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Abstract

An AHP model suffering from significant cardinal or/and ordinal inconsistencies in its preference matrix is
difficult to rank rationally the alternatives. This study proposes an iterative method to assist a decision maker to
detect/adjust inconsistencies and to represent his/her judgments properly. A Gower plot is first used to detect ordinal
and cardinal inconsistencies. Two optimization models are then constructed to provide suggeted adjustments upon
the request of the decision maker. By examining the Gower plots and numerical suggestions, the decision maker
may revise iteratively the preference ratios to improve inconsistencies until all alternatives are ranked.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The analytic hierarchy process (AHP) [1] is a popular method for establishing priorities in multicriteria
decision problems by evaluating the strength of individual preferences through the pairwise comparison
of alternatives at each level of the hierarchy.

Let A={Ai | i =1, . . . , n} be a set of n alternatives for solving a decision problem. Denote ri,j as ri,j =
wi/wj . The ratio of wi/wj measures the relative dominance of Ai over Aj in terms of underlying priority
weights w1 > 0, . . . , wn > 0, taken to sum up to one by convention. Following Saaty, it is convenient to
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let R = (ri,j ), i, j ∈ {1, . . . , n}, be an n × n preference matrix. rj,i = 1/ri,j is assumed. R is ordinally
inconsistent or intransitive if for some i, j, k ∈ {1, 2, 3, . . . , n} there exists ri,j �1, rj,k �1 but ri,k < 1
(known as intransitive cycle). R is cardinally inconsistent if for some i, j, k ∈ {1, 2, 3, . . . , n} there exists
ri,k �= ri,j × rj,k [2].

Several methods have been proposed (e.g., [1,3,4]) to rank alternatives in AHP. The ranks they yield
do not vary much when the decision makers’ preferences are consistent. However, if a preference matrix
is ordinally inconsistent or highly cardinally inconsistent, different ranking methods may produce wildly
different priorities and rankings. Hence, how to help the decision makers (DMs) to detect and adjust these
inconsistencies becomes an important issue.

Genest and Zhang [2] proposed a graphical method to detect the elements in R that cause major ordinal
and cardinal inconsistencies based on a Gower plot [5]. However, they did not propose any systematical
way to adjust these inconsistencies.

How to adjust inconsistencies in R has been addressed by many studies. Most of researchers applied
a scaling method for adjusting inconsistencies by using the normalized eigenvector corresponding to
the maximum eigenvalue of R [6–8]. These studies can significantly reduce inconsistencies. However,
almost all the elements in the preference matrix will be modified to improve the inconsistencies. Jensen
[3] proposed a least squares method to adjust inconsistencies by finding a perfect consistent rank one
matrix that minimizes the sum of squared deviations of ri,j . Lipovetsky and Conklin [9] considered R
as a contingency table and used �2 criteria for localization of outliers among the elicited values. By
diminishing the influence of unusual values, the inconsistencies can be reduced. Saaty [10] proposed
another method to transform an inconsistent matrix to a near-consistent one based on a principal eigen-
vector. These methods are mainly based on the eigenvector approach too. Although these methods can
largely improve inconsistencies, the adjusted R, however, may be far beyond the real preferences ac-
ceptable by the DM. In addition, the DMs should make the final changes, rather than having changes
automatically made.

Maas et al. [11] presented an operational method for deriving a linear ranking of alternatives from
repeated paired comparisons of those alternatives. In their model, an observed preference between two
alternatives that causes intransitivity in the procedure must be reversed if it is of less importance. Larichev
and Moshkovich [12] proposed a ZAPROS-LM method for ordering multiattribute alternatives. Their
study is based on the assumption of the transitivity of the DM’s preferences and the preferential indepen-
dence of attributes. The DM is asked to change his previous preferences to eliminate intransitivity. Both
methods can solve the problems of ordinal inconsistency. However, the problem of cardinal inconsistency
has not been addressed.

This study proposes an iterative method to assist a decision maker to detect/adjust inconsistencies and
to represent his/her judgments properly. The main features of the proposed method are listed below.

(i) A graphic approach based on Gower plots [2] is applied to represent judgments of the DMs and to
detect ordinal and cardinal inconsistencies.

(ii) An optimization model is constructed to help the DMs to adjust ordinal and cardinal inconsistencies
simultaneously and efficiently.

(iii) An interactive flow is designed to include the feedbacks from the DMs.
(iv) The DMs may choose to revise their preferences based on the graphical supports and numerical

suggestions to improve inconsistencies step by step.
(v) The DMs can control the change process.
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The rest of this paper is organized as follows: Section 2 applies three examples to illustrate how to
detect inconsistencies based on Gower plots. Section 3 constructs two optimization models to suggest
how to efficiently adjust these inconsistencies. Section 4 proposes an interactive flow to help the DMs
to detect and adjust inconsistencies and finally rank all alternatives. Section 5 shows the corresponding
results and comparisons.

2. Detecting inconsistencies based on Gower plots

Gower plot is a very useful method to graph a skew-symmetric matrix in a two-dimensional (2D) plane.
A matrix M is a skew-symmetric matrix when MT =−M, where MT denotes the transposition of M. The
main idea of Gower plots is to decomposit a skew-symmetric matrix M into orthonormal eigenvectors
by the singular value decomposition technique [13]. Plotting these vectors as points in the plane provides
a reasonable representation of M. The mathematical properties of Gower plots are illustrated in the
Appendix.

On the basis of Genest and Zhang [2], this section illustrates a way of detecting ordinal and car-
dinal inconsistencies in a preference matrix R = (ri,j ) using Gower [5] plots. Here we first discuss a
method of detecting ordinal inconsistencies. Denote T=(ti,j ) as a tournament matrix corresponding to R,
where

ti,j =
{1, ri,j > 1 (Ai is preferred over Aj),

0, ri,j = 1 (Ai and Aj are equally preferred),

−1, ri,j < 1 (Aj is preferred over Ai).

T is a skew-symmetric matrix and is used to verify the ordinal consistence of R by Gower plot. Let T∗
be the best approximation of T, based on Appendix. T∗ is expressed as

T∗ = {�1(uivj − viuj )} = {�1|Pi ||Pj | sin �i,j },
where �1 is the largest eigenvalue of T. Pi = (ui, vi) stands for the ith point in a 2D plane. �i,j denotes
the directed angle from points Pi to Pj based on origin. Denote GP(T) as a Gower plot of T.

Remark 1. Examining a GP(T), R is close to being ordinally consistent, if (i) the points P1, . . . , Pn are
equidistant from origin within a 180◦ arc (half circle); (ii) the angles between two consecutive points are
equal to 180/n degrees; and (iii) variability v = ‖T∗‖/‖T‖ = �2

1/
∑m

j=1�
2
j , as specified in the appendix,

approximates to 1. The points are arranged counterclockwise in the order of preference. GP(T) is called
an ordinal Gower plot.

Remark 1 is derived from and proved by Genest and Zhang [2]. We then have the following definition.

Definition 1 (Ordinal-inconsistent node). Plotting the Gower plot of T, GP(T), displays the spatial
location of alternatives in a 2D plane. Examining the ordinal Gower plot GP(T), a node Ai is called an
ordinal-inconsistent node if (i) Ai is off the half circle, or (ii) the angles between Ai and its consecutive
nodes are not equal to 180/n degrees.

Then we discuss a method of detecting cardinal inconsistencies.
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Let S = (si,j ), where si,j = ln(ri,j ). S is then a skew-symmetric matrix. Denote GP(S) as a Gower plot
of S. Let S∗ be the best approximation of S, based on the Appendix. S∗ is expressed as

S∗ = {�1(uivj − viuj )} = {�1|Pi ||Pj | sin �i,j }.
Remark 2. Examining a GP(S), R is close to being cardinally consistent if (i) P1, . . . , Pn are collinear.
This means s∗

i,k + s∗
k,j = s∗

i,j , for all 1�i, k, j �n. (ii) v = ‖S∗‖/‖S‖ = �2
1/

∑m
j=1�

2
j approximates to 1.

The points are arranged counterclockwise in the order of preference. GP(S) is called a cardinal Gower
plot (proved by Genest and Zhang [2]).

Definition 2 (Cardinal-inconsistent node). Based on Remark 2, in a cardinal Gower plot GP(S), a node
Ai is called a cardinal-inconsistent node if Ai is away from the collinear line, i.e. s∗

i,k + s∗
k,j �= s∗

i,j for
some 1�k, j �n.

Definition 3 (Degree of cardinal inconsistency). The degree of cardinal inconsistency for an R is
defined as

n∑
j=1,
j �=i

n∑
k>Min{i,j},

k �=i,j

|s∗
i,j − s∗

i,k − s∗
k,j |.

Three examples are demostrated below.

Example 1. Consider R1 be a preference matrix with four alternatives A1, A2, A3, and A4, specified
below. Let T1 be the tournament matrix corresponding to R1. Let S1 = ln(R1).

R1 =

⎛
⎜⎜⎝

1 2 4 5
1
2 1 2 5
1
4

1
2 1 3

1
5

1
5

1
3 1

⎞
⎟⎟⎠ , T1 =

⎛
⎜⎝

0 1 1 1
−1 0 1 1
−1 −1 0 1
−1 −1 −1 0

⎞
⎟⎠ ,

S1 =
⎛
⎜⎝

0 ln(2) ln(4) ln(5)

− ln(2) 0 ln(2) ln(5)

ln(4) − ln(2) 0 ln(3)

− ln(5) − ln(5) − ln(3) 0

⎞
⎟⎠ .

The GP(T1) and GP(S1) are depicted in Fig. 1(a) and (b) with variabilities 97.1% and 99.9%, respec-
tively. The variability stands for the reliability of the graphical representation as defined in the Appendix,
and not the degree of consistency.

Examining GP(T1) in Fig. 1(a), on the basis of Remark 1, matrix R1 is ordinally consistent. Examining
GP(S1), on the basis of Remark 2, matrix R1 is not cardinally consistent because A4 is away from the
collinear line. A4 is a cardinal-inconsistent node. The consistency ratio (CR)(Saaty [14]) of R1 is 0.03.
Since all points are arranged counterclockwise in the order of preference, the ranking of alternatives is
A1 � A2 � A3 � A4. (“�” means superior to).

Example 2. The second example is selected from Genest and Zhang [2], originally excerpted from Saaty
[1]. The six characteristics of the relative desirability for choosing a high school are Learning (A1),
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Fig. 1. (a) Ordinal Gower plot of Ex. 1 (v = 97.1%); (b) Cardinal Gower plot of Ex. 1 (CR = 0.03, v = 99.9%); (c) Cardinal
plot of Ex. 1 by the proposed approach (CR = 0, v = 100%).

Friends (A2), School life (A3), Vocational training (A4), College preparation (A5) and Music classes
(A6). The response matrix is given as R2 with CR = 0.223. T2 is the tournament matrix corresponding
to R2, and S2 = ln(R2). GP(T2) and GP(S2) are shown in Fig. 2(a) and (b), with the variabilities 82.3%
and 87.6%, respectively.

R2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 4 3 1 3 4
1
4 1 7 3 1

5 1
1
3

1
7 1 1

5
1
5

1
6

1 1
3 5 1 1 1

3
1
3 5 5 1 1 3
1
4 1 6 3 1

3 1

⎞
⎟⎟⎟⎟⎟⎟⎠

, T2 =

⎛
⎜⎜⎜⎜⎜⎝

0 1 1 0 1 1
−1 0 1 1 −1 0
−1 −1 0 −1 −1 −1
0 −1 1 0 0 −1

−1 1 1 0 0 1
−1 0 1 1 −1 0

⎞
⎟⎟⎟⎟⎟⎠ .

Examining GP(T2) in Fig. 2(a), R2 is ordinally inconsistent because Vocational Training (A4) is off the
half circle of the ordinal Gower plot, based on (i) in Remark 1. Here A4 is an ordinal-inconsistent node.
By examining GP(R2) we can see that R2 is also cardinally inconsistent because Vocational Training
(A4) and School Life (A3) are far off the collinear line in Fig. 2(b). A4 and A3 are cardinal-inconsistent
nodes here. The CR of R2 is 0.223.
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Fig. 2. (a) Ordinal Gower plot of Ex. 2 (v =82.3%); (b) Cardinal Gower plot of Ex. 2 (CR =0.223, v =87.6%); (c) Ordinal plot
of Ex. 2 by the proposed approach and Genest and Zhang (v =95.2%); (d) Cardinal plot of Ex. 2 by the proposed approach GO1
(CR = 0.027, v = 99.1%); (e) Cardinal plot of Ex. 2 by the proposed approach DM1 (CR = 0.042, v = 97.9%); (f) Cardinal
plot of Ex. 2 by Genest and Zhang (CR = 0.078, v = 97.8%).

Example 3. The third example is a classical AHP problem described by Saaty and Vargas [15], Saaty
[16], Lipovetsky and Conklin [9] and Saaty [10]. There are eight criteria for choosing the best home,
including Size of house (A1), Location to bus (A2), Neighborhood (A3), Age of house (A4), Yard space
(A5), Modern facilities (A6), General condition (A7) and Financing (A8). R3 is a matrix of pairwise



786 H.-L. Li, L.-C. Ma / Computers & Operations Research 34 (2007) 780–798

comparisons among eight criteria with CR = 0.164. T3 is the tournament matrix corresponding

R3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 5 3 7 6 6 1
3

1
4

1
5 1 1

3 5 3 3 1
5

1
7

1
3 3 1 6 3 4 6 1

5
1
7

1
5

1
6 1 1

3
1
4

1
7

1
8

1
6

1
3

1
3 3 1 1

2
1
5

1
6

1
6

1
3

1
4 4 2 1 1

5
1
6

3 5 1
6 7 5 5 1 1

2
4 7 5 8 6 6 2 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, T3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 1 1 1 −1 −1
−1 0 −1 1 1 1 −1 −1
−1 1 0 1 1 1 1 −1
−1 −1 −1 0 −1 −1 −1 −1
−1 −1 −1 1 0 −1 −1 −1
−1 −1 −1 1 1 0 −1 −1
1 1 −1 1 1 1 0 −1
1 1 1 1 1 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

to R3 and S3=ln(R3). Fig. 3(a) and (b) plot the GP(T3) and GP(S3), with 83.99% and 89.01% variabilities.
Examining GP(T3) in Fig. 3(a), based on (ii) in Remark 2, R3 is not ordinally consistent because there

are some angles between two consecutive points not equal to 180/n. Size (A1), Neighborhood (A3) and
Condition (A7) are ordinal-inconsistent nodes because they are located at the same odd position. The CR
of R3 is 0.164. It is clear that if R3 is ordinally inconsistent then R3 is also cardinally inconsistent.

3. Proposed model for adjusting inconsistencies

Two models are proposed here to help the DMs to adjust inconsistencies. The first model is adopted when
a preference matrix R = (ri,j ) has ordinal consistency but also cardinal inconsistency. The second model
is applied when R = (ri,j ) has both ordinal and cardinal inconsistencies. If R has ordinal inconsistency
then it is also has cardinal inconsistency. Two models for adjusting inconsistencies are discussed here,
and an interactive process of ranking all alternatives is illustrated in Section 4.

Given a preference matrix R = (ri,j ), let R′ = (r ′
i,j ) be the suggested preference matrix of R. Suppose

R is cardinally inconsistent, the model for adjusting R is formulated below.
Model 1 (A model of adjusting cardinal inconsistence)

Min Obj1 =
n∑

j=1,
j �=i

n∑
k>Min{i,j},

k �=i,j

|xi,j − xi,k − ak,j |

s.t. xi,j �xi,j �xi,j , ∀1�j �n, j �= i, (3.1)

where Ai is a cardinal-inconsistent node.
ak,j = ln(rk,j ) is a constant where rk,j is obtained directly from the given preference matrix R. xi,j

and xi,k are variables which represent the adjusted ln(r ′
i,j ) and ln(r ′

i,k), respectively. The objective of
Model 1 is to minimize the cardinal inconsistency by referring to Definition 3. In expression (3.1), xi,j

and xi,j are, respectively, the lower and upper bounds of xi,j , which can be specified by the DM. For
example, if the DM specifies r1,4 within a tolerable range 3�r1,4 �5 (i.e. x1,4 = ln(3), x1,4 = ln(5)), the
proposed model will find the most consistent solutions during the specified ranges. The DM can choose
to accept this suggestion to achieve a higher consistent decision, or adjust the range of ri,j to obtain other
suggestions, or do nothing to retain his original judgment. If the DM does not wish to adjust some ri,j , he
can set ri,j to be a specific value (for example r1,4 = 4 by setting x1,4 = x1,4 = ln(4)). If the DM does not
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Fig. 3. (a) Ordinal Gower plot of Ex. 3 (v = 83.99%); (b) Cardinal Gower plot of Ex. 3 (CR = 0.164, v = 89.01%); (c) Ordinal
Gower plot of Ex. 3 by the proposed approach GO1 (v = 90.26%); (d) Cardinal Gower plot of Ex. 3 by the proposed approach
GO1 (CR = 0.072, v = 97%); (e) Ordinal plot of Ex. 2 by the proposed approach GO2 and Saaty (v = 90.7%); (f) Cardinal
Gower plot of Ex. 3 by the proposed approach GO2 (CR=0.074, v=97.14%); (g) Cardinal Gower plot of Ex. 3 by the proposed
approach DM1 (CR = 0.099, v = 94.2%); (h) Cardinal Gower plot of Ex. 3 by Saaty (2003) (CR = 0.085, v = 97.24%).
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set any bounds, the default bounds xi,j = ln(1
9) and xi,j = ln(9) are used, following the Saaty response

scale [1
9 �ri,j �9].

The range specified by the DM implies his tolerance about changes in judgment. The wider the range,
the higher the possibility for large changes.

Model 1 is a linear program which leads to an optimal solution. Take Example 1 for instance; the
alternative A4 is a cardinal inconsistency node becauseA4 is away from the collinear line in Fig. 1(b). All
links connecting with A4 are considered to be adjusted. The lower (xi,j ) and upper (xi,j ) bounds can be

set by the DM. Suppose the DM does not set any bounds, the default bounds xi,j = ln(1
9) and xi,j = ln(9)

are used. The model of adjusting cardinal inconsistencies in Example 1 is formulated as follows:
Model 1 (Adjusting cardinal inconsistency for Example 1)

Min Obj1 = |x1,4 − a1,2 − x2,4)| + |x1,4 − a1,3 − x3,4)| + |x2,4 − a2,3 − x3,4)|
= |x1,4 − ln(2) − x2,4| + |x1,4 − ln(4) − x3,4| + |x2,4 − ln(2) − x3,4|

s.t. ln(1
9)�xi,j � ln(9).

The optimal solution of this program isx1,4=2.079 (r1,4=8),x2,4=1.386 (r2,4=4),x3,4=0.693 (r3,4=
2), with Obj1 = 0. The cardinal Gower plot after adjustment is shown in Fig. 1(c), with v = 100% and
CR = 0. That implies if the DM accepts this suggestion, he can make a higher consistent decision. If he
feels that the change is too large, he can narrow down the ranges of ri,j and obtain another suggestions
or stop adjusting the process.

The adjustment of cardinal inconsistency is to change the magnitudes of some preferences, which can
be achieved conveniently by Model 1. However, the adjustment of ordinal inconsistency, which is to
change the directions of given preferences, is more difficult to treat. Consider the following remark:

Remark 3. Given a preference matrix R = (ri,j ), let R′ = (r ′
i,j ) be the suggested preference matrix of

R. ri,j is considered to be “reversed” into r ′
i,j if

(i) ri,j �1 but r ′
ij < 1,

(ii) ri,j < 1 but r ′
i,j > 1.

For example, if ri,j =2 is adjusted to r ′
i,j = 1

3 , then ri,j is said to be “reversed” into r ′
i,j . Note that the range

of ri,j and r ′
i,j here is based on Saaty response scale [1

9 �ri,j �9], i.e. ri,j , r ′
i,j ∈ {1

9 , 1
8 , . . . , 1

2 , 1, 2, . . . , 9}.
The following proposition is proposed based on Remark 3.

Proposition 1. For a preference matrix R = (ri,j ) and its suggested preference matrix R′ = (r ′
i,j ), ri,j is

“reversed” into r ′
i,j if (i) ri,j �= 1, but ln(r ′

i,j ) ln(ri,j ) < 0, (ii) ri,j = 1, but ln(r ′
i,j ) < 0.

Proof. From Remark 3 we know that (i) if ri,j > 1 but r ′
i,j < 1, then ln(ri,j ) > 0 and ln(r ′

i,j ) < 0. (ii) if
ri,j < 1 but r ′

i,j > 1, then ln(ri,j ) < 0 and ln(r ′
i,j ) > 0. Both (i) and (ii) result in ln(r ′

i,j ) ln(ri,j ) < 0. (iii)
if ri,j = 1 but r ′

i,j < 1, then ln(r ′
i,j ) < 0. �

Based on Proposition 1, every preference relation ri,j can be classified into one of the following six
cases:

(1) if (ri,j �2) and (ri,j no reverse) then ln(r ′
i,j ) ln(ri,j )�0 and ln(r ′

i,j )� ln(2);
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Table 1
Mapping table for 0/1 variables

Case ui,j pi,j qi,j Note Constraints

(1) 0 1 0 ri,j �2 and no reverse ln(r ′
i,j ) ln(ri,j )�0 and xi,j � ln(2)

(2) 0 0 0 ri,j = 1 and no reverse ln(r ′
i,j )�0

(3) 0 0 1 ri,j � 1
2 and no reverse ln(r ′

i,j ) ln(ri,j )�0 and ln(r ′
i,j )� ln( 1

2 )

(4) 1 1 0 ri,j �2 and “reverse” ln(r ′
i,j ) ln(ri,j ) < 0 and ln(r ′

i,j )� ln( 1
2 )

(5) 1 0 0 ri,j = 1 and “reverse” ln(r ′
i,j )� ln( 1

2 )

(6) 1 0 1 ri,j � 1
2 and “reverse” ln(r ′

i,j ) ln(ri,j ) < 0 and ln(r ′
i,j )� ln(2)

(2) if (ri,j = 1) and (ri,j no reverse) then ln(r ′
i,j )�0;

(3) if (ri,j � 1
2 ) and (ri,j no reverse) then ln(r ′

i,j ) ln(ri,j )�0 and ln(r ′
i,j )� ln(1

2 );

(4) if (ri,j �2) and (ri,j reverse) then ln(r ′
i,j ) ln(ri,j ) < 0 and ln(r ′

i,j )� ln(1
2 );

(5) if (ri,j = 1) and (ri,j reverse) then ln(r ′
i,j )� ln(1

2 );

(6) if (ri,j � 1
2 ) and (ri,j reverse) then ln(r ′

i,j ) ln(ri,j ) < 0 and ln(r ′
i,j )� ln(2). (3.2)

Based on Saaty’s [1
9 , 9] ratio scale, ri,j > 1 indicates ri,j �2 and ri,j < 1 implies ri,j � 1

2 . Denote ui,j ,
pi,j , and qi,j as three binary variables to represent the six cases, as listed in Table 1. ui,j is used to indicate
the reverse condition. If ri,j is reversed, ui,j = 1; otherwise, ui,j = 0. pi,j and qi,j are used to distinguish
the value of ri,j . pi,j = 1 and qi,j = 0 indicate ri,j �2. pi,j = 0 and qi,j = 0 indicate ri,j = 1. pi,j = 0
and qi,j = 1 indicate ri,j � 1

2 . Consider the following proposition.

Proposition 2. The “If . . . then” conditions in (3.2) can be formulated as the following inequalities:

Case (1) : M(ui,j − pi,j + qi,j + 1) + ln(r ′
i,j ) ln(ri,j )�0,

M(ui,j − pi,j + qi,j + 1) + ln(r ′
i,j )� ln(2), (3.3)

Case (2) : M(ui,j + pi,j + qi,j ) + ln(r ′
i,j )�0, (3.4)

Case (3) : M(ui,j + pi,j − qi,j + 1) + ln(r ′
i,j ) ln(ri,j )�0,

− M(ui,j + pi,j − qi,j + 1) + ln(r ′
i,j )� ln(1

2 ), (3.5)

Case (4) : − M(−ui,j − pi,j + qi,j + 2) + ln(r ′
i,j ) ln(ri,j ) < 0,

− M(−ui,j − pi,j + qi,j + 2) + ln(r ′
i,j )� ln(1

2 ), (3.6)

Case (5) : −M(−ui,j + pi,j + qi,j + 1) + ln(r ′
i,j )� ln(1

2 ), (3.7)
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Case (6) : − M(−ui,j + pi,j − qi,j + 2) + ln(r ′
i,j ) ln(ri,j ) < 0,

M(−ui,j + pi,j − qi,j + 2) + ln(r ′
i,j )� ln(2), (3.8)

M(−pi,j+qi,j + 1) + ri,j �2, (3.9)

− M(pi,j − qi,j + 1) + ri,j � 1
2 , (3.10)

M(pi,j + qi,j ) + ri,j �1, (3.11)

− M(pi,j + qi,j ) + ri,j �1, (3.12)

pi,j + qi,j �1, (3.13)

ui,j , pi,j , qi,j ∈ {0, 1}, M is a big value. (3.14)

Proof. When ri,j �2 and ri,j is not reversed (ui,j = 0, pi,j = 1, qi,j = 0), Case (1) is activated, which
enforces ln(r ′

i,j ) ln(ri,j )�0 and ln(r ′
i,j )� ln(2). Case (2)–Case (6) can be activated correspondingly.

Expressions (3.9)–(3.12) are used to define the relations among pi,j , qi,j and ri,j . For example, in (3.9),
pi,j = 1 and qi,j = 0 enforce ri,j �2 . (3.11) and (3.12) enforce ri,j = 1 when pi,j = 0 and qi,j = 0. (3.13)
implies that pi,j = 1 and qi,j = 1 are not allowed. �

Remark 4. If Am is an ordinal-inconsistent node, then there exists at least one intransitive cycle con-
necting to Am.

Remark 5. An intransitive cycle can be eliminated if one of the links in the cycle can be reversed. The
ordinal inconsistency can therefore be improved.

From the above discussion, if there is a cardinal-inconsistent node Ai and an ordinal-inconsistent node
Am in R, the model of adjusting cardinal and ordinal Inconsistencies is formulated below.

Model 2 (A model of adjusting cardinal and ordinal inconsistencies)

Min {Obj1, Obj2}
Obj1 =

n∑
j=1,
j �=i

n∑
k>Min{i,j},

k �=i,j

|xi,j − xi,k − ak,j |

Obj2 =
n∑

j=1,
j �=m

um,j rm,j ,

s.t.
n∑

j=1,
j �=m

um,j �1, (3.15)

(3.1), (3.3)–(3.14).
Obj2 is the weighted sum of reverse preference. Since the model is designed to reverse a DM’s prefer-

ences as less as possible, Obj2 is minimized. The preference ratio ri,j is considered as a weight in Obj2
to be minimized because it is easier for a DM to reverse his preference with a smaller ri,j . For example,
it is easier for a DM to change a preference ratio of 3 to 1

2 than to change a preference ratio of 9 to 1
2 .
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If ri,j < 1, rj,i should substitute for ri,j in Obj2. (3.15) sets that at most one preference relation ri,j can
be reversed at one time.

Model 2 is a multi-objective linear optimization problem which can be solved by many techniques to
obtain a global optimum. One of the commonly used methods is formulated below.

Min �
s.t. Obj1��; Obj2��;

All other constraints are in Model 2.
Take Example 2 for instance, A4 (an ordinal-inconsistent node) is the one causing the ordinal inconsis-

tency by examining GP(T2) in Fig. 2(a). Examining GP(S2) in Fig. 2(b); A3 and A4 (cardinal-inconsistent
nodes) cause major cardinal inconsistencies because they are farthest away from the collinear line. Ex-
ample 2 can be formulated as follows:

Model 2 (Adjusting cardinal and ordinal inconsistency for Example 2)

Min �
s.t. Obj1� �; Obj2��;

Obj1= |x1,4 − a1,2 − x2,4| + |x1,4 − a1,3 − x3,4| + |x1,4 − a1,5 − x5,4|
+|x1,4 − a1,6 − x6,4| + |x2,4 − a2,3 − x3,4| + |x2,4 − a2,5 − x5,4|
+|x2,4 − a2,6 − x6,4| + |x3,4 − a3,5 − x5,4| + |x3,4 − a3,6 − x6,4|
+|x5,4 − a5,6 − x6,4| + |x1,3 − a1,2 − x2,3| + |x1,3 − x1,4 − x4,3|
+|x1,3 − a1,5 − x5,3| + |x1,3 − a1,6 − x6,3| + |x2,3 − x2,4 − x4,3|
+|x2,3 − a2,5 − x5,3| + |x2,3 − a2,6 − x6,3| + |x5,3 − a5,6 − x6,3|,

Obj2= u1,4 × 1 + u2,4 × 3 + u3,4 × 5 + u5,4 × 1 + u6,4 × 3,

u1,4 + u2,4 + u3,4 + u5,4 + u6,4 �1,

(3.3)–(3.13),

ui,j , pi,j,qi,j ∈ {0, 1}, M = 1000, ∀(i, j) ∈ {(1, 4), (2, 4), (3, 4), (5, 4), (6, 4)},
ln(1

9)�xi,j � ln(9),

∀(i, j) ∈ {(1, 4), (2, 4), (3, 4), (5, 4), (6, 4), (1, 3), (2, 3), (5, 3), (6, 3)}.
Applying Model 2 to Example 2 yields u1,4 = u2,4 = u3,4 = u5,4 = u6,4 = 0, x1,4 = 2.079 (r1,4 =

8), x2,4=0.693 (r2,4=2), x3,4=−0.693 (r3,4= 1
2 ), x5,4=1.792 (r5,4=6), x6,4=0.693 (r6,4=2), x1,3=

2.197 (r1,3 = 9), x2,3 = 1.099 (r2,3 = 3), x5,3 = 2.197 (r5,3 = 9), x6,3 = 1.099 (r6,3 = 3), Obj1 = 5.808
and Obj2 = 0. The ordinal and cardinal Gower plots after adjustment are shown in Fig. 2(c) and (d), with
variabilities 95.2% and 99.1%, respectively. Model 2 is solved by optimization software [17].

4. The iterative process for ranking alternatives

This section proposes an interactive flow to help the DMs to detect and adjust inconsistencies and finally
ranking all alternatives. Based on Gower plots, the DM can visualize the consistencies of his preferences.
If there are inconsistencies, the DM may decide to adjust these inconsistencies by himself, or may ask
for suggested adjustments and adjust inconsistencies step by step, or make no change. It depends on the
DM to control the adjusting process.
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Fig. 4. Flowchart for detecting and adjusting inconsistencies.
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The interactive flow is depicted in Fig. 4 and is illustrated as follows:

〈Step 1〉 A DM inputs a preference matrix R = (ri,j ).
〈Step 2〉 An ordinal Gower plot GP(T) and a cardinal Gower plot GP(S) are displayed to the DM,

where T is a tournament matrix corresponding to R and S = ln(R).
〈Step 3〉 R can be grouped into the following three types.

3A: If R is not ordinally consistent, the ordinal-inconsistent nodes are displayed to the DM.
3B: If R is ordinally consistent but cardinally inconsistent, the cardinal-inconsistent nodes are depicted

to the DM.
3C: If R is both ordinally and cardinally consistent, the alternatives are ranked directly. Alternatives are

arranged counterclockwise in the order of preference in Gower plots. Stop.

〈Step 4〉 The DM decides how to treat inconsistencies.

4A: Following Step 3A, the DM may take one of the following three actions:

(1) Adjust or reverse the targeted preference ratio ri,j by himself directly. Go to Step 3.
(2) Ask for suggeted adjustments on ri,j . The DM may wish to find the optimal adjustments to reduce

inconsistencies.
(3) Make no change. The DM does not wish to adjust inconsistencies. Stop.

4B: Following Step 3B, the DM may take one of the following three actions :

(1) Adjust the targeted ri,j by himself directly. Go to Step 3.
(2) Ask for suggeted adjustments on ri,j .
(3) Make no change. Stop.

〈Step 5〉 Apply proposed models to obtain suggested adjustments on ri,j .

5A: Following Step 4A, apply Model 2 to obtain the suggested adjustments on ri,j . The corresponding
Gower plots are displayed to the DM.

5B: Following Step 4B, apply Model 1 to obtain the suggested adjustments on ri,j . The corresponding
Gower plots are displayed to the DM.

〈Step 6〉 The DM decides to accept suggested adjustments, or obtain other suggestions on ri,j , or make
no change.

6A: Following Step 5A, the DM may take one of the following three actions:

(1) Accept the suggested adjustments. Go to Step 3.
(2) Make no change. Stop.
(3) The DM dose not accept the suggested adjustments on ri,j and ask for other suggestions by

adjusting the acceptable ranges of targeted preference ratios ri,j . Go to Step 5A.

6B: Following Step 5B, the DM may take one of the following three actions:

(1) Accept suggested adjustments on ri,j . Go to Step 3.
(2) Make no change. Stop.
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(3) The DM does not accept the suggested adjustments on ri,j and ask for other suggestions by
adjusting the acceptable ranges of targeted preference ratios. Go to Step 5B.

Based on the support of Gower plots and the proposed models, the DM may iteratively adjust prefer-
ence ratios to reduce inconsistencies until consistencies are achieved or the DM may not wish to adjust
inconsistencies anymore. The final ranks for all alternatives can then be decided.

5. Results and comparisons

This section takes Examples 2 and 3 as instances to illustrate the interactive approach for detecting and
adjusting inconsistencies based on the DM’s responses. The comparisons of proposed approach with that
of Genest’s and Saaty’s are also described.

The interactive flow of Example 2 is illustrated as follows:

Step 1: A DM inputs a preference matrix R2.

Step 2: The corresponding ordinal and cardinal Gower plots are depicted in Fig. 2(a) and (b), respec-
tively.

Step 3: R2 is not ordinally consistent, which belongs to Step 3A. A4 is the ordinal-inconsistent node
because A4 is off the half circle in Fig. 2(a). R2 is also cardinally inconsistent with CR = 0.223.

Step 4A: Suppose the DM decides to ask for suggested adjustments on ri,j .
Step 5A: Applying Model 2 to R2 yields u1,4 =u2,4 =u3,4 =u5,4 =u6,4 =0, with Obj1=5.808, Obj2=

0. As described in Section 3.2, the suggested optimal adjustments are x1,4 = 2.079 (r1,4 = 8), x2,4 =
0.693 (r2,4 = 2), x3,4 = −0.693 (r3,4 = 1

2 ), x5,4 = 1.792 (r5,4 = 6), x6,4 = 0.693 (r6,4 = 2), x1,3 =
2.197 (r1,3 = 9), x2,3 = 1.099 (r2,3 = 3), x5,3 = 2.197 (r5,3 = 9), x6,3 = 1.099 (r6,3 = 3). The CR can
be significantly improved from 0.223 to 0.027. The ordinal and cardinal Gower plots after suggested
adjustments are shown in Figs. 2(c) and (d).

Step 6A: If the DM accepts the suggested adjustments, the process goes to Step 3C since R2 is both
ordinally and cardinally consistent. The ranking of the relative desirability of sex characteristics for
choosing a high school is Learning (A1) � Colleage preparation (A5) � Music (A6) � Friends (A2) �
Vocational training (A4) � School life (A3). The results are listed in Table 2 at the column labeled GO1.

If the DM does not accept these adjustments, he can ask for other suggestions by respecifying acceptable
ranges for targeted preference ratios. Suppose he sets some acceptable ranges as 1�r1,4 �5, 1�r5,4 �3, 3
�r1,3 �6, 5�r5,3 �7, applying Model 2 (Step 5A) based on the new ranges (ln(1)�x1,4 � ln(5), ln(1)�
x5,4 � ln(3), ln(3)�x1,3 � ln(6), ln(5)�x5,4 � ln(7)) yields u1,4 = u2,4 = u3,4 = u5,4 = u6,4 = 0, with
Obj1 = 9.116, Obj2 = 0. The suggested adjustments are x1,4 = 1.609 (r1,4 = 5), x2,4 = 0.693 (r2,4 = 2),
x3,4 = −0.693 (r3,4 = 1

2 ), x5,4 = 1.099 (r5,4 = 3), x6,4 = 0.693 (r6,4 = 2), x1,3 = 1.792 (r1,3 = 6),
x2,3 = 1.099 (r2,3 = 3), x5,3 = 1.792 (r5,3 = 6), x6,3 = 1.099 (r6,3 = 3). The results are listed in Table 2
in the column labeled as DM1, where CR = 0.042. The corresponding cardinal Gower plot is shown in
Fig. 2(e). The DM can adjust his acceptable ranges again to improve inconsistencies step by step.

Genest and Zhang [2] suggested that r1,4, r5,4 should be revised first because Learning (A1) and College
preparation (A5) are farthest away from Vocational training (A4) on the cardinal Gower plot. They set
both r1,4, r5,4 from 1 to 5 based on the work of Jensen [18]. Then, they suggested revising r1,3, r5,3 from
3 and 5 upward to 9. CR can be improved from 0.223 to 0.078. The results are listed in Table 2. Fig. 2(f)
depicts the cardinal Gower plot after adjustment with 97.8%.
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Table 2
Results and comparisons of Example 2

Method Original Genest GO1 DM1

Ordinal-inconsistent node(s) A4 A4

Cardinal-inconsistent node(s) A4 then A3 A4 and A3 A4 and A3

Boundary set by DM 1�r1,4 �5; 1�r5,4 �3;
3�r1,3 �6; 5�r5,3 �7;

Original preferences/suggested adjustments r1,4 = 1; r1,4 = 5; r1,4 = 8; r1,4 = 5;
r2,4 = 3; r2,4 = 2; r2,4 = 2;
r3,4 = 1

5 ; r3,4 = 1
2 ; r3,4 = 1

2 ;
r5,4 = 1; r5,4 = 5; r5,4 = 6; r5,4 = 3;
r6,4 = 3; r6,4 = 2; r6,4 = 2;
r1,3 = 3; r1,3 = 9; r1,3 = 9; r1,3 = 6;
r2,3 = 7; r2,3 = 3; r2,3 = 3;
r5,3 = 5; r5,3 = 9; r5,3 = 9; r5,3 = 6;
r6,3 = 6; r6,3 = 3; r6,3 = 3;

Cardinal consistency 23.739 15.46 5.808 9.116
(measured by Obj 1)

Ordinal consistency 0 0 0
(measured by Obj 2)
CR 0.223 0.078 0.027 0.042

The cardinal consistency can be measured by both Obj1 and CR. The smaller Obj1 implies that the
cardinal Gower plot is closer to being collinear which yields a higher cardinal consistency. Following
Saaty, the smaller CR indicates a higher consistency. The proposed approach can improved both CR
and Obj1 more significantly than Genest and Zhang’s. Besides, the proposed approach is more flexible
because the DM can set his acceptable ranges for adjusted preferences and see the corresponding optimal
adjustments and Gower plots immediately and iteratively.

The interactive flow of Example 3 is illustrated as follows:

Step 1: A DM inputs a preference matrix R3.

Step 2: The corresponding ordinal and cardinal Gower plots are depicted in Fig. 3(a) and (b), respec-
tively.

Step 3: R3 is not ordinal consistent (Step 3A) because there are some angles between two consecutive
points not equal to 180/n. Size (A1), Neighborhood (A3) and Condition (A7) can be arbitrarily chosen
as a revise node because they are located at the same odd position. In order to compare the results with
that of Saaty’s [10], Condition (A7) is selected as an ordinal-inconsistent node first.

Step 4A: Suppose the DM decides to ask for suggested adjustments on ri,j .
Step 5A: Applying Model 2 to Example 3 yields u1,7 = 1, u2,7 = u3,7 = u4,7 = u5,7 = u6,7 = u8,7 = 0,

x1,7 = 0.916 (r1,7 = 2), x2,7 = −0.693 (r2,7 = 1
2 ), x3,7 = 0.693 (r3,7 = 2), x4,7 = −1.974 (r4,7 = (1

7),
x5,7 =−0.875 (r5,7 = 1

2 ), x6,7 =−0.693 (r6,7 = 1
2 ), x8,7 =1.253 (r8,7 =4), Obj1=10.333 and Obj2=3.

In order to achieve ordinal consistency, r1,7 is suggested to be reversed from 1
3 to 2. The results are

listed in Table 3 in the column labeled as GO1. The ordinal and cardinal Gower plots are graphed in
Figs. 3(c) and 3(d) with 90.26% and 97% variabilities respectively. In Fig. 3(c), the ranks of alternatives
are A8 � A1 � A3 � A7 � A∗, where A∗ denotes the remaining alternatives.
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Table 3
Results and comparisons of Example 3

Method Original Saaty GO1 GO2 DM1

Ordinal-inconsistent node(s) A7 A7 A7

u1,7 = 1 u3,7 = 1 u1,7 = 1

Cardinal-inconsistent node(s) A7 A7 A7

Boundary/constraint u1,7 = 0 1
5 �r2,7 � 1

4 ;
set by DM 4�r3,7 �6;

Suggested adjustment/ r1,7 = 1
3 ; r1,7 = 2; r1,7 = 1

2 ; r1,7 = 2;

boundary set by DM r2,7 = 1
5 ; r2,7 = 1

2 ; r2,7 = 1
4 ; r2,7 = 1

4 ;

r3,7 = 6; r3,7 = 1
2 r3,7 = 2; r3,7 = 1

2 ; r3,7 = 4;

r4,7 = 1
7 ; r4,7 = 1

7 ; r4,7 = 1
9 ; r4,7 = 1

7 ;

r5,7 = 1
5 ; r5,7 = 1

2 ; r5,7 = 1
9 ; r5,7 = 1

2 ;

r6,7 = 1
5 ; r6,7 = 1

2 ; r6,7 = 1
4 ; r6,7 = 1

2 ;
r8,7 = 2; r8,7 = 4; r8,7 = 2; r8,7 = 3;

Cardinal consistency 28.341 16.479 10.333 11.663 18.342
(measured by Obj 1)

Ordinal consistency 6 3 6 3
(measured by Obj 2)

CR 0.164 0.085 0.072 0.074 0.099

Step 6A: Suppose the DM does not wish to reverse r1,7, he can set u1,7 =0 to obtain other suggestions.
Applying Model 2 (Step 5A) again yields u3,7 = 1, u1,7 = u2,7 = u4,7 = u5,7 = u6,7 = u8,7 = 0, x1,7 =
−0.693 (r1,7 = 1

2 ), x2,7 = −1.253 (r2,7 = 1
4), x3,7 = −0.693 (r3,7 = 1

2 ), x4,7 = −2.197 (r4,7 = 1
9),

x5,7 =−2.197 (r5,7 = 1
9), x6,7 =−1.504 (r6,7 = 1

4), x8,7 =0.693 (r8,7 =2), Obj1=11.663 and Obj2=6.
The results are listed in Table 3 in the column labeled as GO2. The ordinal and cardinal Gower plots are
depicted in Fig. 3(e) and (f) with variabilities 90.7% and 97.14%, respectively. The ranks of alternatives
are A8 � A7 � A1 � A3 � A∗, where the ranks of A7 and A3 are reversed. The top four rankings
of alternatives are changed from A8 � A1 � A3 � A7 toA8 � A7 � A1 � A3 based on the DM’s
preferences.

If the DM accepts to reverse r1,7 as GO1 in Table 3 but wishes to set some acceptable ranges as
1
5 �r2,7 � 1

4 , 4�r3,7 �6, applying Model 2 (Step 5A) yieldsu1,7=1, u2,7=u3,7=u4,7=u5,7=u6,7=u8,7=0,
x1,7 = 0.693 (r1,7 = 2), x2,7 = −1.386 (r2,7 = 1

4), x3,7 = 1.386 (r3,7 = 4), x4,7 = −1.946 (r4,7 = 1
7),

x5,7 =−0.847 (r5,7 = 1
2 ), x6,7 =−0.693 (r6,7 = 1

2 ), x8,7 =1.099 (r8,7 =3), Obj1=18.342 and Obj2=3.
The results are listed in Table 3 in the column labeled as DM1. The cardinal Gower plot is shown in
Fig. 3(g) with 94.2% variability. The ranks of alternatives are A8 � A1 � A3 � A7 � A∗.

Saaty [10] suggested to reverse r3,7 from 6 to 1
2 based on the principal eigenvector approach. Fig. 3(e)

and (h) show the ordinal and cardinal Gower plots after adjustments, with 90.7% and 97.24% variabilities.
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The CR can be effectively improved from 0.164 to 0.085. The ranks of alternatives are A8 � A7 � A1 �
A3 � A∗.

Comparing Saaty’s approach with GO1 in Table 3, the proposed approach can improve cardinal in-
consistency better than Saaty’s, measured by both Obj1 and CR. Saaty suggested to reverse r3,7 from 6
to 1

2 , but the proposed approach suggested to reverse r1,7 from 1
3 to 2. The change for achieving ordinal

consistency is also smaller by the proposed approach, which can be measured by Obj2. In addition, the
proposed approach is more flexible and interactive because the DM can choose optimal reverse nodes
and set his acceptable ranges for adjusted preferences. The ranks of alternatives may be changed based
on the DM’s preferences.

Some people may question that many pairwise comparisons ri,j are affected in the above example by
the proposed approach. However, it totally depends on the DM’s choice to make a large change on only
one ri,j or small changes on a few ri,j s. If the DM wishes to change only one ri,j at a time (practically
useful for sensitivity analysis), he could set all other ri,j as a specific number with xi,j = xi,j = ln(ri,j ).
Take Example 3 for instance, if the DM wishes to change r3,7 only, he could set bounds of r1,7, r2,7, r4,7,
r5,7, r6,7 and r8,7 as ln(1

3), ln(1
5), ln(1

7), ln(1
5), ln(1

5) and ln(2), respectively, where 1
3 , 1

5 , 1
7 , 1

5 , 1
5 and 2

are original pairwise comparisons in matrix R3. Applying Model 2 to Example 3 again yields u3,7 = 1,
u1,7 =u2,7 =u4,7 =u5,7 =u6,7 =u8,7 = 0, r3,7 = 1

2 , Obj1 = 16.479 and Obj2 = 6. The results are exactly
the same as those of Saaty’s. In this case, Saaty’s solution is one of the options that the DM can choose
by the proposed approach.

6. Conclusions

This study proposes an approach to represent the judgments of the decision makers (DMs) and provide
an interactive method to assist the DMs to detect and adjust inconsistencies. A graphic approach based
on Gower plots is applied to represent the judgments of DMs and to detect ordinal and cardinal incon-
sistencies. Two global optimization models are constructed to assist the DMs to adjust these ordinal and
cardinal inconsistencies simultaneously and efficiently. The DMs can choose to revise their preferences
based on the graphical supports and numerical suggestions to improve inconsistencies step by step. The
proposed approach is flexible and provides options to assist the DMs to make more consistent decisions.
The DMs can completely maintain control of change process.

Appendix

The mathematical properties of Gower plots are briefly illustrated here. The singular values of a
matrix M of rank n are the positive square roots of the eigenvalues of the symmetric matrix MTM,
where MT stands for transposition of M. If M is skew-symmetric, i.e. MT = −M, the singular values
of the matrix M are equal to the norm of its purely imaginary eigenvalues. Let �1 � · · · ��m�0 (and
�m+1 = 0 if n is an odd number) represent these singular values, with m indicating the integer part of
n/2. Using singular value decomposition (Horn and Johnson [13]), a skew-symmetric matrix M can be
decomposed to

M =
m∑

j=1

�j (U2j−1UT
2j − U2j UT

2j−1),
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where U2j−1 and U2j are orthonormal eigenvectors of MTM corresponding to �2
j .

M∗ = �1(UVT − VUT),

with U = U1 and V = U2, provides the best approximation of a skew-symmetric matrix M of rank two,
because the first term of M gives the best least-squares fit of rank two to M (Eckart andYoung [19]). Denote
GP(M) as a Gower plot of a skew-symmetric matrix M. Let U = (u1, . . . , un)

T and V = (v1, . . . , vn)
T.

M∗ can be expressed as M∗ ={�1(uivj −viuj )}={�1|Pi ||Pj | sin �i,j }, in which �i,j denotes the directed
angle from points Pi to Pj based on the origin. Plotting the vectors as n points Pj = (uj , vj ) in the
plane provides a reasonable 2D representation of M. Such a graphical display is unique up to a rotation
if �1 > �2 [5]. The measure of the reliability of the graphical representation of M is provided by the
variability v = ‖M∗‖/‖M‖ = �2

1/
∑m

j=1 �2
j .
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