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Abstract—There has been significant amount of study on the
use of ground-penetrating radar (GPR) for land-mine detection.
This paper presents our analysis of GPR data collected at a U.S.
Army test site using a new approach based on frequency subband
processing. In this approach, from the radar data that have over
2.5 GHz of bandwidth, we compute separate radar images using
the one wide (2 GHz) and four narrow (0.6 GHz) frequency
subbands. The results indicate that signals for different frequency
subbands are significantly different and give very different per-
formance in land-mine detection. In addition, we also examine a
number of features extracted from the GPR data, including mag-
nitude and local-contrast features, ratio between copolarization
and cross-polarization signals, and features obtained using polari-
metric decomposition. Feature selection procedures are employed
to find subsets of features that improve detection performance
when combined. Results of land-mine detection, including perfor-
mance on blind test lanes, are presented.

Index Terms—Feature extraction, feature selection, frequency
subbands, ground-penetrating radar (GPR), land-mine detection.

I. INTRODUCTION

AND mines around the world pose a serious problem as

they continue to cause serious injuries and loss of lives
for both civilians and soldiers. Detection and removal of land
mines is a serious issue to be addressed. Over the past several
years, a variety of technologies have been applied to land-mine
detection. One technology that has been studied extensively is
ground-penetrating radar (GPR), which is able to detect both
metal mines and mines of low metal content.
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Most studies on GPR-based land-mine detection, so far, have
focused on either hand-held or vehicle-mounted downward-
looking systems. In such systems, the radar signal propagates
in a direction close to vertical to the ground surface. A good
performance has been reported for such systems, especially
given recent progress in radar technology [1], [2].

Compared with downward-looking systems, forward-
looking GPR (FLGPR) systems are quite new. Currently,
there exist forward-looking systems using IR imaging [3], [4],
acoustic [5], and GPR [6]-[9] mine-detection technologies.
These systems employ sensors that look ahead of the vehicle,
with a standoff distance (the distance between the vehicle and
the mine when it is detected) of up to a few tens of meters.
Forward-looking GPR has also been applied to the detection of
side-attack mines [6]. Existing forward-looking GPR systems
are vehicle-mounted synthetic aperture radar (SAR) systems,
with antennas that either move along a rail [7] or arranged in
an array [9].

This paper presents the analysis of forward-looking GPR
data collected by SRI International. The raw radar data are
made available to us by SRI. The data set is divided into
“runs.” During each run, the vehicle is driven continuously
along one of the test mine lanes at a U.S. Army facility that
contain a variety of metal and plastic antitank mines. The
data set includes “calibration” and “blind” runs. For calibration
runs, the locations of targets (the ground truth), including
actual mines and mine simulants (SIMs), are made available
to us. This allows us to design the detection algorithm with
labeled data. For blind runs, the ground truth is not known
to the authors nor to SRI. The blind data runs are processed
using the same algorithm that was generated and tested on the
calibration data. Our results on the blind data, which consist of
lists of suspected mine locations with associated confidences,
are sent to an independent agency, the Institute for Defense
Analyses (IDA), for scoring. We received from IDA the receiver
operating characteristic (ROC) curves of the blind test, which
we included in the results section of this paper.

There exist a number of algorithms for mine detection using
forward-looking GPR data [8], [10]-[13]. A number of them fo-
cus on exploiting high-resolution spatial features [8], [10], [11],
which requires a wide-frequency-bandwidth signal to give the
desired range resolution. These can be considered generally as
“spatial-domain” or “time-domain” techniques since the range
information is derived from the timing between the transmitted
and received signals.
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In this paper, we present a different approach for analyzing
wide-frequency-band GPR data for land-mine detection that
can be considered “quasi-frequency-domain.” This work was
introduced in [13] but is expanded here. Frequency dependence
has been identified in downward-looking systems [14], where
mines are found to give stronger responses at certain frequency
ranges. For the forward-looking system, our approach is to
divide the whole frequency range into narrower subbands and
create separate SAR images for each individual frequency
subband. The motivation here is that signal levels from mines
and clutter may very likely have different frequency depen-
dence and that we can exploit these differences by focusing
on one or more frequency subbands that give the best contrast
between mine and clutter signals. On the other hand, the use of
narrower frequency subbands results in lower range resolution
and makes it less likely to extract detailed spatial features of
mine or clutter signatures. In this regard, we can consider our
approach and existing “time-domain” approach to be comple-
mentary to each other. The term ‘“quasi-frequency-domain” is
used because, although we explore frequency dependence, we
are not truly analyzing individual frequency components in the
radar signal.

Our algorithm consists of components that create SAR
images for specified frequency subbands, preprocessing that
removes background, an energy-based prescreener, feature ex-
traction and selection, and the classifier itself. A total of ten
features, including two different approaches of polarimetric
decomposition, are analyzed. Our results are very good on both
calibration and blind lanes for metal mines and provide the best
detection of plastic mines to date.

II. DESCRIPTION OF ALGORITHM

The radar system consists of two transmitting and 18 receiv-
ing antennas mounted at the front of the vehicle at about 5 m
above the ground. During each run, while the vehicle is driven
continuously along a mine lane, data are recorded at intervals
of 1-3 m; each of such data recording is called a “scan.” The
quad-ridge horn antennas can operate in either horizontal (H)
or vertical (V) polarization. We define a polarization mode
as one combination of transmitter and receiver polarizations.
For example, the polarization mode “HV” means transmitting
in H and receiving in V polarizations. In each scan, 36 sets
of values (one for each combination of the two transmitting
and 18 receiving antennas) are recorded for each of the three
polarization modes: HH, VV, and HV. Every one of the 36 sets
contains received radar signals at 1024 frequencies (442.5 MHz
to 3 GHz in 2.5-MHz steps). A picture of the system is shown in
Fig. 1. The radar antennas are tilted toward the ground by 15°.
The rectangle on the ground is just a visual aid to indicate the
approximate imaged area. The closest range is approximately
7 m and is determined by the need to avoid overlap between
transmitted and received pulses. Readers can refer to the study
in [7] for more information regarding the antennas.

A scan image is a SAR reconstruction for a given scan and
polarization mode, formed by the coherent combination of its
36 sets of data. We use the array vy (z,y, P, F') to represent
complex pixel values in all of the scan images of a given run.
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Fig. 1. Schematic of the radar system and imaged area.
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Fig. 2. Example of scan images for the same location and frequency subband
(Fo), but different polarization modes.

Here, x and y are pixel coordinates within a scan image and
are relative to the vehicle, with « and y being the directions
perpendicular and parallel to the vehicle’s motion, respectively.
The parameter k represents the index of the scan within a run,
P the polarization mode, and F’ the frequency range (subband)
of the data used in creating the image. We investigate five
different frequency subbands in this paper, represented by Fj
(0.8—2.8 GHz), Fy (0.75—1.35 GHz), F» (1.25-1.85 GHz),
F5 (1.75-2.35 GHz), and F, (2.25—2.85 GHz). The study
of different frequency subbands was originally inspired by
previous observations of frequency dependence in downward-
looking GPR data. The subbands F to Fy approximately divide
the whole frequency range into four parts while allowing some
overlap. Their frequency bandwidth of 0.6 GHz is selected
such that the range resolution estimated through the simulation
is approximately 25 cm, which is around the typical size of
antitank mines. The choice of these four subbands involves the
tradeoff between two considerations: more narrower subbands
to give more detailed information on frequency dependence and
wider subbands for better spatial resolution.

Each scan image we generate covers a spatial region 19 m
long (7-26 m from the front of the vehicle, in the direction of
the vehicle’s motion) and 12 m wide (6 m on each side from
the center of the vehicle) at 5-cm resolution. Figs. 2—4 contain
examples of scan images. Fig. 2 displays scan images of the
same spatial region and frequency subband, but with different
polarization modes. In Fig. 3, there are scan images of the
same spatial region and polarization mode, but with different
frequency subbands. Finally, Fig. 4 shows the images of five
consecutive scans for the same frequency subband and polar-
ization mode. Each scan image contains a surface-laid plastic
mine indicated by the circle (2-m diameter).
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Fig. 3. Example of scan images for the same location and polarization mode
(VV), but different frequency subbands.
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Fig. 4. Example of five consecutive images for the same frequency subband
(F1) and polarization mode (HH).

A. Background Removal and Normalization

This section describes the procedure of removing image
features that result only from properties of the radar system
and are independent of the vehicle’s location. This procedure
is further divided into two steps: the estimation and subtraction
of self-signatures, and the estimation and normalization of
signal magnitude variations (gain background). To simplify
notation, we use vy (z,y) instead of v (z,y, P, F') to represent
pixel values in all the scan images, as all background removal
and normalization procedures involve only data of the same
polarization mode and frequency subband. The parameter k
represents the index of the scan within a run. We use my(z, y)
and 0 (x, y) to represent the magnitude and phase of v (z,y)

ve(w,y) = my(z,y) exp [0k (z, y)] - €]

Self-signatures are complex patterns that likely result from
interaction among radar antennas and other components of the
vehicle. These patterns appear to be mostly identical in all scan
images of the same polarization and frequency band, regardless
of the motion of the vehicle. This is evident in Fig. 4, where
we see that the mine signature moves between images due to
vehicle motion while the background patterns are stationary.
We estimate self-signatures by averaging all the scan images of
the same polarization and frequency band in the same run. This
is done coherently, i.e., we use scan images containing com-
plex numbers. However, to reduce the effect on self-signature
estimation by other strong signals, such as those from surface-
laid mines, we apply an upper limit on the magnitude of pixel
values. The estimated self-signature is given by

N,
1 scan 1 .
Bi(z,y) = Noo ; Emm [ (2, y), b
+ 5ok exp [0k (x,y)] . (2)

Here, Nycapn is the number of scans in the run, pj and oy, are
the mean and standard deviation of my,(z, y), respectively, and

Along-track range (m)
vehicle direction

Cross-track range (m)

Fig. 5. Effect of background removal and normalization. (a) Original scan
image (F1, HH). (b) Estimated self-signatures. (c) Same as (a) after subtraction
of (b). (d) Estimated gain background. (e) Same as (c) after normalization of
gain background.

7y, is defined as the rms of the lowest 75% of my(z,y) values.
The magnitude of each scan image is divided by rj before
the averaging in (2) to remove scan-to-scan gain variations.
Possible causes of such variations include noise in the raw data
as well as ground properties such as moisture content. Since
many of our features are obtained by aggregating their values
in individual scan images using intensity-based weights, this
normalization is necessary to avoid bias.

To estimate the “gain background,” we first perform self-
signature subtraction for each scan image

1
whe) = | Lnlen) - Biew) . O
Next, we smooth m/} (x,y) by first applying a 21 x 21 (1 m x
1 m) median filter and thena 51 x 51 (2.5 m x 2.5 m) averaging
filter; for simplicity, we continue to call this smoothed function
m}.(x,y). The gain background is then given by

“)

scan

Bo(z,y) = % Zm’k(a:,y)
&

After we have estimated both the self-signatures and the
gain background, we subtract the self-signatures from the scan
images, followed by division with the gain background

" %kuk(%y)—Bl(x,y)
Bg(l’,y)

(&)

We illustrate in Fig. 5 the effect of background removal and
normalization. Fig. 5(b) is the magnitude of the estimated self-
signatures, i.e., | B1(x,y)|, of a certain run. Fig. 5(a) is a scan
image within this run, and Fig. 5(c) is the result of applying
self-signature subtraction on Fig. 5(a), but before smoothing is
applied. Fig. 5(d) is By(z,y), the estimated gain background.
Fig. 5(e) shows the corresponding mj(x, y), which is Fig. 5(c)
after the normalization of the gain background.

B. Prescreener

For our data set, the GPR vehicle typically moves forward
by 1-3 m between successive scans. This distance is small
compared with the size of computed scan images, resulting
in the fact that a spatial location can appear in multiple scan
images. It is therefore necessary to have a common coordinate
system that allows us to identify the multiple occurrences, each
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Fig. 6. Partial run-view image of a calibration lane for HH polarization mode
and frequency subband F. The individual images are 6-m cross-track and
15-m down-track. The vertical lines represent lane boundaries, and the circles
indicate targets in the ground truth.

in a different scan image, of a given spatial location. We choose
to use the coordinate system of the mine lane being surveyed
for convenience because these lanes are rectangular.

The purpose of the prescreener is to select a list of alarm
locations for further analysis and classification. As each run of
our data covers a single mine lane, we first construct a run-
view image over a grid of spatial locations along the mine lane.
More specifically, this grid covers an area 6 m wide and of the
same length as the mine lane itself at 10-cm resolution; the
width is selected to extend 1.5 m from each side of the 3-m-
wide lane. For each run, we compute a run-view image for each
combination of polarization mode and frequency subband.

To obtain the pixel value of a given spatial location p in the
run-view image, we first identify all individual scan images that
contain p. We use only those scan images in which p appears
within Yj,,x from the front of the vehicle. This is because
we find that we can achieve better detection performance by
focusing on the part of the scan images closer to the vehicle
than when the entire down-track range is used. We then set the
pixel value corresponding to p in the run-view image to be the
second largest pixel value (magnitude only) corresponding to p
in those scan images. This usage of “second largest value” is
just a simple way to remove the effect of spurious bright pixels
with minimal computational load. Currently, Y}, is setto 16 m
to ensure that p is between 7 m (the closest distance to the
vehicle in the scan images) and Yj,.x from the front of the
vehicle in at least two to three scan images when the vehicle
moves by 3 m between scans, which is the largest interscan
distance in our data set. This is because two occurrences of p
are needed to get the “second largest value.” However, in rare
cases, a spatial location p might still appear in only one scan
image. This occurs when the vehicle moved out of the mine lane
to avoid obstacles, causing an unusually large distance between
the two scans just before and after the segment when the vehicle
is outside of the lane. In these cases, we just use the pixel value
corresponding to p in that one scan image as the pixel value of
p in the run-view image.

Fig. 6 shows the run-view image of a 60-m-long segment in
one calibration lane for HH polarization mode and frequency
subband F1. The individual images are 6-m cross-track and
15-m down-track. The vertical lines represent the lane bound-
aries, and the circles indicate targets in the ground truth.
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Fig. 7. Alarms (small circles) found in the same 60-m-long segment of

a calibration-lane run-view image as Fig. 6. The vertical lines are lane
boundaries.

From a run-view image, we generate a list of alarms consist-
ing of all pixels in the run-view image that are local maximas
within a radius of r414,m (currently set to 75 cm). The location
and confidence value of an alarm are just the location and
magnitude of its corresponding pixel in the run-view image.
Pixels on the border of the run-view image are excluded. This
can be considered an energy-based prescreener.

Further pruning of alarms is done with an adaptive thresh-
olding scheme. The goal is to reduce the total number of
alarms without having to manually select a threshold. Instead,
the threshold is selected such that the total number of alarms
retained after thresholding is pA /(772 ., ), where A is the total
area under consideration (the area of the run-view image here)
and p is a positive density factor. The result is that, on average,
there remain p alarms per unit area of (72, ). Currently, we
use p = 0.75. Fig. 7 displays the same region as in Fig. 6, with
the alarms shown as small circles.

For the calibration runs, since we know the locations of all
targets, we are able to label the detected alarms. Alarms located
within a radius of 71,1 (currently set to 1 m) from the centers of
known targets (including mines and SIMs) are labeled as “hits.”
We associate each hit with its closest actual target. Alarms that
are not hits but fall within the lane’s boundary are labeled as
“FAs”; “FA” stands for false alarm. Alarms that are neither hits
nor FAs are not included in the subsequent analysis.

C. Analysis of Different Frequency Subbands

Up to this point, we have generated scan images and run-
view images for individual frequency subbands. In Fig. 8, scan
images of different frequency subbands are displayed side by
side for the purpose of qualitative comparison. Each row in
Fig. 8 is a set of five images of the same scan and polarization
mode, but with different frequency subbands (from left to right,
Fy, 1, F5, F3, and F}y). The scan images here contain only
regions that are 6 m wide (centered at the mine lane) and 8 m
long (8—16 m in front of the vehicle). It appears that frequency
subband F exhibits the lowest level of clutter, in general.

For each run, we generate a run-view image for each combi-
nation of different frequency subbands and polarization modes.
Every run-view image allows us to obtain a list of alarms.
At this point, we are faced with the question of which fre-
quency subband and polarization mode to use for this pur-
pose. A simple method to compare different combinations of
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F, F, F, F,
1 T3 T — —
T L : AR I__.'PL o
g 7| [ s AT —
[ o r U T o O (OO | = \'AY%
OO 0.4 0.4 040 040 : 0.4
FAR (m2)

Fig. 9. ROC curves generated at the prescreener stage for the alarms in a
calibration run.

polarization settings and frequency bands is to create ROC
curves for the calibration-lane alarms generated with the var-
ious combinations. Hits associated with mines are considered
detections, and FAs are considered false alarms; alarms outside
of the lanes and hits associated with SIMs are excluded. In
Fig. 9, we plot the ROC curves for different frequency band
and polarization mode combinations. We can clearly see the
trend of lower probability of detection (PD) versus false alarm
rate (FAR) curves from Fj to Fj. Currently, we choose HH
polarization and frequency subband Fj (0.75-1.35 GHz) for
the prescreener because this combination appears to perform
best according to the ROC curves in Fig. 8 and also gives 100%
detection in all calibration runs with FAR < 0.15 m~2.

SIMs are designed to be similar to actual mines in terms
of: 1) metal content; 2) thermal properties; and 3) dielectric
properties of explosives (readers interested in SIMs are referred
to the study in [20]). However, they usually do not match actual
mines in terms of what actually makes FLGPR work, such as air
gaps. As aresult, FLGPR does not perform well when detecting
SIMs, and they are usually excluded during scoring.

D. Feature Computation

1) Extraction of Patch Images: Before we construct the
classifier to separate alarms corresponding to mines and false
alarms, we have to obtain a set of features for each alarm.
We compute the features of an alarm from extracted image
patches centered at that alarm’s location. Because of different
requirements of different features, two sets of image patches
are generated: 1) the incoherent set, which consists of 25 x 25,
magnitude-only image patches (at 10-cm spatial resolution),
and 2) the coherent set, which consists of 11 x 11, complex-
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Fig. 10. Example image patches in the incoherent set. (a)—(d) are image
patches that belong to different alarms. Each small rectangle is a 25 x 25
image patch. For each alarm, its image patches are arranged into 12 rows, each
corresponding to a combination of polarization mode and frequency subband,
and a number of columns, each corresponding to a distance between the alarm
and the vehicle (from left to right, nearest to farthest). Only image patches for
which the alarms are within Yi,ax (16 m) of the vehicle are shown, so the
number of columns depends on how many times the alarms appear within that
distance over multiple scan images. (a) Hit for a surface-laid mine. (b) Hit for
a 5-cm-deep buried metal mine. (c) Hit for a 5-cm-deep buried plastic mine.
(d) False alarm.

number image patches (at 5-cm spatial resolution). We use
lower spatial resolution for the incoherent set simply to reduce
the amount of computation, since the image patches in this set
contain more pixels due to the need to compute region-based
features (local contrasts, to be discussed later). Currently, the
coherent set is used solely for the generation of features through
polarimetric decomposition, also discussed later. These image
patches are extracted from all the individual scan images that
contain the alarm’s location. Fig. 10 contains the image patches
(the incoherent set) for four alarms. The first three alarms are
associated with a surface-laid mine, a 5-cm-deep buried metal
mine, and a 5-cm-deep buried plastic mine, respectively. The
last one is not associated with any known target and is therefore
a FA. For each alarm, the image patches are arranged from
top to bottom according to the frequency-subband/polarization
combination and from left to right according to their distances
to the vehicle.

Pixel values in the extracted image patches are represented
as v(p)(z,y,Y, P, F), with the subscript “(p)” indicating that
we are referring to image patches. Here, similar to the case of
scan images, they are identified by five parameters: x and y
for the pixel coordinates within the patch in directions that are
perpendicular and parallel to the vehicle, respectively, Y for
the distance from the front of the vehicle to the alarm, P for
the polarization mode (“HH,” “VV,” or “HV”), and F" for the
frequency subband. Since the feature calculation always involve
only one frequency subband, we skip the parameter F' in the
following equations to make them more concise. In addition,
each image patch of the incoherent set is divided into three
regions (see Fig. 11): the inner region (Rj,) consists of the
central 5 x 3 pixels, the outer region (R,,t) consists of pixels
outside of the central 9 x 7 pixels, and the pixels between the
inner and outer regions form a guard region.

2) Description of Features: We compute the following ten
features for each alarm from the extracted image patches:

1) Myv: magnitude in VV polarization mode;
2) Cyv: local contrast in VV polarization mode;
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Fig. 11. Separate regions of an image patch in the incoherent set.

3) Ryv/mv: ratio between VV and HV polarization modes;

4) Mmyp: magnitude in HH polarization mode;

5) Chypy: local contrast in HH polarization mode;

6) Rum/mv: ratio between HH and HV polarization modes;

7) Py: the feature H (entropy) in H/« polarimetric decom-

position;

8) P,: the feature « in H/« polarimetric decomposition;

9) P;: the feature “degree of scatterer symmetry” in A/S

polarimetric decomposition;
10) Py: the feature “scatterer rotation angle” in A/S polari-
metric decomposition.

The first six (magnitude, local contrast, and ratio) features are
derived from the incoherent set of image patches. In the follow-
ing, we only describe the procedures for the HH polarization
mode; the corresponding features for the V'V polarization mode
are obtained by simply replacing “HH” with “VV” in the equa-
tions. Let us define my, (Y, P) and pin (Y, P) as the maximum
and mean value of v(,y(x,y,Y, P) for all (,y) € Riy, respec-
tively, and pout (Y, P) and oout (Y, P) as the mean and stan-
dard deviation values of v, (z,y,Y, P) for all (z,y) € Rout,
respectively. The magnitude feature is given by

My = max my, (Y, “HH”). (©6)

Y <Y,

>Tmax

The local contrast of an image patch is the difference be-
tween the inner and outer regions divided by the standard
deviation in the outer region. This is actually what is commonly
referred to as the constant FAR (CFAR) value. The local
contrast feature of an alarm is the weighted average of the local
contrast values in all the patches associated with that alarm

2y <V Min (Y, “"HH)cun (Y)
2y <V Min (Y “HH)

)

Cun =

where

min(Y7 “HH”) — Jlout (Y, “HH”)
Oout (Ya “HH”) '

CHH(Y) =

The ratio features Ry v and Ryv/iry are motivated
by the observation that clutter objects exhibit larger cross-
polarization signals (i.e., HV) than actual mines. They are
calculated as

Y vy, Min(Y; “HH”) rpymv (V)
DY <V Min (Y “HH?)

®)

Ryun/mv =

where

~ pin(Y, “HH”)

Y)=——F ——~.
T’HH/HV( ) Min(Y,“HV”)
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The four features involving polarimetric decomposition are
derived from the coherent set of image patches. Polarimetric
decomposition is the process of extracting physics-inspired
features from the 2 x 2 scattering matrix

Shv

va) : )
Each element in S represents the complex-valued backscattered
signal for a specific combination of receiver and transmitter
polarizations. For example, we use sy, to represent signals with
H transmitter and V' receiver polarizations. However, we only
have data for three polarization settings: HH, VV, and HV. It is
common to assume Sy, = Sy based on reciprocity.

3) Computing Features From Polarimetric Decomposition:
We implemented two different approaches for polarization de-
composition, H/« and A/S. The following describes the proce-
dure of computing features of H/« decomposition (please see
[15] for more details of this technique). In H/« decomposition,
two numbers, H and «, are obtained from the eigenvalues and
eigenvectors of (), which is a 3 x 3 matrix defined as

1
Q = §<qTq*>a where q= [Shh + Svv  Shh — Svv 281’1V]'
(10)

We use the average over a 5 x 5 window for the (o) operator.

In our case, the values of H and « are calculated for each
(z,y,Y). We average them locally at the alarm’s location by
defining H;,, (V) and o, (Y) as the mean value of H(z,y,Y)
and a(z,y,Y') over Ry,, respectively. Here, R;,, also represents
the central 5 x 3 region of the image patches. The feature values
are obtained by weighted average

b Sy (VL HE) Hi (V)
H — “« 99
ZYgYmax min (Y, “HH”)

Y

and

P 20 Ve Min (Y HH) 03 (V)
* 2¥ <Via Min (Y, “HH?)

The A/S polarimetric decomposition technique (please see
[16] and [17] for more details) involves the following steps. The
first task is to estimate Sy, the part of the scattering matrix
S that corresponds to a reciprocal scatterer. Since we have
assumed reciprocity, we always have S = S;cc.. The second
task is to estimate Sgyr,, the largest component of Sie. that
corresponds to a symmetric scatterer. The characteristic of a
scattering matrix corresponding to a symmetric scatterer is that
itis diagonalizable by a 2 x 2 rotation matrix Ry, with ¢ being
the rotation angle. Sgym is given by

12)

Ssym = (Srec L4 Sa)Sa + (Srec d S,)S, (13)
where
g _lj1r o g 1 Tcosf sinf
V210 1 /2 |sinf —cosf
. cos@®  sin@’
with 6 = argmax | Srec ® Lin ¢ —cos 9'} ‘ 4
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The “inner product” operator between two 2 X 2 matrices, “e,”
is defined as the inner product when the two matrices are treated
as 4 x 1 vectors.

One of the two features derived from A/S polarimetric de-
composition is the “degree of scatterer symmetry”

-1 |Ssym. rcc|
T=cos = |—2 " | (15)
[1Ssyml| X [|Srecll
Here, the || - || operator of a 2 X 2 matrix is its length when

treated as a4 x 1 vector.

The other feature is the rotation angle 1 that diagonalizes
Ssym- Due to the existence of angular ambiguity, we apply the
following restrictions following [16]: 1) —7/2 < ¢ < w/2 and
2) 1 is selected such that the (1,1) element of Sy, after being
diagonalized, is not smaller than its (2,2) element.

Similar to the case of H/« decomposition, the values of
7 and ¢ are calculated for each (x,y,Y). We also average
them locally at the alarm’s location by defining 73, (Y") and
Yin(Y) as the mean value of 7(z,y,Y) and ¢ (z,y,Y) over
R;,, respectively. The corresponding features are then obtained
through weighted averaging over Y’

2y Vi Min (Y "HHT) 70 (Y)
ZYSY;nax mlﬂ(yv’ “HH”)

P, (16)

and

P Y <Yy Min (Y HH) 0 (V)
1/’ Zygymax min (Y, “HH”)

a7

E. Data Duplication and Feature Normalization

One property of our training data is that there are many more
data points labeled as FAs than those labeled as hits. We handle
this by duplicating alarms that are considered hits when training
the classifier. We define a function W () to represent the ratio
of duplication for an alarm (feature vector) x. We always have
W (x) =1 for FAs as they are not duplicated. For hits, it is
calculated as

W(x) = WopB(z)w(x) (18)
where
B w'(x) R _dtgt(ﬂc)2
wiw)= 27 (@)=T(a) ' (@) with w7 () =exp [ Thbel |
(19)

Wy is the ratio between the number of FAs and the number
of actual targets. Its value is approximately 30 for the training
data. B(x) =1 if = is associated with an actual mine and
0.5 if x is associated with a SIM. The purpose of the term
B(x) is to differentiate between actual mines and SIMs because
of possible differences between features of alarms associated
with these two types of targets. Even though we are only
interested in detecting actual mines, due to the small number
of hits available for training purpose, we choose to give smaller
weights to alarms associated with SIMs instead of excluding
them altogether.

108 103 102
(a) (b) (c)

Distribution

0 0 0
0 25 0 25 -1 1

Feature Value

Fig. 12. Example of the effect of data duplication and feature value normal-
ization on feature value distribution. (a) Original histogram of My values (all
calibration runs) before data duplication and feature normalization. (b) Same as
(a) but after data duplication. (c) Histogram after feature normalization.

An assumption made for the training data is that a hit actually
results from a target in the mine lane. However, a complication
is that sometimes there are two or more alarms associated with
the same target. In such cases, we are less confident about any
of the individual alarms actually resulting from the target. We
use the weighting term w(x) in (18) and (19) to handle this
reduced confidence. In (19), we make the w(x) values of all
the alarms associated with the same target add to one. Here,
we use T'(x) to represent the actual target associated with a
hit . When more than one alarm are associated with the same
target, the w(x) values for these alarms are determined by their
Euclidean spatial distance to the ground truth location of the
target, dig (). An alarm with smaller dyg () gets larger w(x)
and vice versa. For example, assume 7,01 = 1 m, and there
are two alarms associated with the same target, with dig ()
being 0.2 and 0.9 m, respectively. Using (19), we calculate
w(x) of these two alarms to be 0.68 and 0.32, respectively.
After we have computed W () for all alarms, we replace each
W (x) with the larger value of its closest integer and one. Now,
we can create a new training set in which there are W (x)
instances of x.

Many of the features have very skewed distribution. For
example, in Fig. 12(a) and (b), we plot the histogram of My
in all the calibration runs before and after data duplication,
respectively. We see that the distribution is concentrated at
smaller Myp in both plots. We apply a feature normalization
procedure that is similar to histogram specification. The goal is
to rearrange the values of a given feature such that the distribu-
tion is similar to a given function. We choose to use a Gaussian
between —1 and 1, with a standard deviation of one. The
resulting distribution is shown in Fig. 12(c). The pseudocode of
the procedure is given below. It produces a list of (a;, b;) pairs,
i.e., the pairs of pre- and postnormalization feature values.

Let ay,as,...,an be the sorted values
(small to large) of a single feature
Let f(a) be the new distribution
A «— area under f(a) between —1 and 1
da — A/(N —1)
bl — —1
fork=2to N
b be—1 +da/(f(ar) + flar-1))
end for

return by, bo, ..., by as the new feature values
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When we have separate training and testing/validation data,
both data duplication and feature normalization involves only
data in the training set. The “normalized” values of a feature
in the testing or validation data are obtained through interpo-
lation/extrapolation using the (a;, b;) pairs obtained from the
training data.

FE. Classifier Design, Scoring, and Feature Selection

To use as few free parameters as possible in our classifier so
that it will not be overtrained, we choose to use Fischer’s linear
discriminant (FLD) for the classifier design. The basic idea is
to project all data points onto a single direction in the feature
space, giving one number (the confidence) for each data point,
such that a class separation measure is optimized for data points
in the training set. This is described in the following.

Let there be two classes Cq and Cs, and feature vectors
xp (1 <k < N) that have been labeled as either C; or Cs.
FLD selects a vector ypr,p as the projection direction in the
feature space

YpLp = (U2 — U1)5;1~ (20)

Here, uq and us are the mean vectors of all x; in C; and Cs,
respectively. .Sy, is the within-class scatter matrix [note: do not
confuse S, with the scattering matrix in (9)]

1

S~
NX

> (@k —w) (@, —un)”

xreCy

+ > (@ —ug)(mp —un)" | 2D

z,€Co

The confidence value of an alarm is given by the projection of
its feature vector on ypy,p. We use C; and Cs to represent “FA”
and “TGT” alarms, respectively, so that the mean score of hits is
larger than that of FAs (see, for example, [18] for more detailed
description of FLD).

In order to evaluate the performance of a classifier, confi-
dence values of all alarms are thresholded at different levels to
produce ROC curves. Although FLD provides a class separation
measure, we are more interested in the ROC curves for judg-
ing the merits of various feature combinations for land-mine
detection. We generate ROC curves using the following rules,
with rp,1, currently set to 1.0 m.

1) An alarm is considered a detection if it is within 7},,1,
from the center of a known target.

2) When multiple alarms are within 7y,), from the center
of the same known target, only the one with the highest
confidence value is considered a detection, and the other
alarms are ignored.

3) An alarm is considered a false alarm if it is not within
Thalo from the center of any known target and it is within
the lane boundary.
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4) An alarm is considered as neither a detection nor a false
alarm if it is not within 7}, from the center of any known
target and it is outside of the lane boundary.

5) When we generate the ROC curve for a specific subset
of targets (e.g., buried metal mines), alarms within 7},,1,
from the center of other known targets are not considered
as either detections or false alarms.

6) The total area used in FAR calculation is the total lane
area minus Nigt (Wrﬁalo), where Ny is the total number
of known targets, regardless of whether we are generating
the ROC curve for a specific subset of targets.

Please note that the rules stated above apply to our compu-
tation of ROC curves for the calibration data only. The ROC
curves for blind test data are generated by the independent
agency IDA.

Specifically, to compare different classifiers, we use PDy,ean,
which is defined as the average PD for FAR between O and
0.1 m2, as the performance measure of a classifier. We limit
the consideration to FAR < 0.1 m~2 because, at higher FAR,
there might be substantial number of “chance” detections.

We employ the sequential-forward-search (SFS) technique
to search for the best feature combinations (see, for example,
[18]). In this approach, we start the feature collection with the
best individual feature. We then evaluate all feature combina-
tions involving the current feature collection and one additional
feature. This is repeated until we have the desired number of
features in the collection.

III. EXPERIMENTAL RESULTS

Our data set includes three calibration and four blind runs,
each over a different mine lane at the same U.S. Army facility.
All the mine lanes are 3 m wide. Their lengths are 300-340 m
for the three calibration lanes and 1200 m each for the four
blind lanes. Targets in the calibration lanes include a total of
15 surface-laid metal or plastic mines, 12 buried metal mines at
5-15 cm of depth, 20 buried plastic mines at 5-10 cm of depth,
and 16 SIMs. Since we are most interested in the performance
for actual mines, SIMs are not included in the results below.
We have the ground truth for the calibration lanes, but have no
information as to the number and placement of land mines in
the blind lanes.

Before we examine the various feature combinations, we
first look at the classification performance of the ten individual
features. The PDy,e.n values obtained using a single-feature
FLD are listed in Table I. For the “resubstitution” method,
we include all the alarms of the three calibration runs in both
training and testing sets. For the “cross-validation” method,
we repeat the procedure three times, each time calculating the
confidence values of the alarms in one run (the validation set),
with the alarms in the other two runs being the training set. In
addition, we also show the results with and without the data-
duplication procedure discussed in the previous section. We
can see that, with the exception of feature #10 (Pw), the results
for resubstitution and cross-validation are very close when we
apply data duplication. We also find that data duplication does
not produce much difference with resubstitution, but its effect
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TABLE 1
PDmean VALUES OBTAINED USING INDIVIDUAL FEATURES

Feature | #1 #2 | #3 #4 | #5 | #6 | #7 | #8 | #9
Method
(A) |0.75
B) [0.75
©) (0.5

#10

0.69
0.69

0.93
0.90
0.8210.71 { 0.69]0.93 |0.77 | 0.66 | 0.19 [ 0.76 | 0.21
(D) [0.73]0.81]|0.65[0.60|0.77 | 0.59 ]| 0.66 | 0.12 [ 0.65 | 0.13

Methods: (A) Resubstitution with data duplication; (B)
Resubstitution without data duplication; (C) Cross-validation with
data duplication; (D) Cross-validation without data duplication.

Features: #1:Myy; #2:Cyv; #3:Ryvmv: #4:Mpm;, #5:Cum;
#6:Rupmys #7:Py; #8:Py; #9:P; #10:P,,

0.77
0.77

0.66
0.65

0.19
0.14

0.76
0.76

0.30
0.11

0.82
0.80

0.71
0.68

TABLE 1II
FEATURE COMBINATIONS SELECTED USING SFS
#Features| 1 2 3 4 5 6 7 8 9 10
Method
(A) OO H | |®O |0 D | O
0931093094094 (094 (094094094 |0.93(0.85
B) G| G| D || O® | O | ®
0.9010.91{0.90|0.90|0.89|0.88|0.87 [0.86|0.84 | 0.82
© GAa | ® 1@ | O DO | O 6
- 0.931093(1092(0.89(0.90|0.89[0.89[0.88 | 0.88 [ 0.87
D) CRNORNEOREOREOREGOURNINNE NN NN
0.81]0.860.89]0.88]0.880.87|0.87[0.85]|0.84 [ 0.82
Methods: (A) Resubstitution with data duplication; (B)

Resubstitution without data duplication; (C) Cross-validation with
data duplication; (D) Cross-validation without data duplication.

In each cell, the first number (in parenthesis) indicates the
feature added in the given iteration of sequential forward search,
and the second number indicates the corresponding PDp,.,, value.

is much more significant with cross validation. Cyy is the one
feature giving the best performance, except for cross validation
without data duplication, in which case it is second to Cyy.
In either case, it appears that local contrast is the best single
feature.

Next, we apply SFS to our ten features in order to identify the
best feature combination. Table II lists the one- to ten-feature
combinations selected using this approach, as well as the cor-
responding PD .., values. The results using resubstitution or
cross-validation and with or without data duplication are listed
separately. We also see that the difference between PDycan
values obtained with resubstitution and cross validation gen-
erally increase with the number of features used. Furthermore,
except for cross validation without data duplication, additional
features, compared with using only feature #5 (local contrast in
HH), hardly improve the detection rate. We also find that the
effect of data duplication is more significant with resubstitution
than with cross validation. It appears that data duplication gives
somewhat better results. In addition, the results indicate that the
best feature accounts for most of the classification performance,
and hence, there is little need to use classifiers with a large
number of features. However, this finding might be specific to
this data set, as the ability of various features to differentiate
mines and clutter likely depends on the type of mines and clutter
objects present, soil condition, and radar configuration, etc.

Buried metal mines (Cp,)

" Buried plastic mines (Cpy)
=== Buried metal mines (Prescreener)
<=2« Buried plastic mines (Prescreener)
. : : T
0.05 0.1 0.15 0.2
FAR (m2)

Fig. 13. Comparison of ROC curves for both the prescreener stage and for the
best feature selected, Cyy.

TABLE III
FEATURE COMBINATIONS SELECTED USING SFS FROM
EACH INDIVIDUAL FREQUENCY SUBBANDS

Frequency Subband Fy F; I F,
3-Feature Combinations Selected | 5.8,1 2,7.10 5,1,6 1,2.3
PDean 0.94 0.72 0.74 0.64
TABLE 1V

FEATURE COMBINATIONS SELECTED USING SFS
FrROM ALL FOUR FREQUENCY SUBBANDS

# Features 1 2 3 4 5
Feature Added 5 8 29 31 18
PDean 0.93 0.93 0.94 0.94 0.94

Fig. 13 displays the calibration data ROC curves generated
using our own scoring algorithms for both the prescreener stage
(light lines) and for the best feature selected Cyyy (dark lines).
The improvement for both buried metal and plastic mines is
very significant.

While SIMs are not included in the scoring so far, it is also
interesting to look at the detection performance when only
SIMs are considered. Using only the feature C'yyy, we achieve
a detection rate of 43% (7 of 16) at FAR ~ 0.02 m~2 and 56%
(9 of 16) at FAR ~ 0.07 m~2. This is much worse than what we
obtained for buried plastic mines with the same feature (65%
at FAR ~ 0.02 m~2 and 90% at FAR ~ 0.07 m~2). Adding
additional features does not give better results for SIMs. This
is consistent with our discussion above regarding why SIMs are
not suitable for FLGPR algorithm development.

So far, we have focused our attention on features computed
from the lowest frequency-subband data based on the pre-
screener results. It is also interesting to see whether similar
features extracted from other frequency subbands can improve
detection performance. Two experiments are conducted for this
purpose. First, we used SFS to select the best three-feature com-
bination separately for each frequency subband, with resubsti-
tution and data duplication. The results are listed in Table III.
It is clear that the lowest frequency subband gives much better
results than the other three. Second, SFS is used to select the
best combination from all 40 features (ten for each of the
four subbands). Table IV lists the results up to five feature
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Fig. 14. ROC curves of our algorithm for (a) calibration data and (b) blind
data. Both were produced by IDA from lists of alarms generated by our
algorithm. Classifiers (A) and (B) are our algorithm using one and three
features, respectively. Classifier (C) is the algorithm of a different research
group for comparison purpose.

combinations using resubstitution with data duplication. Here,
features numbered 1-10, 11-20, 21-30, and 31-40 correspond
to the ten features for Fy, Fs, F3, and Fy, respectively. While
features from subbands other than F} do get included starting
with the third feature selected by SFS, they still do not add
much to the performance.

In Fig. 14, we show the ROC curves obtained from our
algorithm, with separate curves for buried metal and plastic
mines. Fig. 14(a) and (b) is for calibration and blind data, re-
spectively. Both sets of ROC curves are generated and supplied
to us by IDA, and for the blind data, the quantity and location
of mines have remained unknown to the authors, although
we are informed that these blind-data ROC curves include
only mines buried at 7.5-cm depth. Two sets of results are
generated from our algorithm: classifier A, which uses only
a single feature (Cyp), and classifier B, which uses a three-
feature combination (Cyy, Myv, and P,) selected by SFS
using resubstitution with data duplication. It appears that the
performance of classifiers A and B is similar for both cali-
bration and blind data. We can also see that we have near
perfect results (100% PD at FAR < 0.01 m~2) for buried
metal mines in the blind data (for which the ROC curves for
classifiers A and B mostly overlap). For the blind data, we also
include the next best ROC curves, supplied to us by IDA, of
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results obtained with another existing algorithm (classifier C)
for the same data set. A description of classifier C, which
used features based on time—frequency analysis and employed
sophisticated multistage classifier design, can be found in [19].
It is evident that our approach, which uses straightforward
features and classification algorithms while focusing on one
subband of the whole frequency range, gives significantly better
performance, with 25%-30% higher detection probability for
the same FAR for plastic mines. Other algorithms use a variety
of complicated features and classification algorithms but do
much worse. Therefore, we conclude that, at present, the use
of frequency subbands has shown more value than complicated
features and algorithms for forward-looking mine detection
with radar and should be investigated in more details.

While the focus of this paper is not on the investigation of
the underlying physical process involved in FLGPR, we would
like to point out some qualitative physics-based interpretations
of our observations. The finding that the lowest of the four
frequency subbands yields the best performance is related to the
following two points: 1) low-frequency radar signal penetrates
the ground better and therefore is better suited for detecting
buried objects and 2) a low-frequency radar signal is less
prone to surface clutter (clutter signals from reflected radar
waves by objects on or above the ground surface), resulting in
the cleaner signal for lower frequency subbands, as evidenced
in Fig. 8. The magnitude and local contrast features simply
reflect the expectation that regions with buried mines should
have stronger radar return signals. The features Ry v and
Ry v originated from an observation made by researchers
at SRI that cross-polarization signals from mines tend to dis-
appear. In Fig. 10, this appears to be more valid for lower
frequency bands. Additional modeling will be needed to better
understand this phenomenon. As of the two polarimetric fea-
tures that exhibit significant discriminating power individually,
we find that mines tend to have lower Py (less entropy or
randomness) and higher P, (more like symmetric scatters)
compared to false alarms. These are intuitively consistent
with what we will usually expect from man-made objects.
Again, more modeling work is necessary to understand these
phenomena.

IV. CONCLUSION

In summary, we have described an approach for land-mine
detection using forward-looking GPR data. We also presented
the analysis of a number of features, including those based on
polarimetric data, as well as the procedure for selecting subsets
of features. Weighted averages were used to aggregate features
of 2-D image patches to features of alarms, which usually
appear in multiple scan images as the vehicle moves forward.
The algorithm was applied to both calibration and blind data
with good performance, considerably better than other algo-
rithms that were tested on the same data in the same time
frame. A major contribution is the finding that, by dividing
up the wide-frequency-band radar signals into narrower fre-
quency subbands, we are able to find a frequency subband
with good target-to-clutter contrast. By focusing on this fre-
quency subband, we obtained significantly improved detection
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performance over existing results for the same data set. Good
results are obtained with just one of the features, a CFAR-like
feature from the HH polarization mode at the lower frequency
subband. It turns out that the addition of other features gives lit-
tle improvement over the single-feature classifier, as evidenced
in ROC curves for both calibration and blind data.

The fact that we gain little performance improvement by
adding additional features to the best one (Cpp) seems to
argue for the use of only this one feature. However, we believe
that such a conclusion would be premature because, so far,
the analysis uses only a single data set at a single site. The
ability of various features to differentiate mines and clutter
likely depends on the type of mines and clutter objects present,
soil condition, radar configuration, etc. All these can change
between data collections. In addition, we can see from Table 1
that the other features (with the exception of P, and P,), when
used individually, also possess significant discriminating power.
It is quite possible that, at a new data collection, the best feature
combination is different from those presented in this paper. We
believe it is desirable to have all these features available for the
analysis of future data sets. Our main conclusion, therefore, is
not in the selection of one particular feature, but rather in the
fact that good performance can be obtained by combining the
use of frequency subbands and a set of simple features.

Forward-looking mine detection using GPR is a relatively
new technology with lots of questions needing investigation
in the future. For example, much knowledge can be gained
by more extensive study, through modeling or experiments, of
how frequency response depends on parameters including radar
antenna configuration, standoff distance, properties of soil, and
target and clutter characteristics. We also plan to investigate
how we can leverage the strengths of both existing “time-
domain” approaches using detailed spatial features and our
“quasi-frequency-domain” approach for the creation of more
robust systems. Overall, we believe that the approach described
in this paper, especially the analysis of frequency subbands,
shows very good promise for continuously advancing research
in this area.
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