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Study of VSC Reliable Designs With Application
to Spacecraft Attitude Stabilization

Yew-Wen Liang, Sheng-Dong Xu, and Che-Lun Tsai

Abstract—This brief investigates variable structure reliable con-
trol (VSRC) issues of a set of second-order nonlinear systems and
their application to spacecraft attitude stabilization. Both passive
and active reliable designs are presented. To achieve the active task,
an observer to identify faults as they occur in the spacecraft actua-
tors is also presented. These VSRC laws do not require the solution
of a Hamilton—-Jacobi (HJ) equation, which is essential in the op-
timal approaches such as linear quadratic Riccati (LQR) and H =
reliable designs. As a matter of fact, this approach can relax the
computational burden for solving the HJ equation. Simulation re-
sults regarding spacecraft attitude stabilization with comparisons
among the VSRCs and the LQR reliable designs are also given. It
is shown from these simulations that the active VSRC is the most
flexible, robust and effective method because it does not need to
prespecify susceptible actuators and because it allows more space
for the control parameter adjustment.

Index Terms—Hamilton—Jacobi (HJ]) equation, nonlinear sys-
tems, reliable control, spacecraft attitude stabilization, variable
structure control.

I. INTRODUCTION

UE TO the growing demands for system reliability in a

highly automated industrial system and in aerospace mis-
sions, where repair and maintenance often cannot be achieved
immediately, the study of reliable control has become of para-
mount importance and has attracted considerable attention (see,
e.g., [2]-[4], [7], [9], [12]-[16], [20], [22], and [24]-[29]). The
objective of reliable control is to design an appropriate con-
troller in such a way that the closed-loop system can tolerate
the abnormal operations of some specific control components
and retain the overall system stability with acceptable system
performance. In practical applications, the reliable control con-
cept has been commonly used in the design of many control
systems, especially for spacecrafts that require high level of se-
curity and reliability. Engineers have incorporated the reliable
control concept, along with redundancy in design, so that when
faults occur, the spacecraft is able to continue operating safely
without prompt supports from the ground. In fact, when some
of the control components happen to experience abnormal op-
eration, the spacecraft is guided to a back-up system or a fault
mode so that the mission can be continued, and that the cost is
reduced as much as possible.
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From the approach viewpoint, reliable control can be classi-
fied as active [2]-[4], [7], [14], [20], [22], [28], [29] or passive
[9]1, [13], [16], [24]-[27]. In an active reliable control system,
faults are detected and identified by a fault detection and di-
agnosis (FDD) mechanism. Then the controllers are reconfig-
ured in real time in accordance with the online detection re-
sults. In contrast, the passive approach exploits the system in-
herent redundancy to design a fixed controller so that the closed-
loop system can achieve an acceptable performance not only
during normal operations but also when various components fail
without FDD and controller reconfiguration, which is important
when the available reaction time is short after the occurrence of a
fault. Although the performance of active reliable control is gen-
erally superior to that of a passive one under various fault condi-
tions because of the controller reconfiguration feature, the active
approach needs a reliable FDD to detect and diagnose possible
faults. The confirmation time in the FDD after the fault occur-
rence is very important, and the performance of active schemes
depend on this. In this brief, we consider both passive and active
reliable control issues.

Among the existing reliable control studies, several ap-
proaches have been proposed. For instance, Boskovic and
Mehra [4] investigated an active reliable control issue for
actuator failures through a multiple models technique. Liang
et al. [14] dealt with active reliable output tracking control
issues. Moerder et al. [20] employed a self-repairing flight
control system concept to reconfigure control strategy. Zhang
and Jiang [28], [29] explored the active fault-tolerant control
against partial actuator failures. On the other hand, the passive
approaches include the linear matrix inequality (LMI)-based
approach [16], the algebraic Riccati equation (ARE)-based
approach [25], the coprime factorization approach [26], and
the Hamilton—Jacobi (HJ)-based approach [13], [27]. Among
the previously mentioned passive studies, only the HJ-based
approach deals with the reliable issues for nonlinear systems,
which is the case that this brief concerns. Although the HJ
equation has been used in solving many control problems (see,
e.g., [1], [8], [10], and [13]), it is known that the HJ equation
is, in general, difficult to solve. A power series method [8] may
alleviate the difficulty through computer calculation, while the
obtained solution is only an approximate one, and the compu-
tation load grows fast when the system is complicated. Owing
to these potential drawbacks of the HJ-based approach, this
brief investigates the reliable control issues from the variable
structure control (VSC) viewpoint.

It is known that the VSC schemes have the advantages of fast
response and small sensitivity to system parameter uncertain-
ties and disturbances (see, e.g., [6] and [17] and the references
therein). Thus, it has been widely applied to control a variety of
systems [6], [10], [14], [17], [22], [23]. In this brief, we employ
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the VSC technique to design reliable controllers. The resulted
systems are shown to be able to tolerate the outage of actuators,
and these reliable laws are easily implemented considering that
the controllers do not require a solution of an HJ equation. Thus,
the VSC approach can also alleviate the computational burden
for solving the HJ equation.

The rest of this brief is organized as follows. Section II de-
scribes both passive and active VSC reliable designs. The ap-
plication of these reliable designs to a spacecraft is explored in
Section III. Finally, Section IV gives the conclusions.

II. DESIGN OF RELIABLE CONTROLLERS

Consider a set of n second-order nonlinear differential equa-
tions as given by

X1 = Xo Xy = f(x) + G(x)u + d. )

Here, x1 := (21,...,7,)7 € R", X2 := (Tpy1,...,72,)7 €
T

R", x = (xf, and xg) € R denote system states,

u = (U1, ,Unym)’ € R™™ are control inputs,

d = (di,...,d,)T € R" denote possible model uncertainties
and external disturbances, f(x) € R" and G(x) € R™* ("™
are smooth functions, and (-)7 denotes the transpose of a vector
or a matrix. In addition, for the interest of this brief, we assume
that £(0) = 0. Note that, in the description of (1) we have
assumed that the system has control input redundancy.

The main goal of this brief is to synthesize a control law
under which the stabilization task can be achieved even when the
system experiences actuator outage with the number of healthy
actuators being no less than n. In this section, both passive and
active designs will be presented.

A. Passive Reliable Controllers

In passive reliable designs, the actuators are predivided into
two groups F and ‘H, within which we assume that during the
operation, all of the actuators in H must be healthy while those
in F are allowed to fail. System (1) then becomes

X1 = Xao, Xo = f(x) + Gr(x)ur + Gu(x)uy +d. (2)
Since the nonsingularity assumption of G'7;(x) is necessary for
the existence of equivalent control in VSC design when all the
actuators in F fail to operate [6], we assume that the preselected
healthy actuators satisfying uy; € IR", and Gy(x) € R™*"
is a nonsingular matrix. This assumption implies that the pre-
selected susceptible actuators have assumed to be as many as
possible.

To begin with, we first consider the design of uy. Suppose
that some or all of the actuators in F work abnormally, (2) be-
comes X; = Xz and Xy = f(x) +G(x)u+Gr(x)(Wr—ur)+
d, where u’- and ur denote the actual and the designed control
values for those actuators in JF, respectively. The idea of this
approach is to treat the faulty term G »(x)(u’% — ux) as an ad-
ditional disturbance and organize a control law to compensate
for the fault. Details are given as follows. Choose a sliding sur-
face as

S=Xo+Mx; =0 3)

where M € IR™*" is a positive-definite matrix. It is noted that if
the system states keep staying on the sliding surface, the reduced
model will have the form x; + Mx; = 0, which implies that
x; — 0 and xo = —Mx; — 0 exponentially. That is, the
stabilization performance will be fulfilled and the main goal of
this brief is then achieved. From (3), we have

s =f(x)+ Gu(x)uy + Gr(x)us +d + Mx2. (4)

In order to compensate for the effect of disturbance and fault,
we impose the next assumption.

Assumption 1: There exists nonnegative scalar functions
pi(x,t) such that, for i = 1,...,n, | (Gr(x)uk), |+ |di| <
pi(x,t), where (-); denotes the ith entry of a vector.

Following the VSC design procedure [17], the VSC law is

designed to be
uy = —G;{l(x){f(x) + Mxo + Ay -sgn(s)}. 5)

Here, Ay, = diag(p1(x,t) + n1, ..., pn(X,t) + 1) with n; >
0 forall : = 1,...,n, sgn(-) denotes the sign function and
sgn(s) := (sgn(s1),...,sgn(s,))?. Under the control uy, it
follows from (4) and Assumption 1 that s7s < —>"" n; -
|s;|. This inequality implies that the system states will reach
the sliding surface in a finite time [17]. In fact, the larger the
constants 71, ...,7, we selected, the shorter the first time the
system states reach the sliding surface [17].

In addition to the design of uy as discussed before, we now
investigate the design of u to promote the overall system per-
formance when some or all of the actuators in F are healthy.
The governing equations are now given by (2). From (2), (3),
and (5), we have s”'s < sTGr(x)ur — > i, m; - |si]. Clearly,
one of the choices of ur to make system states approach the
sliding surface faster than in the case of ur = 0 is

ur = —Ar-sgn (G;(x)s) 6)

where Ar = diag(Mn+1,-- -, Mntm) and 7,4, > 0 for all
t = 1,...,m. These derivations show that the magnitude of
control gains 7,44, ¢ = 1,..., m, of actuators in ur that guar-
antee stabilization performance may vary from O to the allow-
able maximum control input magnitude. That is, it allows the
situation of actuators in ur to be total failure, partial failure,
attenuation or amplification in any order and any combination.
These lead to the following result.

Theorem 1: Suppose that Assumption 1 holds. Then the
origin of (2) is locally asymptotically stable (LAS) under the
control laws given by (5) and (6) even when some or all of the
actuators in F experience abnormal operation.

B. Active Reliable Controllers

The passive reliable design discussed before does not need
the information of FDD, but does need to prespecify those ac-
tuators that are allowed to fail. It should be noted that it is, in
general, very difficult to define the healthy and the susceptible
actuators before faults occur. Although passive reliable con-
trol might achieve stabilization performance, it is a conservative
method in that its controllers are designed based on the faulty
system without any change in control law even when faults
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occur. Due to the lack of FDD information, the passive reliable
design often overestimates the magnitude of faults. This over-
estimation might result in undesirable performances, including
wasting of control energy and causing the designed control to
exceed the allowable maximum control input magnitude. To
improve the performance of passive reliable design, in the fol-
lowing, we consider the active control issue.

Before the occurrence of faults, the engineers may take any
kind of control to fulfill their desired system performances.
When fault happens, the control system is likely to be unstable
and may yield an undesirable transient (see, e.g., [11]). After
the fault is detected and diagnosed, the control law is guided
to switch to an active reliable control and the system states are
expected to converge, as described in the following. We assume
without loss of any generality that faults happen at control chan-
nels Uk41, ..., Untm, £ > n, and that the actual output values
of these faulty control channels are successfully detected and
diagnosed as u} = 4, + Auy forj =k +1,...,n + m. Here,
4; and Awu; denote the estimated control value and estimated
error, respectively. With the same definition of the sliding sur-
face as given by (3), we have § = Mxy + f(x) + G (x)uy +
G]:(X)(fl]: + AUJ:) + d. Here, uy = (ul, . 7U,]C)T, ur =
(’U,k+17 e ,un+m)T, ﬁ]: = (’llk+17 . ,ﬂn+m)T, All]: =
(Aupyt, .. Atpyn)T, Gu(x) = [g1(x),...,g:(x)] and
Gr(x) = [8r+1(X),. .., Bntm(x)], and g;(x) denote the jth
column of G(x). This time we treat Gx(x)Aur + d as a
disturbance and impose the following assumption.

Assumption 2: There exists nonnegative scalar functions
o;(x,t) such that, fori = 1,... n, (Gzr(x)Aur);| + |d;| <
ag i(X, t).

Clearly, the least upper bound o;(x,t) for the uncertainties
and disturbances in Assumption 2 is, in general, much less than
the one p;(x,¢) given in Assumption 1 if the estimated errors
|Aw;| are small for j = k + 1,...,n + m. Indeed, the more
accurate the fault diagnosis is, the smaller the estimated upper
bound will be. Using the same design procedures as those for a
passive approach, the VSC laws for those of healthy actuators
are designed to be

uy = —GR(x) (Gu(x)Gh(x) ™
X {Mxs + f(x) + Gr(x)ar + Ay -sgn(s)} (1)

where Ay, = diag(o1(x,t)+m,...,0n(x,t)+n,)andn; > 0
for: = 1,...,n. Note that, uy as given by (7), contains an
extra term Gz (x)az involving the information of diagnosis.
As aresult, s7s = sT{Gr(x)Aur +d — Ay - sgn(s)} <
— > milsi| by the use of Assumption 2. These lead to the
following result.

Theorem 2: Suppose that (1) experiences actuator faults at
the control channels k41, - .., Untm, K > n, with estimated
values 4; and errors Aw;. If, in addition, the faults and distur-
bances satisfy Assumption 2, then the origin of system (1) is
LAS under the control laws given by (7).

III. APPLICATION TO SPACECRAFT ATTITUDE STABILIZATION

A spacecraft attitude model in a circular orbit (see, e.g., [5],
[19], and [21]) can be described in the form of (1) with n = 3
[S], [15]. The six state variables denote the three Euler’s angles

(¢, 8,) and their derivatives. For simplicity, we assume in this
study, that thruster is the only applied control force and there is
an actuator redundancy to perform the reliable task. By letting

X= (QS 97 1/}7 (:257 97 d))T and f(X) = (fl(x)7 f2(x)7 f3(x))T’ the
overall system dynamics is described as follows [15]:
I, - I,

L

f1(x) =wozgcrscrs — worssT35T2 +
X [:175:1:6 + Wox5CT18T38T2 + WoL5CT3ST1

1
+ wozgCr3CT] + 5w§s(2x3)c2xlsa}2
L 5o
+ JWoc x38(21) — WoLeSL3ST2ST 1

1 1
— —wisrysirss(2my) — 56083(2273)8372821?1

2
— §w202a: 2
5WoC w25(221)

f2(X) =wozgsracrs + weracr3sT1 + WOTECL3ST2STT
Iz - I.?:
I,

+ Wox58X3CT28T1 + Wox48r38x2¢T1 +

X |:T4x6 + Wor4Cr18T38Cr2 + Wor4CT38T
1, 2

— WOTEST3CTy — Ewos(Z:vQ)s T3CT1

1 3
- iwgcazgsxls@xg) + 5w§s(2x2)ca:1

f3(X) = wor48T18T38T2 —WTECT1 CL3STy —WOT5CT1 STICT
I:p - Iy

I

+ WoxgST38x1 — Wox4Crscr1 +
X |raTs + WOI4Cr3Cr1 — Wor4Sr38Tr28r1
L
— WOT58T3CT2 — §w05(2x3)cazgca:1

1 3
+ 5w352w35$13(2x2) - §wgs(2x2)sx1

067 0.67 067 0.67
G(x)= {069 —069 —0.69 0.69
028 028 —028 —0.28

Here, I, I, and I are the inertia with respect to the three body
coordinate axes, wp denotes the constant orbital rate, and ¢ and
s denote the cos and sin functions, respectively.

In the following, we present an observer to detect the occur-
rence of thruster faults and to diagnose their location and mag-
nitude for the purpose of active reliable mission. A simulation
example is then given to demonstrate the performance of the
proposed schemes.

A. FDD Observer Design

Since the three Euler rates can be expressed in terms of an-
gular velocity vector, which is available through accelerometer
and gyroscope [18], in this section, we assume that all of the
state variables are available for measurement and that G(x) in



IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 15, NO. 2, MARCH 2007 335

(1) is a constant matrix. The main idea of this design is to de-
couple the control input so that the fault associated with each
channel can be distinguished and diagnosed. Details are given
as follows. Consider the coordinate transformation z; = x; and
z2 = Pxy, where P := (g1 g2 g3)~ ! and g; denotes the ith
column of G(x). Equation (1) with the new state variables be-

comes
21 =P lzy, 2y =f""(z) +G"V(z)u+ Pd (8)

where

7% (z) = Pf(z, P_1z2)
G (z) = PG(zy, P '25)

1 0 0 Iy
=101 0 Ily]. )
0 0 1 I3

Note that all constants /1, I, and l3 are nonzero since every
three columns taken out from G(x) are linearly independent.
Moreover, from (8) and (9), z;3 is only affected by actuators u;
and uy for ¢ = 1, 2, 3. It is known that the tracking performance
is hard to achieve with only one or two actuators; therefore, in
the following, we only consider the cases of a single actuator
fault.
With the aid of the transformed system (8), an observer is

proposed to be

éi = finew(z)+ui+liU4+ki '(zi+3_€i)7 1= 17 2, 3 (10)
and k; > 0. Define the residual signals to be
i=1,2,3. (11

We will claim that any single actuator fault can be detected and
diagnosed. To see this, suppose that only the first actuator expe-
riences a fault with actual value u]. Define

ri = ziys — &,

Auy = uf —ug (12)

the error between actual and designed control values. It follows
from (8) and (9) that

Ziys = finew(z> + u; + Liug + 6; - Au; + (Pd)l

i=1,2,3 (13)

where 61 = 1 and 6o = 63 = 0. From (10), (11), and (13), we
have

o= —k;r; +6; - Au; + (Pd)7, 1=1,2,3. (14)

Clearly, the constant k; determines the convergence rate of r;,
and r; depends on both Aw; and (Pd);. Suppose the disturbance
is small enough to be neglected, then after a short time transient

Aui
Thus, the fault at the first actuator only affects r1, and the actual
value u] can be diagnosed from (12) and (15) as uy + k171 at

an exponential rate of k;. Similarly, it is easy to show that the
ith actuator fault, for « = 1,2, 3, only affects r;, and that the

Ti_’éi'

15)

fourth actuator fault affects all of 71, ro and r3. Moreover, the
actual value of u] can be easily diagnosed at an exponential rate.
Details are omitted.

B. Simulation Results

The parameters of this example are chosen as follows.
The spacecraft parameters: I, = I, = 2000 N - m - s2,
I, =400 N -m - s%, wy = 1.0312 x 1073 rad/s, and |u;| < 1
for all ¢. The VSRC parameters: M = 2I3, n; = 0.4 for
all 7 in Ay and Ar. pi(x,t) = [I(GE))ill + [ldilleo
and 0;(x,t) := ||d;||co, where (-); and || - |1 denote the ith
column of a matrix and the 1-norm of a vector, respectively,
and ||di|lcc := sup,|d;(t)|. The sign function is replaced
by the saturation function with boundary layer width 0.05 to
alleviate the chattering produced by the sign function. The
FDD parameters: k; = 10 for + =1, 2, 3, and the alarm is
fired if maxj<;<3 |r;| > 0.01. The initial states and the desired
attitude are x(0) = (-0.7,-0.07,1.5,0.3,1.3,—-0.2)T and
xq(t) = 0, respectively. To compare the results of VSRC
with those produced by LQR reliable design [13], we adopt
the numerical scheme of [8] to approximate the LQR reliable
controllers up to order 3 with quadratic performance being
chosen as [ (xT'Qx + u” Ru)dt, Q = Is, and R = I,. Before
alarm, both the active reliable designs of VSC and LQR adopt
their traditional nonreliable designs as if all the actuators are
available. For instance, the nonreliable VSC-type controller has
the form of (7) with all the actuators being healthy. Whenever
there is an alarm, the associated active reliable controllers are
then activated according to the FDD information. With the
threshold setting and from (15), the alarm is fired if |Aw,]| is
greater than 10% of the actuators’ constraint and the system is
free from disturbances. In general, the selection of threshold
is a tradeoff between the probability of false alarm and the
probability of missed detection [28]. The threshold can be set
lower to promote the sensitivity of FDD; however, a lower
threshold setting might result in a false alarm due to distur-
bances and/or measurement noises. Since (14) represents a
low pass filter 1/(jw + k;) which can greatly attenuate high
frequency noises, therefore, the suggested threshold should
be selected considering the values of k;, and the estimated
magnitude and frequency spectra of possible disturbances.

Numerical simulations are summarized in Tables I-III.
Among these, the passive controllers of LQR and VSRC are
designed by considering u» as the susceptible actuator. These
three tables display the simulation results when the system ex-
periences u; outage, us outage, and uo outage with an external
disturbance of magnitude |d;| < 0.2 for each i, respectively.
Both the outages of w; and us are assumed to happen at ¢ = 1.
To investigate the performance of active VSRC with different
control parameters, we also consider the case (denoted by
Active VSRC2) of 1 = 1, no = 1 and 3 = 0.7. A typical
scenario is shown in Figs. 1 and 2 for u; experiencing outage.
It is shown from Fig. 1 that both the active designs and the
passive LQR design are able to achieve the attitude stabilization
task, while that of the passive VSRC fails since the outage
actuator u7 does not coincide with the susceptible actuator
ug. Although the passive LQR also achieves the attitude sta-
bilization, the system states are observed convergent to the
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PERFORMANCES OF VSRC AND LQR RELIABLE DESIGNS (REGARDING #> AS SUSCEPTIBLE ACTUATOR) WHEN u; FAILS

TABLE I

PERFORMANCES OF VSRC AND LQR RELIABLE DESIGNS (REGARDING #> AS SUSCEPTIBLE ACTUATOR) WHEN u» FAILS

Controller
Performance index Passive LQR | Active LQR | Passive VSRC | Active VSRC | Active VSRC2
Time when max;|z;| < 0.01 15.028 9.168 X 9.609 5.123
Jx"Qx+u"Ru 10.054 9.130 X 14.095 10.376
Ju"Ru 2.416 2.494 X 0.489 2.164
[lul|oo 1 1 X 0.561 1
TABLE II

Controller
Performance index Passive LQR | Active LQR | Passive VSRC | Active VSRC | Active VSRC2
Time when max;|z;| < 0.01 8.564 8.501 5.611 9.873 5.365
JxTQx+u"Ru 8.455 8.461 10.127 14.530 9.655
fuTRu 1.806 1.886 1.891 0.495 1.427
[lu]|oo 1 1 1 0.561 1
TABLE III
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PERFORMANCES OF VSRC AND LQR RELIABLE DESIGNS WITH DISTURBANCE (REGARDING > AS SUSCEPTIBLE ACTUATOR) WHEN w5 FAILS

Controller
Performance index Passive LQR | Active LQR | Passive VSRC | Active VSRC | Active VSRC2
Time when max;|z;| < 0.01 X X 4.850 7.240 4.810
Jx"Qx+u”Ru X X 9.922 11.333 9.573
JuTRu X X 2.268 1 2.033
[lu]|eo X X 1 0.857 1
02 05
0 04
0.3 0 4
0l Passive LQR < 0.2 s Passive LQR =i
-04 Active LQR 01 -05 Active LQR
Passive VSRC ; Passive VSRC
-06 — Active VSRC2 0 — Active VSRC2
0 6 8 10 o 1 2 3 4 5 05 2 6 8 10
time time time
(a)
2 (a) (b)
15 1
- 1 05
. g
05 Sy
0
-0.5
0 6 8 10 0 4 6 10
time time i 0 2 6 8 . 10
(c) (d) ime time
15 02 © @
x10”
1 0 0
0 © 1
x x
05 -0.2f. s £
0 -04 - < 05
0 6 8 10 0 4 6 10
time time -10 0
2 4 6 8 10 ) 2 6 8 10

Fig. 1. Time histories of the six system states.

time

(e)

time

(U]

Fig. 2. (a)—(d) Time histories of controls. (e) Residual signals of the FDD.
(f) Alarm signals.

desired attitude much slower than those of active designs. From

Fig. 2(e) the magnitude of the first residual signals exceed the
threshold for both active designs at around #;,qr = 1.071 and
tvsrce = 1.143, respectively, which can also be seen from

the alarm signals given in Fig. 2(f). The alarm ¢1qr for LQR
design is noted a little earlier than ¢y srce because the initial
magnitude of faults (at ¢ = 1) by LQR and VSC designs have
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the relation |AU1|LQR = 0.146 > |AU1 vsrez = 0.097,
which can be seen from Fig. 2(a), and the effect of Au; on
r1, as given by (14) and (15). After the fault has been detected
and diagnosed, the associated active controller is activated
and the magnitude of the residual is soon decreased, as shown
in Fig. 2(e). The six states for active designs are observed,
as expected, from Fig. 1 to converge to zero. The associated
controls are shown in Fig. 2(a)-(d). It is noted from these
figures that there are several peaks for the control curves of the
Active VSRC2. Physically, these peaks correspond to apply the
maximum acceleration to the satellite, followed by applying
brake to force the satellite keeping at the desired attitude. The
curves of 1 and x, in Fig. 1(a)—(b) are also observed to have
a small peak near ¢ = 4. These two peaks are the effect of the
saturation of ug, which can be shown from Fig. 2(c). Table I
summarizes these performances. It is shown from this table that
most of the performances of active LQR are better than those
of passive LQR, especially for the convergence time (i.e., the
time when max; |z;| < 0.01) and the quadratic performance
f XTQX + uT Ru. On the other hand, the performances of
Active VSRC2 except for the quadratic performance, which is
known optimal when adopting the LQR design, are better than
those of active LQR.

Table II considers the case when the outage actuator coin-
cides with the susceptible actuator. It implies that the passive
and the active LQR designs use the same controller after alarm.
Table II shows that the active LQR scheme achieves a smaller
convergence time, but consumes a little more energy than the
passive one. Similarly, the passive and the active VSRCs also
use the same type of controller after alarm, however, under the
same 7);, the convergence time of the passive VSRC is much
shorter than that of active VSRC because the passive VSRC
uses a larger control effort, appeared in p;(x,t), due to over-
estimation of the fault. This can also be shown from the energy
consumption | u” Ru, in which the value for passive VSRC is
much larger than that of active VSRC. It is worth noting that the
active VSRC requires the smallest ||u||~ to perform the stabi-
lization task. When tuning up the value of 7;, the performances
of active VSRC (i.e., those of Active VSRC2) are shown to
be significantly improved. Again, the performances of Active
VSRC2 are better than those of LQRs except for the quadratic
performance. Finally, Table III presents the results when the
system is corrupted with disturbance. The scenarios for VSRCs
are similar to those of Table II with smaller convergence time
and quadratic performance but larger energy consumption, be-
cause p;(x,t) and o;(x,t) for VSRCs in Table III are higher
than those for Table II due to disturbances. The alarms for ac-
tive VSRCs in this case are fired at around ¢tyvsrc = 1.14 and
tvsrc2 = 1.04, respectively. On the other hand, the associated
states of LQR reliable designs are found to oscillate near the
origin (i.e., max; |z;| ¢ 0.01). From this example, it can be
concluded that the proposed active VSRC is more robust than
those of LQRs.

IV. CONCLUSION

VSC-type stabilization laws have been proposed in this brief
to study the reliable control issues of a set of second-order non-
linear systems. Unlike the reliable laws of optimal approaches,

these VSRCs do not depend on a solution of a HJ equation. By
the use of the VSC technique, the proposed VSRCs have been
shown to be able to achieve the stabilization task. An illustrative
example was also given to demonstrate the use of the main re-
sults and compare system performances with those by LQR reli-
able designs. It is shown from the example that the active VSRC
is more flexible and effective than the other designs except for
the quadratic performance, which is optimal when adopting the
LQR scheme, because it does not need to prespecify susceptible
actuators and because it allows more space for control parameter
adjustment. In addition, the active VSRC is shown more robust
than the LQR reliable schemes, especially, for system with un-
certainties and/or disturbances.
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