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We investigate the effects of long-ranged dipole-dipole potential on the transition temperature of a weakly
interacting Bose gas. We apply the two-fluid model to derive the energy spectra of the thermal and the
condensate parts. From the interaction modified spectra of the system, the formula for the shift of transition
temperature was derived. Compared to the conventional weakly interacting Bose system with contact potential
only where thermal effect is larger, we find that the condensate effect is about two times that of the thermal part
in the dipolar system. Due to the relative smallness of dipole-dipole interaction with respect to the contact
interaction in current dipolar Bose-Einstein condensation, we suggest to measure the dipolar effect by tuning
the scattering length to negligible small by the Feshbach resonance technique.
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I. INTRODUCTION

In a previous paper �1�, we derived the effects of atomic
contact interaction on the transition temperature �Tc� of
weakly interacting Bose gas by using the two-fluid model
�2�. The effects contain contributions from both the conden-
sate and the thermal part and the effects on transition tem-
perature can be calculated through the shifts of energy spec-
tra. We found that the effect of the condensate part that was
often neglected is in fact 34% of the usually treated thermal
part interaction effect �3�. With both the effects considered
together with the trap potential effect and the finite-size ef-
fect, our transition temperature formula fits the experimental
measurement very well �4�. The inclusion of the interaction
effect from condensate explains the discrepancy before our
work. For completeness, we make a brief summary of results
in current Bose gas �5�. First, the correction of transition
temperature to the ideal Bose gas is due to the trap potential
of cylindrical symmetry, Vext�r�= 1

2m��x
2x2+�y

2y2+�z
2z2�

where �x=�y =�z /�, and m is the atomic mass. The transi-
tion temperature in the thermodynamic limit �Tc

0� becomes
one-third power in number density instead of two-thirds
power of the ideal gas without trap potential, and the expres-
sion is

Tc
0 =

��

kB
� N

��3��
1/3

� 0.9405
��

kB
N1/3, �1�

where �= ��1�2�3�1/3 is the geometrical mean of the fre-
quencies, N is the number of particles, and � is the Ri-
emann’s zeta function.

Next, the shift of transition temperature due to the finite
number of particles can be expressed by the energy shift

�Tc
fin

Tc
0 =

��2�
3���3��2/3

���T − ��c�
��

N−1/3, �2�

where ��T is the shift of thermal energy level and ��c is the
shift of the condensate energy level. This so-called finite-size
effect is due to ��T=0 and ��c=3��̄ /2, where �̄= ��1+�2

+�3� /3 is the arithmetic mean of the trap frequencies. Then

�Tc
fin

Tc
0 = − 0.73

�̄

�
N−1/3. �3�

The shift is downward and vanishes in the large-N limit. And
finally, the shift of transition temperature due to the atomic
contact interaction is �1�

�Tc
int

Tc
0 =

�Tc
T + �Tc

c

Tc
0 = − 1.78

a0

aho
N1/6, �4�

where a0 is the s-wave scattering length and aho=�� /m� is
the harmonic oscillator length scale which is usually in the
order of �m.

In 2005, the Bose-Einstein condensation of dipolar Bose
gas was first realized by using the 52Cr atoms �6,7�. Besides
the well-known atomic contact potential term in the mean-
field equation, there is an additional dipole-dipole interaction
potential which is long ranged and anisotropic in the dipolar
system. The prominent double-hump feature of the conden-
sate has been recently investigated �8�. The statistical me-
chanical properties of the new system are certainly of great
interest �9�. So, now we have two kinds of interaction in the
system. And each interaction will affect the energy spectra
and henceforth the transition temperature. The 52Cr atom
used in current experiment has a magnetic dipole moment of
6 Bohr magneton, and the scattering wave length is about
105 bohr. The contact interaction energy is about thirty times
larger than the dipolar energy. Hence the effects of the
dipole-dipole interaction is only a perturbation to the system.
Unless the very high precision measurement of Tc is feasible,
to identify the dipolar effect on Tc would be rather difficult.
Fortunately, the technique of Feshbach resonance can tune
the scattering length. Thus the study of the system with di-
polar interaction only is still meaningful and can provide a
way to identify the new features of the ultracold atomic sys-
tem with long-range interactions. With the success of the
two-fluid model in the interacting Bose gas �1,2�, we already
solved the effects of contact interaction. Our task is now to
study the effects on transition temperature coming from the
newly realized long-ranged dipole-dipole interaction only.
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Our approach of the method to the dipolar Bose gas will
provide a reliable result of the statistical properties.

The paper is organized as follows: In Sec. II, we derive
the mean-field equations for the condensate and thermal
parts through the two-fluid model. In Sec. III, we calculate
the energy spectra to the first order of interaction parameter
gd. In Sec. IV, we obtain the transition temperature by the
shift of energy spectra. Discussions are given in Sec. V. Fi-
nally, some mathematical derivations are given in the Appen-
dixes.

II. TWO-FLUID MODEL

In the following treatment, we study the dipole-dipole in-
teraction by assuming the contact scattering has been turned
off with the Feshbach resonance technique. The Heisenberg

equation of motion of the Bose field operator 	̂�r� is

i
�	̂�r,t�

�t
= �−

�2

2m
+ Vext�r� − ��	̂�r,t�

+ gd�	 d3r�	̂†�r�,t�	̂�r�,t�Vd�r,r���	̂�r,t� ,

�5�

where gd=
�0�Cr

2

4
 , and

Vd�r,r�� =
1 − 3 cos2 �


r − r�
3
. �6�

In these equations, the magnetic dipole moments �Cr are
aligned and � is the angle between the relative position vec-
tor r−r� and the magnetic dipoles. �Cr is the atomic mag-
netic dipole moment.

Separating out the condensate part in the usual way, we
have

	̂�r,t� = ��r� + 	�r,t� , �7�

where the averaged ��r���	̂�r , t� plays the role of a spa-
tially varying macroscopic Bose field. The time average of
fluctuation �	†�r , t�= �	�r , t�=0.

Follow the method of Griffin, the field operator part in the
interaction term of Eq. �5� can be written as

	̂†�r�,t�	̂�r�,t�	̂�r,t� = 
��r��
2��r� + 
��r��
2	�r,t�

+ �*�r��	�r�,t���r�

+ ��r��	†�r�,t���r�

+ �*�r��	�r�,t�	�r,t�

+ 
	�r�,t�
2��r�

+ 	†�r�,t���r��	�r,t�

+ 
	�r�,t�
2	�r,t� . �8�

The last term under mean-field approximation can be written
as

	†�r�,t�	�r�,t�	�r,t� = �	†�r�,t�	�r�,t�	�r,t�

+ �	†�r�,t�	�r,t�	�r�,t� + �	�r�,t�	�r,t�	†�r�,t� .

�9�

With the above expressions, the stationary part of Eq. �5�
gives the order-parameter equation. Subtraction of Eq. �5�
with the stationary part, the equation of excitations will be
obtained.

A. Order parameter

The time independent Bose order parameter ��r� is given
directly by taking the average over Eq. �5�

�−
�2

2m
+ Vext�r� − ����r�

+ gd	 d3r��	̂†�r�,t�	̂�r�,t�	̂�r,t�Vd�r,r�� = 0.

�10�

We introduce the local densities

�*�r���r� � nc�r� , �11a�

��r���r� � mc�r� , �11b�

�	†�r,t�	�r,t� � nT�r� , �11c�

�	�r,t�	�r,t� � mT�r�; �11d�

and the correlation functions

�*�r���r�� � nc�r,r�� , �12a�

��r���r�� � mc�r,r�� , �12b�

�	†�r,t�	�r�,t� � nT�r,r�� , �12c�

�	�r,t�	�r�,t� � mT�r,r�� . �12d�

We obtain the Gross-Pitaevskii equation �GPE� for the
condensate part:

�−
�2

2m
+ Vext�r� − ����r� + gd�	 d3r��nc�r��

+ nT�r���Vd�r,r�����r�

+ gd�	 d3r�nT�r�,r�Vd�r,r����r���
+ gd�	 d3r�mT�r�,r�Vd�r,r���*�r��� . �13�

B. Excitation equation

The excitations of the condensate are described by 	�r , t�
and are given by subtraction of the time average part of
Eq. �5�:
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i
�	�r,t�

�t
= �−

�2

2m
+ Vext�r� − ��	�r,t�

+ gd	 d3r��	̂†�r�,t�	̂�r�,t�	̂�r,t�Vd�r,r���

− gd	 d3r���	̂†�r�,t�	̂�r�,t�	̂�r,t�Vd�r,r��� .

�14�

Under the mean-field approximation

	†�r�,t�	�r,t� � �	†�r��	�r� = nT�r�,r� ,

	�r�,t�	�r,t� � �	�r��	�r� = mT�r�,r� , �15�

and

	̂†�r�,t�	̂�r�,t�	̂�r,t� − �	̂†�r��	̂�r��	̂�r�

� �	̂†�r��	̂�r��	�r,t� + �	̂†�r��	̂�r�	�r�,t�

+ �	̂�r��	̂�r�	†�r�,t� . �16�

Define the self-consistent densities

n�r� � �	̂†�r,t�	̂�r,t� = nc�r� + nT�r� ,

m�r� � �	̂�r,t�	̂�r,t� = �2�r� + mT�r� . �17�

Then, Eq. �14� reduces to

i
�	�r,t�

�t
= �−

�2

2m
+ Vext�r� − ��	�r,t�

+ gd�	 d3r�n�r��Vd�r,r���	�r,t�

+ gd�	 d3r�nc�r�,r�Vd�r,r��	�r�,t��
+ gd�	 d3r�mc�r�,r�Vd�r,r��	†�r�,t�� �18�

In high temperature mT�r�nT�r� �2�, we can also assume
that the off-diagonal density is much smaller than the diag-
onal one, that is, mc�r�nc�r� and the correlation functions
can be neglected near Tc.

III. ENERGY SPECTRA

In a previous paper �1�, we showed that the transition
temperature is determined by the energy spectrum, or more
precisely, determined by the shifts of the thermal and con-
densate states. Thus the main task for the study of the tran-
sition temperature is to find the shifts due to the new dipole-
dipole interaction from previous derived equations for order
parameter and excitations.

A. Dipolar effect on the thermal gas

Near transition temperature, the condensate component is
localized around the trap center �r=0� and its size is much

smaller than the thermal component. So in calculating the
energy shift of the thermal component, we can neglect the
condensate density nc. We define an effective density n̄TT to
be found and write the energy spectrum as the shift of the
thermal gas:

��T = gdn̄TT. �19�

To determine n̄TT, consider the phase space Bose-Einstein
distribution

f�p,r� =
1

exp���p,r�/kBT� − 1
, �20�

where ��p ,r� is the semiclassical excitation spectrum. By
Eq. �18�

��p,r� � �ide�p,r� + gdnef f�r� − � , �21�

where nef f�r���d3r�Vd�r ,r��n�r�� is an effective density
with dipole-dipole interaction Vd. Expand Eq. �20� to the first
order of gd,

f�p,r� = 
f�p,r�
gd=0 + gd� �f�p,r�
�gd

�
gd=0

= f0�p,r� − gdnef f�r�
�f0�p,r�

��
, �22�

where f0�p ,r� is the distribution function of the noninteract-
ing Bose gas. Integrate over the momentum variables, and
we get the modification of nT�r� due to the interaction:

nT
int�r� � nT − gdnef f

�nT

��
, �23�

where nT�r� is the thermal density distribution of noninter-
acting Bose gas. Further integrate over the coordinates of Eq.
�23�, and we get the number of thermal particles,

NT
int =	 nTd3r − gd	 nef f

�nT

��
d3r . �24�

On the other hand, by the Taylor’s expansion to the first
order of gd,

NT
int � NT + gd

�NT

�gd
. �25�

With our assumption

� = �T
ide + gdn̄TT − � , �26�

we obtain

�NT

�gd
= − n̄TT

�NT

��
= − n̄TT	 �nT

��
d3r . �27�

Put Eq. �27� into Eq. �25� and compare with Eq. �24�, the
effective density is derived as
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n̄TT =
	 d3r

�nT

��
nef f�r�

	 d3r
�nT

��

=
	 d3rd3r����nT�r�/���nT�r��Vd�r,r���

	 d3r
�nT

��

� STTnT�0� .

�28�

By the local density approximation �LDA� �10�, the spa-
tial distribution of the thermal state nT can be written as

nT�r� =
1

�T
3 g3/2e−�Vext�r�−��/kBT, �29�

where �T=��2
 /mkBT�1/2 is the thermal wavelength, and
g��x�=�n=1

� xn /n� is the Bose-Einstein function. With �=0,
we obtain for the ẑ polarized atoms

STT =
− 4


3
�0���S , �30�

where �0��� is a function of � and is derived in Eq. �A9� and
S=� j,k=1

� �1/ �j1/2k3/2�k+ j�3/2�� / ���2���3/2���0.281. �0��� is
monotonically increasing, in cigar-shaped potential, �→0
and �0���→−1; and in pancake-shaped potential, �→� and
�0���→2. The function is plotted in Fig. 1. Finally, the en-
ergy shift of thermal part is found to be ��T=gdn̄TT and
caused only by thermal density itself.

B. Dipolar effect on the condensate gas

Near Tc, the density of condensate is still very small, the
contact potential is hence negligible. We can estimate the
condensate wave function by using the eigenfunction of the
harmonic oscillator,

��r� = � 1


aho
2 �3/4

e−�x2/�2ahox
2 �+y2/�2ahoy

2 �+z2/2�ahoz
2 ��, �31�

where ahoi=�� /m�i is the harmonic oscillator length in the
xi direction and aho=�3ahoxahoyahoz is their geometrical mean,
and the condensate density can be written as nc�r�
=Nc
��r�
2. For the thermal part in the trap with energy kBT,
the classical oscillation amplitude of a particle is �T

= �2
m�2 /kBT�−1/2, where kB is the Boltzmann constant.
This represents the length scale of thermal density nT�r�. As
�c=ah0 is the size of the condensate, we find that

�T

�c = � kBT

2
��
�1/2

� O�N1/6� � 1. �32�

This justifies our previous assumption that the size of the
condensate component nc is negligible in calculating the
thermal spectrum shift.

Now we will use these concepts to find the shift of con-
densate energy. The expression of the condensate energy is

E = Nc�c
ide + Ncgdn̄cT +

Nc

2
gdn̄cc, �33�

where �c
ide=3��̄ /2 is the energy level of ideal Bose gas in

the ground state, and define

n̄cT =	 	 d3r d3r��nT�r�nc�r��Vd�
r − r�
��/Nc � ScTnT�0�

�34�

to describe is the condensate-thermal effect. Use

n̄cc =	 	 d3r d3r��nc�r� · nc�r��Vd�
r − r�
��/Nc � Sccnc�0�

�35�

to describe the condensate-condensate effect. The energy
level can be obtained through �c=�E /�Nc. And we find that
the modification to the condensate energy is the shift of the
condensate energy:

��c = gdn̄cT + gdn̄cc. �36�

This is the shift of condensate energy relative to the non-
interacting Bose gas in the trap potential. We obtain in Ap-
pendix B that for the ẑ polarized atoms

ScT = Scc =
− 4


3
�0��� . �37�

The shift is affected by both thermal density and condensate
density.

IV. SHIFT OF TRANSITION TEMPERATURE

We can divide the effects on the transition temperature
due to the dipole-dipole interaction result into two parts, the
thermal effect and the condensate effect.

−4 −2 0 2 4
−1

−0.5

0

0.5

1

1.5

2

ln(κ)

χ 0(κ
)

FIG. 1. �0��� vs the aspect parameter. The function is smooth
and monotonic. In the cigar-shaped trap, �→0 and �0���→−1 and
in the pancake-shaped trap, �→� and �0���→2.
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A. Shift of Tc by the thermal part

The shift of transition temperature due to the energy shift
of the thermal effect can be calculated follows our method
�1�. The result is

�Tc
T

Tc
0 = �2
/3��0���

��2�
3���3��2/3

2gd�1 − S�nT�0�
��

N−1/3.

�38�

For convenience, we define an effective dipole-dipole scat-
tering length ad through gd=4
�2ad /m, then �11�

�Tc
T

Tc
0 = 1.33�2
/3��0���

ad

aho
N1/6 = 2.78

ad

aho
N1/6�0��� .

�39�

B. Shift of Tc by the condensate part

The shift of transition temperature due to the energy shift
of the condensate effect is found to be

�Tc
c

Tc
0 = �4
/3��0���

��2�
3���3��2/3

gdnc�0�
��

N−1/3,

=5.46
ad

aho
N1/6�0��� . �40�

The total shift due to dipole-dipole interaction for the ẑ po-
larized atoms is

�Tc
�z�

Tc
0 =

�Tc
c + �Tc

T

Tc
0 = 8.24

ad

aho
N1/6�0��� . �41�

We found that the shift of Tc by the condensate part in the
long-ranged dipolar system is about two times that of the
thermal part, while in the system with contact potential, the
condensate shift of Tc is about one-third of thermal part. This
is an interesting characteristic of the dipolar system.

Let � be the angle of aligned dipoles with the z axis; by
the angular property of the dipole-dipole interaction, the total
shift of transition temperature is

�Tc

Tc
0 = 4.12

ad

aho
�3 cos2 � − 1�N1/6�0��� . �42�

In Ref. �9�, a similar formula was presented but considered
the thermal effect only.

V. DISCUSSIONS

We derived the effects of dipole-dipole interaction on the
transition temperature for cylindrical trap potential. The ef-
fect of trap potential is described by the function �0���. We
find that in the dipolar system, the effect from the condensate
part is about two times that of the thermal part. For the
current realized dipolar Bose-Einstein condensate �6,7�, the
magnetic dipole moment of atomic chromium is �Cr=6�B. It
gives the effective dipolar scattering length ad=1.93 Å. The
s-wave scattering length of chromium is a0=105aB=55.7 Å.

We have the ratio ad /a0=0.035. From our previous paper �1�,
the shift of transition temperature is linear in scattering
length. We can see that the measurement of dipolar effect on
transition temperature would be difficult with the presence of
both the contact and dipolar interactions, due to the relative
smallness of ad /a0. However, it will be feasible if the contact
interaction is tuned to negligible by the Feshbach resonance
technique, and the unique characteristics of dipolar can be
explored.
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APPENDIX A: INTEGRAL RELATED TO THE DIPOLAR
INTERACTION

Consider the dipolar interaction in the following form:

Vd�r,r�� =
1 − 3 cos2 �


r − r�
3
= − 2

P2�cos ��

r − r�
3

, �A1�

where � is the angle between r−r� and the z direction. Let
the two cylindrical symmetrical Gaussian distribution func-
tions be

A�r� = exp�− �ar2���,��� ,

B�r� = exp�− �br2���,��� , �A2�

where � is the angle with the z direction, � is the aspect
parameter, then the angular function will be

���,�� =
sin2 �

�2 + cos2 � . �A3�

By using the identity

	 	 d3r1d3r2A�r1�Vd�
r1 − r2
�B�r2�

= �2
�3/2	 d3kA�− k�Vd�k�B*�− k� , �A4�

where

f�k� =
1

�2
�3/2 	 d3rf�r�eik·r, �A5�

we obtain

Vd�k� =� 2



�1 − 3 cos2 �k�F�ka� , �A6�

where cos �k= k̂êkz
and

F�x� =
sin x

x3 −
cos x

x2 . �A7�

Here a is a cutoff distance corresponding to the atomic
length scale �a few Bohr radius�. Since a is much smaller
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than any significant length scale of the system, one can set
a→0, and then F�a�→1/3. Thus we arrive at the approxi-
mation form

	 	 d3r1d3r2A�r1�
1 − 3 cos2 �


r1 − r2
3
B�r2� = −

4

3

�
�3/2�2

��a + �b�3/2�0��� ,

�A8�

where

�0��� = �1 + 2�2 − 3�2H���
�2 − 1

� , �A9�

and

H��� =
tanh−1 �1 − �2

�1 − �2
. �A10�

APPENDIX B: EFFECTIVE INTERACTION
DENSITIES

1. Approximate densities in anisotropic trap potential

Consider the dilute atoms in the trap potential,

Vext�r� =
1

2
m�z

2r2���,��; �B1�

we can approximate the ground state by dropping the non-
linear term. And the write the density as the harmonic oscil-
lator ground state:

nc�r� =
Nc


3/2ahz
3 �2e−r2���,��/ahoz

2
, �B2�

where ahoz=�� /m�z and �=��. But for convenience, let all
the densities have the same angular distribution ��� ,��. The
density of the thermal state will be

nT�r� =
1

�T
3 �

j=1

�
ze−jVext�r�/kBT

j3/2 . �B3�

2. Effect from the thermal-thermal interaction

Define the coefficient

STT =
	 d3r d3r����nT�r�/���nT�r��Vd�
r1 − r2
��

nT�0� 	 d3r��nT/���
,

�B4�

where

	 d3r
�nT

��
=

1

�T
3 �

j=1

�
1

j1/2�kBT� 	 d3r�zje−jVext�r�/kBT�

=
1

�T
3 �

j=1

�
1

j1/2�kBT�

3/2�kBT�3/2

j3/2��m/2��2�3/2

=

3/2�kBT�1/2

�T
3��m/2��2�3/2��2� . �B5�

With Eq. �B3�, and designate �1= jm�z
2 / �2kBT� and �2

=km�z
2 / �2kBT�, then

STT = � m�2

2
kBT
�3/2 1

��3/2���2��j=1

�

�
k=1

�
1

j1/2k3/2

�	 	 d3r1d3r2�e−�1r1
2���,��e−�2r2

2���,��Vd�
r1 − r2
��

= � m�2

2
kBT
�3/2 1

��3/2���2��j=1

�

�
k=1

�
1

j1/2k3/2

�
− 4


3


3/2�2�0���
��km�z

2/2kBT� + �jm�z
2/2kBT��3/2 �B6�

=
− 4


3
�0���

1

��3/2���2��k=1

�
1

j1/2k3/2�k + j�3/2 , �B7�

where � j,k=1
� �1/ �j1/2k3/2�k+ j�3/2�� / ���2���3/2���0.281.

3. Effect from ground-thermal interaction

Define the coefficient

ScT =
	 	 d3r d3r��nT�r�nc�r��Vd�
r1 − r2
��

nT�0�Nc
, �B8�

substitute Eq. �B2� in, and designate �1= jm�z
2 / �2kBT� and

�2=1/ahoz
2 ,

ScT =
1


3/2ahoz
3 �2��3/2��j=1

�
1

j3/2

� �	 	 d3r1d3r2e−�1r1
2���,��e−�2r2

2���,��Vd�
r1 − r2
��
=

1


3/2ahoz
3 �2��3/2��j=1

�
1

j3/2

− 4


3


3/2�2�0���
��1/ahoz

2 � + jm�z
2/2kBT�3/2

=
− 4


3��3/2�
y0

3/2�0����
j=1

�
1

j3/2�y0 + j�3/2 , �B9�

where y0=2kBT / �m�z
2ahoz

2 ��1, we find

ScT =
− 4


3
�0��� . �B10�
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4. Effect from the condensate-condensate interaction

Define the coefficient

Scc =
	 	 d3rd3r��nc�r�nc�r��Vd�
r1 − r2
��

nc�0�Nc
. �B11�

Substitute Eq. �B2� in and let �1=�2=1/ahoz
2 , and we arrive

at

Scc =
1


3/2ahoz
3 �2

− 4


3

�
�3/2�2

�1/ahoz
2 �3/2�0��� = −

4


3
�0��� .

�B12�
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