÞ=Aij � 100 ð15Þ

where Pi and Ai are the ith predicted and actual values,
respectively, and n is the total number of predictions.

4. Empirical results

The electricity prices at the EEX applied here are 1096
daily data recorded in 2002 through 2005. For long-term
forecasting, in order to avoid excessive round off and pre-
diction errors, this research proposes a neural network with
a single output node and p input nodes by using the direct
forecasting approach. The cross validation method with 15
forecasting periods is used to deduce the sampling varia-
tion effect. Three performance measures are utilized to
investigate the forecasting ability in long and short forecast
horizons. Additionally, the SAS-AUTOREG procedures
[19] are used to select available autoregressive error models
to the 15 test folds under a different forecasting horizon. It
is not surprising to find that lags 1, 7, 12, 14, 21 and 28 are
included in all of the models. The averages and standard
deviations of RMSEs, MAEs and MAPEs for the 15 fore-
casting periods under different forecasting horizons are
compared with those of the ANN models. Table 2 shows
the results. Several observations can be made from it. First,
ANNs perform better than autoregressive error models for
out of sample forecasting capability. For each forecast
horizon, the average values of the three evaluation statistics
of the 15 forecasting periods for AUTOREG are larger
than those of the ANN models. Forecasting accuracy
decreased as forecasting horizon extended for the AUT-
OREG model. For the three month forecast, neural net-
works still have smaller average values of the three
statistics, but the autoregressive model does not. These
results may be expected since the linear model is not avail-
able for longer prediction periods.

Second, neural networks have smaller sampling varia-
tion effects than the autoregressive model under different
forecasting horizons. Sampling variations become smaller
for long forecast horizons. Finally, for m period ahead
forecasting, the proposed ANNs use the direct forecasting
approach with a single output node structure to avoid
excessive round off and prediction errors. The model input
nodes are yt�m, yt�m�i, yt�m�j , . . . , where the autocorrela-
tion for time series {yt} are statistically large at lags m + i,
m + j. Overall, depending on the rolling cross validation
scheme, the proposed long-term forecasting ANNs are bet-
ter than the autoregressive error models.

5. Conclusions

This paper proposes an ANN with a single output node
structure to forecast m daily ahead electricity price using
the direct forecasting approach. The model input nodes
are yt�m, yt�m�7, yt�m�14, yt�m�21, yt�m�28 and the corre-
sponding output node is yt, where the autocorrelation for
time series {yt} are statistically large at lags m + 7,
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m + 14, m + 21, m + 28. For m period ahead forecasting,
other techniques use an iterative approach with one output
node structure or the direct approach with m output nodes
structure. However, both approaches may entail more pre-
diction and round off errors. In general, the proposed mod-
els can avoid excessive round off and prediction errors. We
investigated the potential of neural network models utiliz-
ing a rolling cross validation scheme. Out of sample perfor-
mance with five forecast horizons is evaluated along three
criteria, RMSE, MAE and MAPE.

From the case studies analyzed, we noticed that the fore-
casting accuracy of the neural networks is not very sensitive
to the length of forecast horizon, but the autoregressive
error models are. For the three month forecast, neural net-
works still have smaller average values of the three statis-
tics, but the autoregressive models do not. These results
may be expected since the linear model is not available
for longer prediction periods. Additionally, neural net-
works have smaller sampling variation effects than autore-
gressive models under different forecasting horizons.
Statistic MAPE notices that sampling variations become
smaller as the forecast horizon extends. Furthermore, the
proposed neural networks have a better ability to learn
from data patterns in the training time period and success-
fully predict m period ahead outcomes for electricity prices
on the EEX. Overall, depending on the rolling cross valida-
tion scheme, ANNs are better than autoregressive error
models for long-term forecasting.

One fruitful area for further research is a combined
methodology of multivariate linear models such as
dynamic regression and neural networks. It is suspected
that electricity prices time series contain a linear and non-
linear component. Since it has been well established in the
literature that Box–Jenkins types of models are particularly
effective for linear patterns, whereas neural networks are
the preferred models for nonlinear patterns, a combination
approach should produce even better results than either
linear or nonlinear approach used singly.
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