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A Robust In-Car Digital Image
Stabilization Technique
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Abstract—Machine vision is a key technology used in an intelli-
gent transportation system (ITS) to augment human drivers’ visual
capabilities. For the in-car applications, additional motion compo-
nents are usually induced by disturbances such as the bumpy ride
of the vehicle or the steering effect, and they will affect the image in-
terpretation processes that is required by the motion field (motion
vector) detection in the image. In this paper, a novel robust in-car
digital image stabilization (DIS) technique is proposed to stably
remove the unwanted shaking phenomena in the image sequences
captured by in-car video cameras without the influence caused by
moving object (front vehicles) in the image or intentional motion
of the car, etc. In the motion estimation process, the representative
point matching (RPM) module combined with the inverse triangle
method is used to determine and extract reliable motion vectors
in plain images that lack features or contain a large low-contrast
area to increase the robustness in different imaging conditions,
since most of the images captured by in-car video cameras include
large low-contrast sky areas. An adaptive background evaluation
model is developed to deal with irregular images that contain large
moving objects (front vehicles) or a low-contrast area above the
skyline. In the motion compensation processing, a compensating
motion vector (CMV) estimation method with an inner feedback-
loop integrator is proposed to stably remove the unwanted shaking
phenomena in the images without losing the effective area of the
images with a constant motion condition. The proposed DIS tech-
nique was applied to the on-road captured video sequences with
various irregular conditions for performance demonstrations.

Index Terms—Adaptive background-based evaluation function,
in-car digital image stabilizer (ICDIS), intelligent transportation
system (ITS), inverse triangle method, representative point match-
ing (RPM), smoothness index (SI).

I. INTRODUCTION

MACHINE vision is a key technology used in any intelli-
gent transportation system (ITS) to augment or replace
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human drivers’ visual capabilities. ITS research involves four
major issues: increasing the capacity of highways, improving
safety, reducing fuel consumption, and reducing pollution. ITS
can use some intelligent control strategies, such as agent-based
control concepts [22], [23], to manage the transportation and
traffic problems. In machine vision aspect, it can be used to
detect land markings, vehicles, pedestrians, road signs, traffic
conditions, traffic incidents, and even driver drowsiness or to
assist the driver to get more information and reduce driving
accidents. These applications are almost included in the first
two issues of ITS researches. Four typical applications that in-
volve machine vision are: 1) cruise assistance; 2) urban driving
assistance; 3) driver monitoring; and 4) traffic and road mon-
itoring. From the site of image acquisition, it can be divided
into in-car or off-car applications. The former three items be-
long to in-car applications, and the common concern in most
applications is reliability. The reliability is related to the image-
acquisition process and image interpretation process, i.e., the
contrast and the resolution of the images, the stability of the
image sequence, and the reliability of image interpretation, etc.
The better image-acquisition process will increase the feasibil-
ity and reliability of the process and analysis afterward. The
increase in the contrast and the resolution of images are pure
hardware issues. It has been designed by a wide-dynamic-range
approach to improve the success rate of lane detection under
high-intensity contrast [1]. Most image interpretation processes
need to detect the motion field (motion vector) in the image. In
an ideal environment, the motion field is easy to interpret. How-
ever, practical motion fields deviate from the simple description.
Additional motion components are induced by disturbances like
the bumpy ride of the vehicle or the steering effect. To enable
the efficient image interpretation process, these disturbances
have to be compensated in advance. In this paper, a method to ac-
quire the stable image sequence by in-car cameras which can be
used for driver assistance or subsequent processes is proposed.

Digital image sequences acquired by in-car video cameras
are usually affected by undesired motions produced by a bumpy
ride or by steering. The unwanted positional fluctuations of the
image sequence will affect the visual quality and impede the sub-
sequent processes for various applications. Although undesired
motions are usually irregular and uneven compared to inten-
tional global motions such as car movement or camera panning,
the challenge of image stabilization systems is how to compen-
sate the unwanted shaking of the camera without the influence
caused by the moving object in the image or the intentional
motion of the car.

The image stabilization systems can be classified into
three major types: the electronic, the optical, and the digital
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Fig. 1. Motion compensation schematics.

stabilizers. The electronic image stabilizer (EIS) stabilizes the
image sequence by employing motion sensors to detect the cam-
era movement for compensation. The optical image stabilizer
(OIS) employs a prism assembly that moves opposite the shak-
ing of camera for stabilization [2], [3]. Because both EIS and OIS
are hardware dependent, the applications are restricted to device
built-in online processes. Digital image stabilization (DIS) is the
process of removing the undesired motion effects to generate a
compensated image sequence by using digital image processing
techniques without any mechanical devices such as gyro sen-
sors or a fluid prism [4]. The major advantages of DIS are: 1)
machine independence and 2) suitability for miniature hardware
implementation (since the mechanical device is not required for
compensation) [5].

The DIS system is generally composed of two processing
units: the motion estimation unit and the motion compensation
unit. The purpose of the motion estimation unit is to estimate
the reliable global camera movement through three processing
steps on the acquired image sequence: 1) evaluation of local mo-
tion vectors (LMVs); 2) detection of unreliable motion vector
components; and 3) determination of the global motion vector
(GMV). Following the motion estimation, the motion compen-
sation unit generates the compensating motion vector (CMV)
and shifts the current picking window according to the CMV
to obtain a smoother image sequence. Fig. 1 shows the motion
compensation schematics. The window of frame(t − 1) is the
previous compensated image. The compensating motion vec-
tor v is generated by the DIS according to the GMV between
two consecutive images. The window of frame(t) is the pick-
ing window according to the compensating motion vector v to
minimize the shaking effect.

Various algorithms had been developed to estimate the LMVs
in DIS applications such as representative point matching
(RPM) [5], [6], edge pattern matching (EPM) [7], [8], bit-plane
matching (BPM) [4], [9], and others [10]–[14]. It had also been
demonstrated that the DIS can reduce the bit rate for video
communication [15]. The major objective of these algorithms
is to reduce the computational complexity, in comparison with
a full-search block-matching method, without losing too much
accuracy. In general, the RPM can greatly reduce the complexity
of computation in comparison with the other methods. However,
it is sensitive to irregular conditions such as moving objects and

intentional panning, etc. [9]. Therefore, the reliability evalu-
ation is necessary to screen the undesired motion vectors for
the RPM method. In [6], a fuzzy-logic-based approach was
proposed to discriminate the reliable motion vector from the
LMVs. This method produced two discriminating signals based
on some image information such as contrast, moving object,
and scene changing to determine the GMV. However, these two
signals cannot widely cover various irregular conditions such as
the lack of features or containing large moving objects in the
images, and it is also hard to determine an optimum threshold
for discrimination in various conditions. Some researchers es-
timate LMV using feature-based techniques that track a small
number of image features (points, lines, and contours or cer-
tain objects, etc.) to evaluate the motion vector. This makes
it efficient and available for real-time implementation. But the
difficulty is that, especially for outdoor applications, it cannot
stably and accurately find available features in the image [16].
Based on the optical flow technique, a fundamental approach
in computer vision, many methods have been proposed in the
literature to solve different types of problems. The estimation
of optical flow is based on the assumption that the intensity of
the object (or specified pixel) in the image sequence is constant.
The difficulty is that most consumer video camcorders have
an autoshutter function to adjust average intensity dynamically
such that maintaining constant intensity of the object becomes
impossible in real applications. In this paper, a reliable LMV ex-
traction method is proposed to determine the GMVs for practical
applications.

In the motion compensation of DIS, accumulated motion vec-
tor estimation [7] and frame position smoothing (FPS) [17]–[19]
are the two most popular approaches. The accumulated motion
vector estimation needs to compromise stabilization and inten-
tional panning (constant motion) preservation since the panning
condition causes a steady-state lag in the motion trajectory [17].
The FPS accomplished the smooth reconstruction of an ac-
tual long-term camera motion by filtering out jitter components
based on the concept of designing the filter with an appropri-
ated cutoff frequency. The disadvantage of FPS is that it does
not guarantee the availability of the determined CMV when the
specified bound is restricted for preserving the effective image
area in the DIS applications.

In this paper, a novel robust in-car DIS technique is proposed.
The minimum projection and inverse triangle method are em-
ployed to estimate the reliability of the motion vector and the
coarse skyline. Then an adaptive background evaluation model
for deriving GMV is developed to deal with irregular images that
contain large moving objects or low-contrast area above the sky-
line. The accumulated motion vector estimation combined with
an integrator in the inner feedback loop is also applied to remove
the shaking effect without losing the effective area of the images
with constant motion. Video sequences with various irregular
conditions, such as the lack of features, large low-contrast area,
moving objects, or repeated patterns, etc., were used for testing,
and the experimental results demonstrate that the proposed algo-
rithm can perform very well in such conditions. A smoothness
index (SI) is also proposed in this paper to quantitatively evalu-
ate the performances of different image stabilization methods.
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Fig. 2. System architecture of the proposed digital image stabilization technique.

Fig. 3. Division of image for LMV estimation.

This paper is organized as follows. Section II describes
the system architecture of the DIS and the proposed motion
estimation method. Section III proposes a motion compensa-
tion method and quantitative evaluation. Section IV presents
the experimental results for demonstrations. Section V gives
conclusions of this paper.

II. SYSTEM ARCHITECTURE OF THE DIS
AND MOTION ESTIMATION

The system architecture of the proposed DIS technique is
shown in Fig. 2, which includes two processing units: the mo-
tion estimation unit and the motion compensation unit. The
motion estimation unit consists of three estimators: the LMVs,
the refined motion vector (RMV), and the GMV estimators.
The motion compensation unit consists of the CMV estimation
and image compensation. The two incoming consecutive im-
ages frame(t − 1) and frame(t) will be first divided into four
regions as shown in Fig. 3. An LMV will be derived in each
region by the RPM algorithm [5], [6]. The motion estimation
unit also contains a reliability detection function that will gen-
erate an ill-conditioned motion vector for the irregular image
conditions such as the lack of features or containing a large
low-contrast area, etc. The GMV estimation determines a GMV
among LMVs, the RMV, and other preselected motion vectors
through the adaptive background-based evaluation function. Fi-
nally, the CMV is generated according to the resultant GMV, and
the image sequences will be compensated based on the CMV in
the motion compensation unit. The rest of this section will focus
on the details of the motion estimation unit of the proposed DIS
technique. The details of the proposed motion compensation
unit will be presented in Section III.

A. Motion Estimation

The motion estimation unit shown in Fig. 2 contains the LMV,
RMV, and GMV estimators. As shown in Fig. 4, LMV and RMV
estimation are to generate the LMVs and RMVs for GMV esti-
mation. The LMVs can be obtained from the correlation between

two consecutive images by the RPM algorithm. The RMV can
be obtained from LMVs by evaluating the corresponding confi-
dence indices through the irregular condition detection and the
proposed RMV generation algorithm.

1) RPM and Local Motion Estimation: It has been demon-
strated that a local approach using a regional matching process
is more robust and stable than a direct global matching pro-
cess [20]. That means using the LMVs estimated by the divided
regions to determine the GMV is more robust and stable than a
direct approach. There is also a tradeoff for the size of divided
region. Reducing the size of the divided region increases the
robustness, but the size of the divided region should be suffi-
ciently large to hold the average distribution [20]. If we want
to divide the image such that the horizontal and vertical com-
ponents have the same partitions, it should be divided into n2

regions. More divided regions will increase the computational
cost to estimate the LMV for each region. Therefore, we only
divide the image into four regions as shown in Fig. 3 for the
RPM method, and it can cover various situations in the in-car
DIS applications by combining the proposed inverse triangle
method and the adaptive background evaluation model.

Each region is further divided into 30 subregions (with each
side of 5 rows × 6 columns), and the central pixel of each subre-
gion is selected as the representative point to represent the pat-
tern of this subregion. This layout is based on the size of images
captured by the regular imaging devices such as 640 × 480 or
320 × 240. In order to make the representative points equally
distributed in spatial, the ratio of row and column should be
maintained by as close to 0.75 as possible. Fig. 5 shows the ex-
perimental result of calculating the cost level [that is an index of
reliability defined in (8)] by using different number of represen-
tative points. The higher cost level indicates the lower reliability,
and the threshold is set as 18 according to our experimental re-
sults. It is the averaged testing result for four experimental video
sequences VS#1–4 used in Section IV. It can be found that if
the number of the representative points is larger than 30, the
cost level will go down to the threshold and almost all the mo-
tion vectors calculated by the RPM method are reliable. In other
words, in this case, the cost level will be good enough as the
lower cost level indicates high reliability. In order to keep low
computation time complexity, 30 representative points are used
in our system.

Then the correlation calculation of RPM with respect to rep-
resentative point (Xr, Yr) is performed as

Ri(p, q) =
N∑

r=1

|I(t − 1,Xr, Yr) − I(t,Xr+p, Yr+q)| (1)
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Fig. 4. Block diagram of LMVs and RMV estimation.

Fig. 5. Experimental result of calculating the cost level [an index of reliability
defined in (8)] by using different number of representative points.

where N is the number of representative points in one re-
gion, I(t − 1,Xr, Yr) is the intensity of the representative point
(Xr, Yr) at frame(t − 1), and Ri(p, q) is the correlation mea-
sure for a shift (p, q) between the representative points in region
i at frame(t − 1) and the relative shifting points at frame(t).
Assuming RiMin is the minimum correlation value in region i,
i.e., RiMin = Min

p,q
(Ri(p, q)), the shift vector vi that produces

the minimum correlation value for region i represents the LMV
of this region, i.e.,

vi = (p, q), for Ri(p, q) = RiMin. (2)

2) Irregular Condition Detection: Analyzing the curves of
correlation values corresponding to image sequences with vari-
ous conditions, it is found that the curve of correlation values is
related to the reliability of motion detection. Figs. 6 and 7 show
the various correlation curves corresponding to different sam-
ple image sequences with different conditions. Fig. 6(a) shows
a normal condition that the peak is obvious in each region. In
Fig. 6(b), the curve looks like a valley; it means only one dimen-
sion of correlation data (x direction) is reliable, and it lacks for
feature of y (horizontal) direction. Fig. 6(c) shows an example
with repeated patterns, which is a brick wall with a fence in
the bottom area, and it causes multiple peaks in the correlation
curves, especially within region 1 due to pure bricks repeated
in this area. Fig. 7(a) represents moving-object conditions. A
motorcycle moves from the right side to the left in the image
sequence. It causes double peaks within region 1 of the curve,
and the value of RiMin is larger than those areas without the
moving object such as region 3. The example shown in Fig. 7(b)

contains a large low-contrast area on the top right corner of the
image. We can find that it is harder to distinguish the peak within
region 1 from the correlation curve.

Although the curve of correlation values is related to the
reliability of motion detection, it is still too complex to directly
use these curves to evaluate the reliability of motion detection.
In this paper, we propose a strategy that combines the minimum
projections of the correlation curve in the x and y directions
(minimum projections) and the inverse triangle method to detect
the irregular conditions from each region. The mathematical
expression of minimum projections can be written as

xi min(p) = min
q

Ri(p, q)

yi min(q) = min
p

Ri(p, q) (3)

where xi min(p) and yi min(p) are the minimum projections
of correlation curve in the x and y directions in region i, respec-
tively. Fig. 8 shows examples of minimum projections of the
correlation curve in the x and y directions from the regular and
the ill-conditioned image sequences. Fig. 8(a) is the minimum
projection of Fig. 6(a) that is regular, and the determination of
motion vector in each region is clear and consistent. Fig. 8(b) is
the minimum projection of Fig. 6(b) that lacks for the feature in
the y direction (horizontal). The values of minimum projection
of the correlation curve in the y direction are within a small range
and erratic with multiple peaks such that the determination of
the minimum value is very hard.

In order to determine the reliability of the motion vector
easily, the feature extraction of reliability is performed by the
proposed inverse triangle method through the minimum projec-
tions in the x and y directions to obtain the reliability indices.
Fig. 9 shows the illustration of the inverse triangle method. In
the first step, we find Ti min that represents the global mini-
mum of the minimum projection curve in region i and can be
calculated by (4). In the second step, we calculate Sxi and Syi

by (4), where offset is the altitude of the inverse triangle, nxi and
nyi are defined as the numbers of Sxi and Syi, respectively [see
(6)], dxi and dyi are defined as the distances of two vertexes of
the base of inverse triangle obtained by (7). The cost level of the
x and y directions are calculated by (8). The higher cost level
means a lower confidence level. Since the condition of multiple
peaks seriously degrades and affects the determination of relia-
bility, the penalty of multiple peaks is taken into account by (8)
to improve the discrimination of reliability. The example shown
in Fig. 9 is a curve with twin peaks which will get the penalty of
dxi − nxi. In the third step, we determine the confidence indices
of xi and yi in region i through a threshold denoted as TH. The
lower cost level represents the higher reliability. In the final step,



238 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 37, NO. 2, MARCH 2007

Fig. 6. Various correlation curves corresponding to image sequences with different conditions (I). (a) A normal condition. (b) Lacks feature in horizontal direction
(gate). (c) Repeated patterns (brick).

summing up the counts of reliable motion components of x and
y in four regions as (10), we get

Num(xi) and Num(yi), i = 1 − 4.

Step 1: Find global minimum Ti min from xi min(p) or
yi min(q)

Ti min = min
p

(xi min(p))or min
q

(yi min(q)) (4)
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Fig. 7. Various correlation curves corresponding to image sequences with different conditions (II). (a) Moving object (motorcycle). (b) Large low-contrast area
(sky).

Step 2: Calculate the cost level, xi cost and yi cost{
Sxi = {p|xi min(p) < Ti min +offset}
Syi = {q|yi min(q) < Ti min +offset} (5)

{
nxi = number of Sxi

nyi = number of Syi
(6)

{
dxi = max

P
Sxi − min

P
Sxi

dyi = max
q

Syi − min
q

Syi
(7)

{
xi cost = 2dxi − nxi

yi cost = 2dyi − nyi
. (8)

Step 3: Set the threshold TH for determining the reliability
indices

If xi cost < TH Then

xi is reliable

Else

xi is reliable

End if

If yi cost < TH

yi is reliable

Else

yi is reliable

End if (9)

1) Calculate the numbers of xi and yi in four regions

{
Num(xi) = sum of(xiis reliable)
Num(yi) = sum of(yiis reliable)

(10)

i = 1–4.

3) Generation of RMV From Ill Condition: Irregular mo-
tion vectors can be detected and excluded by using minimum
projection and the inverse triangle method; however, an image
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Fig. 8. Examples of minimum projections of correlation curve from the x and y directions in four regions. (a) Regular image sequence. (b) Ill-conditioned image
sequence.

sequence with an ill condition such as lack of feature, large
low-contrast area, moving object, or repeated pattern, may con-
tain fewer available motion vectors (most of the motion vectors
are irregular) in four regions. Therefore, recombination of these
available components of regular motion vectors is necessary to
form an RMV. To solve this problem, a median function is used
to extract a motion vector with respect to each direction for an ill
condition. The calculation to determine the RMV is described
as follows in detail

Case 1: If Num(xi(t)) = 4 then

Vrefined x(t) = Med(Va x(t), Vb x(t), Vc x(t),

Vd x(t),GMVx(t − 1))

Case 2: If Num(xi(t)) = 3 then

Vrefined x(t) = Med(Va x(t), Vb x(t), Vc x(t))

Case 3: If Num(xi(t)) = 2 then

Vrefined x(t) = Med(Va x(t), Vb x(t),

GMVx(t − 1)) (11)

Case 4: If Num(xi(t)) = 1 then

Vrefined x(t) = Va x(t)

Case 5: If Num(xi(t)) = 0 then

Vrefined x(t) = γ × GMVavgx(t − 1)
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Fig. 9. Illustration of the proposed inverse triangle method.

where Num(xi(t)) is the number of x component of re-
liable LMVs, Vrefined x(t) is the x component of RMV,
Va x(t), Vb x(t), Vc x(t), and Vd x(t) represent x components
of reliable LMVs in a different region, respectively, Med is the
function of median operation, GMVx(t − 1) is the x compo-
nent of the one preceding the last GMV, t is frame number, and
γ is attenuation coefficient, 0 < γ < 1. The GMVavgx(t) can
be calculated by

GMVavgx(t) = ζGMVavgx(t − 1)

+ (1 − ζ)GMVx(t), 0 < ζ < 1. (12)

Then we apply the similar process to obtain Vrefined y(t). The
resultant RMV is represented by

Vrefined(t) =
[

Vrefined x(t)
Vrefined y(t)

]
. (13)

B. GMV Estimation

The objective of GMV estimation is to determine a motion
vector from existing data what we have evaluated from a mo-
tion estimation process. In a practical in-car video sequence, it
always suffers from moving objects, repeated patterns, motion
effects of cars, etc. The LMV in each region may represent GMV,
moving-object motion vector, or even error vector, respectively.
The error vector may be caused by the ill condition, repeated
pattern, or the mixture of global and moving-object motion. Al-
though the reliable GMV is essentially selected from LMVs and
RMV, however, in the worst case, when the LMVs and RMV
are all fault, it will induce a worse result after compensation
compared with the original images. Therefore, if the evaluation
includes the zero motion vector (ZMV), it can prevent the occur-
rence of this case. Similarly, for an image sequence with constant
motion in the scene, it will induce a worse result if it is compen-
sated by ZMV or the error motion vector rather than by the av-
erage motion vector (AMV). In the proposed DIS technique, the
seven motion vectors including four LMVs, the RMV, the ZMV,

Fig. 10. Areas for the background-based evaluation adapted by the detected
skyline.

and the AMV, referred as preselected motion vectors (pre MV),
are employed to estimate the GMV of the current frame. In gen-
eral, one of the LMVs is the highly probable GMV for the
regular image; the RMV is the highly probable GMV for the ill-
conditioned image; the ZMV can prevent a worse compensation
result caused by the unreliable MVs; and the AMV is useful for
constant motion of the car. In addition, if the image sequence
contains a large moving object, the determination of global
motion is troublesome because the determined motion vector
probably switches between the background and large moving
object or is totally dominated by the large moving object. In this
case, it will lead to artificial shaking and cause a major challenge
in DIS.

1) Skyline Detection: To improve the robustness of the GMV
estimation, the adaptive background-based evaluation function
is proposed to overcome this problem. First, skyline detection
will be performed. Then, five regions based on the estimated sky-
line are selected to evaluate the result. These regions (Xi, Yj)
are located on the surroundings of the image under the sky-
line. In most outdoor applications based on in-car cameras, the
pixels of the area above the skyline are low contrast. The sky-
line detection can prevent the invalid result due to some of the
five regions located on the low-contrast area. Selecting the re-
gions surrounding the boundary of the image to evaluate the
obtained motion vector can avoid the disturbance of moving-
object effects for GMV estimation. Fig. 10 shows the adopted
areas for the adaptive background-based evaluation according
to detecting skyline. The proposed skyline detection combines
RPM correlation evaluation, minimum projection, and an in-
verse triangle method. First, we calculate the absolute differ-
ences between the representative point at frame(t − 1), and the
corresponding neighborhood pixels in the same subregion at
frame(t) by (13) that is regarded as intermedium of (1) will
yield

Ci,j(p, q) = |I(t − 1,Xi, Yj) − I(t,Xi+p, Yj+q)| (14)

where (i, j) denotes the position of one subregion with re-
spect to the row and column as shown in Fig. 11, and there
are 120 subregions (10 rows × 12 columns in this paper),
(Xi, Yj) is the coordinate of the representative point in the (i, j)
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Fig. 11. Skyline detection algorithm is to combine RPM correlation evalua-
tion, minimum projection, and the inverse triangle method.

subregion, I(t − 1,Xi, Yj) is the intensity of the representative
point (Xi, Yj) at frame(t − 1), and (p, q) is a shifting vector
within the subregion. Then we can derive the correlation curve
for detecting the skyline by calculating

Cl(p, q) =
l∑

i=1

M∑
j=1

Ci,j(p, q) (15)

where M is the total number of subregions in the horizontal axis
(M = 12), l represents the lth row of the subregions. Initially,
l = 1 and the minimum projection and inverse triangle method
presented in (4)–(8) are applied to Cl(p, q) to get the confidence
index in the horizontal direction. The cost level is relatively high
when the corresponding area is a low-contrast area such as the
sky. If the level is lower than the presetting threshold then we
stop the evaluation process, and the horizontal position of the
representative points of the subregions located in the last row
of Cl(p, q) is defined as the coarse skyline. Otherwise, we set
l = l + 1 and continue the evaluation of Cl(p, q) till the level is
lower than the presetting threshold. Fig. 12 shows the results of
skyline detection in the video sequence taken from a highway.
The coarse skyline is used to adaptively layout the background-
based evaluation blocks located on the higher contrast area. It
improves the robustness of GMV estimation in the in-car image
stabilization applications.

2) Peer-to-Peer Evaluation: The estimation of the GMV is
calculated by the summation of absolute difference (SAD)

SADBi ,c =
∑

X,Y ∈Bi

|I(t − 1,X, Y )

− I(t,X +Xc, Y + Yc)| , 1 ≤ i≤ 5, 1≤ c≤ 7

(16)

where I(t − 1,X, Y ) is the intensity of the point (X,Y ) at
frame(t − 1), Bi is the ith background region in the image,
Xc, Yc are the components of the seven preselect motion vectors
(pre MVc) in x and y directions.

Different (pre MVc) will have their SADBi ,c in each region.
The smaller SADBi ,c represents the higher probability of the

desired motion vector among theses preselected motion vectors.
The score for each (pre MVc) in region i is denoted as Si,c,
which is the order of the SADBi ,c value, and the higher SADBi ,c

indicates the higher score. The total score for each pre MVc can
be obtained by

Sc =
5∑

i=1

Si,c. (17)

Five-region peer-to-peer evaluation can prevent the situation
that some partial high-contrast image regions dominate the eval-
uation result. In this algorithm, each region has an equal priority
to determine the result. In (17), Sc is the index to determine the
GMV. The pre MVc with the smallest Sc is the desired GMV,
and it can be expressed as

GMV = pre MVi i = arg
c

(min Sc). (18)

According to these sophisticated evaluation areas, the evalu-
ation function can detect attributed background motion vector
precisely in most circumstances.

III. MOTION COMPENSATION AND EVALUATION

A. CMV Estimation

The first step of motion compensation is to generate the CMVs
for removing the undesired shaking motion and still keeping the
steady motion in the image sequence. The conventional CMV
estimation was given by [7], and will yield

CMV(t) = k(CMV(t − 1)) + (αGMV(t)

+ (1 − α)GMV(t − 1)),

0 < k < 1 and 0 ≤ α ≤ 1 (19)

where t represents the frame number. The increase in k causes
the decrease in unwanted shaking effect but increase in the
value of CMV, which means the effective area of images is
reduced if we want to maintain the consistent image size for
the whole image sequence. To illustrate this phenomenon, the
motion trajectories can be calculated to analyze the problem.
The motion trajectories can be obtained by

MTrajo(t) =
t∑

i=1

GMV(i) (20)

MTrajc(t) =

(
t∑

i=1

GMV(i)

)
− CMV(t) (21)

where MTrajo(t) and MTrajc(t) are the original and the com-
pensated motion trajectories of the image sequence at frame(t).

Fig. 13 shows the performance comparison of three different
CMV generation methods applied to a video sequence with con-
stant motion and jitter in the image. There are two trajectories in
each subfigure; one is the original trajectory calculated by (20),
and the other one is the compensated trajectory calculated by
(21). The CMVs in Fig. 13(a) are generated by the conventional
method shown in (19). Obviously, MTrajc(t) has tremendous
lag compared to MTrajo(t) due to the constant motion effect.
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Fig. 12. Skyline detection applies on the in-car video sequence taken from highway.

The CMV probably exceeds the window shifting allowance such
that the available effective image area during the compensation
process is reduced. The CMVs in Fig. 13(b) are generated by
(19) a with clipper function as

CMV(t) = clipper(CMV(t))

=
1
2

(|CMV(t) + l| − |CMV(t) l|) (22)

where l is boundary limitation, i.e., the maximum window shift
allowance. In this case, the lag can be reduced to a certain
range. However, it will also decrease the performance of shaking
compensation due to the picking window operating near the
boundary area.

In order to deal with the above problem, Vella et al. used the
passive method of ceasing for correction in this condition [10].
That implied that the undesired shaking effect cannot be elimi-
nated in the constant motion condition. To overcome this draw-
back, we combine the inner feedback-loop integrator with a
clipper function to reduce the steady-state lag for steady mo-
tion as well as to keep the CMV to operate in the appropriate
range. Fig. 14 shows the block diagram of the proposed CMV
generation method. There is an integrator in the inner feedback
loop, which can eliminate the steady-state lag of the CMV in the
constant motion condition. That means, by employing the inte-
grator, shaking components of the images with constant motion
effect as well as those in regular images can be stabilized. It is
noted that the CMV computation procedure is applied to x and
y components separately. That is, parameters corresponding to
x and y directions can be set as different values. In general, the
constant-motion condition usually occurs in horizontal direc-
tion such that the shaking patterns are different in both direc-
tions. The proposed CMV computation procedure is presented
by

CMV(t) = k •CMV(t− 1)+ GMV(t)−β •CMV I(t− 1)

CMV I(t) = CMV I(t − 1) + CMV(t)

CMV(t) = clipper(CMV(t)) (23)

where

k ≥
[

0
0

)
β ≤

[
1
1

]
.

The symbol • denotes array multiplication, and clipper( ) is
defined in (22).

Fig. 13(c) shows the compensated motion trajectory gener-
ated by the proposed method. Compared with Figs. 13(a) and (b),
the proposed method can reduce the steady-state lag of the com-
pensated motion trajectory in the constant-motion condition and
keep the CMVs in an appropriate range.

B. Quantitative Evaluation

The shaking effect of images can be evaluated by the sum-
mation of absolute differences of momentums within every two
consecutive frames. The mass of an image can be set as a con-
stant such as one for simplicity or a value from zero to one
according to the degree of shaking in the images measured by
human visual perception. The SI is proposed to quantitatively
evaluate the performance of different DIS algorithms, and it is
defined as

SI =
1

N − 1

N∑
t=2

∆m(t)

=
1

N − 1

N∑
t=2

m × |GMV(t) − GMV(t − 1)| (24)

where t is the frame number, N is the number of total frames, m
is the mass of the image, and ∆m(t) is the rate of change of the
absolute value of momentum. The lower SI means less shaking
components in the image sequence, and it represents the effect
of better smoothness.

IV. EXPERIMENTAL RESULTS

In this section, the performance of the proposed DIS tech-
nique is evaluated and compared to other existing DIS methods
based on the performance indices of motion estimation and
motion smoothing, respectively. To do this, four real video se-
quences captured by an in-car camera with various irregular con-
ditions are used for testing. Each video sequence has resolution



244 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 37, NO. 2, MARCH 2007

Fig. 13. Performance comparison of three different CMV generation methods
applied to a video sequence with panning and hand shaking. (a) CMV genera-
tion method in (19). (b) CMV generation method in (19) with clipper in (22).
(c) Proposed method in (23).

of 640 × 480. The VS#1 is a video of a door gate taken with
constant camera motion and jitter.It lacks for features in the hor-
izontal direction. The VS#2 is a video taken of a community
road with bumpy conditions. The VS#3 is a video of highway
taken with jitter. The VS#4 is a video taken of a parking lot
when the car is turning. The motion estimation performance is

Fig. 14. Block diagram of the proposed CMV generation method.

TABLE I
RMSE COMPARISONS OF RPM FUZZY AND THE PROPOSED METHOD

WITH RESPECT TO FOUR REAL VIDEO SEQUENCES

evaluated based on the root mean square error (RMSE) between
the algorithmically estimated motion vectors and the desired
motion vectors evaluated by human visual perception as well as
considering the background factor frame by frame. The RMSE
is given by

RMSE =

√√√√ 1
N

N∑
n=1

[(xn − xdn)2 + (yn − ydn)2] (25)

where (xdn, ydn) is the desired motion vector and (xn, yn) is
the motion vector generated from the evaluated DIS algorithms.

The proposed method is compared to a RPM approach with
fuzzy set theory (RPM FUZZY) [6]. The motion estimation
results of these two methods are summarized in Table I. The
VS#1 lacks for feature in horizontal direction such that only
one component of motion vector is reliable [see Fig. 6(b)]. The
proposed method applies the minimum projection approach and
inverse triangle method to detect the irregular components of
LMVs and then recombines available motion vectors to form
an RMV. This approach can sufficiently use the existing infor-
mation to estimate the GMV. The testing result with respect to
VS#1 shows that the RMSE reduces from 5.8348 to 2.5269
by using our method since the RPM FUZZY did not consider
the condition of lack of feature. The results with respect to
VS#2–4 also show that RMSEs of our method are superior to
RPM FUZZY since the resultant GMV through the adaptive
background-based evaluation can avoid the influence of large
moving objects and the irregular components of motion vectors
are also considered.

The motion smoothing performance is evaluated by the SI
proposed in Section III. Fig. 13(c) shows the original motion
trajectory versus the compensated motion trajectory generated
by the proposed method. Compared with Fig. 13(a) and (b), the
proposed method can reduce the steady-state lag of the com-
pensated motion trajectory in constant motion condition and
keep the CMVs in an appropriate range. Table II shows the SI
comparisons of three CMV generation methods presented in
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Fig. 15. Comparisons of original and compensated motion trajectories by two different CMV generation methods (with and without integrator) with respect to
(a) GMV set #1, (b) GMV set #2, (c) GMV set #3, and (d) GMV set #4.

Fig. 13. The generation of CMV without clipper is impractical
since it lost too much effective image area, i.e., the maximum
of the CMVs does not guarantee to fit the practical compensa-
tion range. The proposed CMV generation method dramatically
reduces the SI value from 5.6482 to 0.9346 compared with the

CMV generation without integrator. The reason is that the ef-
fect of the inner feedback-loop integrator greatly reduces the
steady-state lag in the image sequence with constant motion.

We also evaluate the CMV generation methods by four GMV
sets generated from real video sequences (GMV sets #1–4).
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TABLE II
SI COMPARISONS OF THREE CMV GENERATION METHODS

TABLE III
PARAMETERS APPLIED TO CMV GENERATION

WITH DIFFERENT EQUATIONS

Fig. 15 shows the comparison of original and compensated mo-
tion trajectories by using two different CMV generation meth-
ods, (19) with clipper and (23), with respect to these four GMV
sets. The settings of parameters in (19) with clipper and (23) are
listed in Table III. The k is set as the same value for both hori-
zontal and vertical directions means they have the same shaking
absorption effects. The parameter β is the inner feedback-loop
integral gain and it can determine the speed of the steady-state
lag elimination during constant motion. The gain should not be
too high to avoid resonance. In the in-car DIS applications, the
constant motion is more frequently occurred in horizontal direc-
tion than in vertical direction. Therefore, we set a higher gain
for β in the horizontal direction to get a better visual quality.

In each subfigure, the dotted line, solid line, and dashed
line indicate the original trajectory and compensated CMV
trajectories by (23) and (19) with clipper, respectively. The
GMV sets #1 and #2 [Fig. 15(a) and (b)] are estimated from
video sequences with constant motion in images. The GMV set
#3 [Fig. 15(c)] is estimated from VS#3. The GMV set #4
[Fig. 15(d)] is estimated from VS#4. According to the results,
the compensated horizontal motion trajectories of GMV set #1,
set #2 and set #4, which have more constant motion in images,
generated by the proposed CMV generation method are closer to
the original horizontal motion trajectories compare to the others.
It means that the proposed method can reduce the steady-state
lag and provides more space to absorb the shaking effect of im-
age sequences without violating the physical range limitation.
The GMV set #3 is estimated from the video captured in the
highway. The result of the method with integrator has slightly
overshooting phenomenon compared to the method without in-
tegrator. This is the intrinsic property of adding integrator in the
process loop. But it is a good tradeoff since it can greatly reduce
the steady-state lag of motion trajectory. Table IV shows the SI
comparisons corresponding to Fig. 15. The original SIs can be

TABLE IV
SI COMPARISONS OF TWO DIFFERENT CMV GENERATION METHODS

WITH RESPECT TO FOUR DIFFERENT GMV SETS

regarded as SI of the original sequences with constant motion
and undesired shaking components. In general, the proposed
CMV generation method has better motion smoothing perfor-
mance than the approach without integrator on the compensa-
tion of most real video sequences with constant motion. The
experimental results show that the proposed method can deal
with various circumstances and has better performance in quan-
titative evaluations (such as RMSE and SI), and human visual
evaluation. Some original and compensated video sequences for
visual assessment are available online at our web pages [21].

V. CONCLUSION

How to derive reliable GMVs from the video sequence cap-
tured by in-car video cameras and how to derive appropriate
CMVs to smoothen the shaking effect without reducing the ef-
fective image area are two challenges for an in-car DIS system.
In this paper, a robust in-car DIS technique is proposed to at-
tack these two challenges. The adaptive background evaluation
scheme based on the detected skyline can generate more reliable
GMVs for image sequences with irregular conditions such as
containing large low-contrast area (sky). For motion compen-
sation process, the proposed CMV estimation method with an
inner feedback-loop integrator can reduce the steady-state lags
of motion trajectory without affecting the effective image size
for image sequences with constant motion. According to the
experimental results, the proposed technique demonstrates the
remarkable performance in both quantitative and qualitative (hu-
man vision) evaluations compared to the existing approaches.
It can be implemented as software and hardware solutions for
both online and offline video stabilization applications.

ACKNOWLEDGMENT

The authors would like to thank W.-H. Tsai for providing the
valuable opinions and resources.

REFERENCES

[1] I. Masaki, “Machine-vision systems for intelligent transportation sys-
tems,” IEEE, Intell. Syst., vol. 13, no. 6, pp. 24–31, Nov.–Dec 1998.

[2] M. Oshima et al., “VHS camcorder with electronic image stabilizer,”
IEEE Trans. Consum. Electron., vol. 35, no. 4, pp. 749–758, Nov. 1989.

[3] K. Sato et al., “Control techniques for optical image stabilizing system,”
IEEE Trans. Consum. Electron., vol. 39, no. 3, pp. 461–466, Aug. 1993.

[4] S. J. Ko, S. H. Lee, and K. H. Lee, “Digital image stabilizing algorithms
based on bit-plane matching,” IEEE Trans. Consum. Electron., vol. 44,
no. 3, pp. 617–622, Aug. 1998.

[5] K. Uomori et al., “Automatic image stabilizing system by full-digital sig-
nal processing,” IEEE Trans. Consum. Electron., vol. 36, no. 3, pp. 510–
519, Aug. 1990.



HSU et al.: ROBUST IN-CAR DIGITAL IMAGE STABILIZATION TECHNIQUE 247

[6] Y. Egusa et al., “An application of fuzzy set theory for an electronic
video camera image stabilizer,” IEEE Trans. Fuzzy Syst., vol. 3, no. 3,
pp. 351–356, Aug. 1995.

[7] J. K. Paik, Y. C. Park, and D. W. Kim, “An adaptive motion decision system
for digital image stabilizer based on edge pattern matching,” IEEE Trans.
Consum. Electron., vol. 38, no. 3, pp. 607–616, Aug. 1992.

[8] J. K. Paik, Y. C. Park, and S. W. Park, “An edge detection approach
to digital image stabilization based on tri-state adaptive linear neurons,”
IEEE Trans. Consum. Electron., vol. 37, no. 3, pp. 521–530, Aug. 1991.

[9] S. W. Jeon et al., “Fast digital image stabilizer based on Gray-coded
bit-plane matching,” IEEE Trans. Consum. Electron., vol. 45, no. 3,
pp. 598–603, Aug. 1999.

[10] F. Vella et al., “Digital image stabilization by adaptive block motion
vectors filtering,” IEEE Trans. Consum. Electron., vol. 48, no. 3, pp. 796–
801, Aug. 2002.

[11] S. Erturk, “Digital image stabilization with sub-image phase correlation
based global motion estimation,” IEEE Trans. Consum. Electron., vol. 49,
no. 4, pp. 1320–1325, Nov. 2003.

[12] J. Y. Chang et al., “Digital image translational and rotational motion sta-
bilization using optical flow technique,” IEEE Trans. Consum. Electron.,
vol. 48, no. 1, pp. 108–115, Feb. 2002.

[13] J. S. Jin, Z. Zhu, and G. Xu, “A stable vision system for moving vehicles,”
IEEE Trans. Intell. Transport. Syst., vol. 1, no. 1, pp. 32–39, Mar. 2000.

[14] G. R. Chen et al., “A novel structure for digital image stabilizer,” in Proc.
2000 IEEE Asia-Pac. Conf. Circuits Syst., Tianjin, China, Dec. 2000,
pp. 101–104.

[15] Engelsberg and G. Schmidt, “A comparative review of digital image
stabilising algorithms for mobile video communications,” IEEE Trans.
Consum. Electron., vol. 45, no. 3, pp. 591–597, Aug. 1999.

[16] M.B. van Leeuwen, “Motion estimation and interpretation for in-car sys-
tems” Ph.D. dissertation, Informatics Inst., Univ. Amsterdam, Amsterdam,
The Netherlands, May 2002.

[17] S. Erturk, “Image sequence stabilisation: Motion vector integration (MVI)
versus frame position smoothing (FPS),” in Proc. 2nd Int. Symp. Image
Signal Process. Anal., 2001, pp. 266–271.

[18] M. K. Gullu and S. Erturk, “Fuzzy image sequence stabilization,” Elec-
tron. Lett., vol. 39, no. 16, pp. 1170–1172, Aug. 7, 2003.

[19] M. K. Gullu, E. Yaman, and S. Erturk, “Image sequence stabilization
using fuzzy adaptive Kalman filtering,” Electron. Lett., vol. 39, no. 5,
pp. 429–431, Mar. 6, 2003.

[20] L. Chen and N. Tokuda, “A general stability analysis on regional and
national voting schemes against noise —-Why is an electoral college
more stable than a direct popular election?,” Artif. Intell., 163, no. 1,
pp. 47–66, 2005.

[21] A robust in-car digital image stabilization technique [Online]. Available
http://falcon3.cn.nctu.edu.tw/˜liang/its_dis/its_dis.htm or http://www.ee.
thit.edu.tw/∼kenhsu/its_dis/its_dis.htm

[22] F.-Y. Wang, “Agent-based control for networked traffic management sys-
tems,” IEEE Intell. Syst., vol. 20, no. 5, pp. 92–96, Sep./Oct. 2005.

[23] , “Agent-based control for fuzzy behavior programming in robotic
excavation,” IEEE Trans. Fuzzy Syst., vol. 12, no. 4, pp. 540–548, Aug.
2004.

[24] S. Erturk, “Translation, rotation and scale stabilisation of image se-
quences,” Electron. Lett., vol. 39, no. 17, pp. 1245–1246, Aug. 21, 2003.

[25] M. K. Gullu and S. Erturk, “Membership function adaptive fuzzy filter for
image sequence stabilization,” IEEE Trans. Consum. Electron., vol. 50,
no. 1, pp. 1–7, Feb. 2004.

Sheng-Che Hsu received the B.S. degree in electrical
engineering from Chung-Yuan Christian University,
Chung-Li, Taiwan, R.O.C., in 1980, and the M.S.
degree in electrical engineering from the New Jer-
sey Institute of Technology, Newark, in 1989. He is
currently working toward the Ph.D. degree at Chiao-
Tung University, Hsinchu, Taiwan.

From 1982 to 1987, he was an Associate Re-
searcher at the Industry Technology Research Insti-
tute, and from 1989 to 1992, he was a Senior Engineer
with Flow Asia Cooperation. Since 1992, he has been

a Faculty Member in the Department of Electrical Engineering, Ta-Hwa Institute
of Technology, Hsinchu. His current research interests include block matching,
pattern recognition, and image processing.

Sheng-Fu Liang was born in Tainan, Taiwan, R.O.C.,
in 1971. He received the B.S. and M.S. degrees in
control engineering in 1994, 1996, and the Ph.D. de-
gree in electrical and control engineering from the
National Chiao-Tung University (NCTU), Hsinchu,
Taiwan, R.O.C., in 2000.

In 2005, he joined the Department of Biologi-
cal Science and Technology, NCTU, where he was
an Assistant Professor. Currently, he is an Assistant
Professor in the Department of Computer Science
and Information Engineering, National Cheng-Kung

University, Tainan. His current research interests include biomedical engineer-
ing and biomedical signal/image processing.

Kang-Wei Fan was born in Hsinchu, Taiwan, R.O.C.,
on June 1, 1976. He received the M.S. degree in
computer science and information engineering from
Chung Hua University, Hsinchu, in 2002. Currently,
he is working toward the Ph.D. degree at the National
Chiao-Tung University, Hsinchu. His research inter-
ests include digital imaging, video processing, and
color science.

Chin-Teng Lin (F’05) received the B.S. degree
from the National Chiao-Tung University (NCTU),
Hsinchu, Taiwan, R.O.C., in 1986, and the Ph.D. de-
gree in electrical engineering from Purdue University,
West Lafayette, IN, in 1992.

He is currently the Chair Professor in the
Department of Electrical and Computer Engineering,
NCTU, the Dean of the Computer Science College,
NCTU, and the Director of the Brain Research Cen-
ter, NCTU. From 1998 to 2000, he was the Director of
the Research and Development Office, NCTU. From

2000 to 2003, he was the Chairman of the Electrical and Control Engineering
Department, NCTU. From 2003 to 2005, he was the Associate Dean of the
College of Electrical Engineering and Computer Science. His current research
interests include fuzzy neural networks, neural networks, fuzzy systems, cellular
neural networks, neural engineering, algorithms, and very large scale integra-
tion design for pattern recognition, intelligent control, multimedia (including
image/video and speech/audio) signal processing, and intelligent transportation
systems. He is the coauthor of the book, Neural Fuzzy Systems—A Neuro-Fuzzy
Synergism to Intelligent Systems (Prentice-Hall) and the author of Neural Fuzzy
Control Systems with Structure and Parameter Learning (World Scientific). He
has published over 90 journal papers in the areas of neural networks, fuzzy
systems, multimedia hardware/software, and soft computing, including about
60 IEEE journal papers.

Dr. Lin served on the Board of Governors for the IEEE Circuits and Sys-
tems (CAS) Society in 2005 and the IEEE Systems, Man, Cybernetics (SMC)
Society during 2003–2005. He is the Distinguished Lecturer of the IEEE CAS
Society from 2003 to 2005. He is the International Liaison for the International
Symposium of Circuits and Systems (ISCAS) 2005, Japan, the Special Session
Co-Chair for the ISCAS 2006, Greece, and the Program Co-Chair for the IEEE
International Conference on SMC 2006, Taiwan. Since 2004, he has been the
President of Asia Pacific Neural Network Assembly. He is the recipient of the
Outstanding Research Award granted by National Science Council, Taiwan.
Since 1997, he has been the recipient of the Outstanding Electrical Engineering
Professor Award of the Chinese Institute of Electrical Engineering (CIEE). In
2000, he was the recipient of the Outstanding Engineering Professor Award of
the Chinese Institute of Engineering (CIE) and the 2002 Taiwan Outstanding
Information-Technology Expert Award. In 2000, he was also elected as one of
the 38 Ten Outstanding Rising Stars in Taiwan. Currently, he serves as Asso-
ciate Editors of IEEE Transactions on Circuits and Systems, Part I & Part II,
IEEE Transactions on Systems, Man, Cybernetics, IEEE Transactions on Fuzzy
Systems, and International Journal of Speech Technology. He is a member of
Tau Beta Pi, Eta Kappa Nu, and Phi Kappa Phi honorary societies.


