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ABSTRACT 

A class of trimmed linear conditional estimators based on regression quan- 

tiles for the linear regression model is introduced. This class serves as a 

robust analogue of non-robust linear unbiased estimators. Asymptotic anal- 

ysis then shows that  the trimmed least squares estimator based on regres- 

sion quantiles (Koenker and Bassett (1978)) is the best in this estimator 

class in terms of asymptotic covariance matrices. The class of trimmed 

linear conditional estimators contains the Mallows-type bounded influence 

trimmed means (see De Jongh et al (1988)) and trirnmed instrumental vari- 

ables estimators. A large sample methodology based on trimmed instru- 

mental variables estimator for confidence ellipsoids and hypothesis testing 

is also provided. 

1835 
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1836 CHEN AND THOMPSON 

1. INTRODUCTION 

Consider the linear regression model 

where y is a vector of observations of dependent variable, X is a n x p 

matrix of observations of p - 1 independent variables with values 1's on 

the first column, and 6 is a vector of i.i.d. disturbance variables. The 

interest is to estimate the parameter vector P. I t  is well known that the 

least squares estimator is the best in covariance matrix among the unbiased 

subclass of linear estimators. However, the least squares estimator is highly 

sensitive to quite small departures from normality and to the presence of 

outliers. Thus, there are already a great number of papers in the literature 

developing robust alternatives for analyzing the linear regression model. 

For example, see Ruppert and Carroll (1980), Welsh (1987), Koenker and 

Portnoy (1987), Kim (1992), Chen (1997) and Chen and Chiang (1996). 

We then consider the question: Is there a robust estimator which is best 

in asymptotic covariance matrix in some class of robust estimators. To be 

specific, suppose let yt be the subvector of y after all suspected outliers are 

trimmed. The vector yt has a corresponding trimmed model that we take 

as 

It  is then natural to ask in this way if there is an estimator which is best in 

terms of asymptotic covariance matrices in sotne subclass of linear estimators 

for this trimmed model. For large sample comparison of covariance matrices, 

we replace the condition of unbiasedness in linear unbiased estimation with 

a condition on the trimmed linear estimation. The purpose of this paper is 

to introduce a class of trimmed linear estimators specified by a trimming 

procedure and to derive the best estimator in this class. 

The trimmed linear regression model is determined by observations re- 

moved from model (1.1), which we take to be those lying outside the regres- 
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TRIMMED LEAST SQUARES ESTIMATOR 1837 

sion quantiles (see Koenker and Bassett (1978)). We then introduce a class 

of trimmed linear conditional estimators (LCE) (see (2.2) as an analogue of 

linear unbiased estimators to the trimmed regression model). The asymp- 

totic properties of these estimators are then derived, and the trimmed least 

squares estimator (LSE) based on the regression quantiles, which was pro- 

posed by Koenker and Bassett (1978) and studied by Ruppert and Carroll 

(1980), is shown to be the best trimmed LCE. As a subclass of trimmed 

LCE, a class of trimmed instrumental variables estimators (WE) is also 

introduced, where instrumental variables are variables independent of the 

disturbance variables and correlated with the independent variables (see 

Dhrymes (1970, p296-298)). It is also shown that the best trimmed W E  ex- 

ists and is also a best trimmed LCE. We also note that the class of Mallows- 

type bounded influence trimmed means (see De Jongh et a1 (1988))is also a 

subclass of trimmed LCE's. In Section 2, we introduce the class of trimmed 

LCE's and their large sample properties are derived in Section 3. In Sec- 

tion 4, we introduce a class of trimmed NE's.  We derive the best trimmed 

W E  in Section 5. A large sample methodology for confidence ellipsoids and 

hypothesis testing based on the trimmed W E  is introduced in Section 6. 

Section 7 gives the proofs of the theorems. 

2. THE TRIMMED LINEAR CONDITIONAL ESTIMATORS 

Recall that the regression model is 

Let yi be the d-th element of y and x: be the i-th row of X for i = 1,  ..., n. 

For 0 < a < 1, the a-th regression quantile under the model with intercept, 

&a),  of /3 defined by Koenker and Bassett (1978) is any vector b that solves 

the following equation 

n 

minbEw /Ia(gi - ~ f b )  for a E (0 , l )  
i=l 
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1838 CHEN AND THOMPSON 

where p,(u) = u&(u) with &(u) = a - I (u  < 0). Here I(A) is the 

indicator function of the event A. As described in Koenker and Bassett 

(1978), the process, &a)  is piecewise constant and uniquely defined between 

the breakpoints. I t  successfully generalizes almost all of the properties of 

one-sample quantiles, and may be coruputed very quickly using parametric 

linear programming (see Koenker and d'Orey (1987)). 

For 0 < al < a 2  < 1, let &a,) and b(a2) be the regression quantiles. 

We then define the trimming matrix A = ( a i j , i ,  j = 1, . . . , p  and a;, = I(i = 

j and z$(cr,) < yi < x$(a2))). After outliers are trimmed by the regres- 

sion quantiles, the submodel (1.2) can be written as 

Since A is random, the error vector A€ is now not a set of independent vari- 

ables. We are now ready to define a subclass of linear trimmed estimators. 

Definition 2.1. A statistic &, is called a (al, a2)-trimmed LCE if there 

exists a stochastic p x p matrix H and a nonstochastic n x p matrix Ho such 

that it has the following representation: 

where matrices H and Ho satisfy the following two conditions: 

(a l )  n H  -+ H in probability, where H is a full rank p x p matrix. 

(a2) HHAAX = I, + o,(n-'I2), where I, is the p x p identity matrix. 

We note that "conditional" means "conditional on the satnple being trimmed" 

Condition (al)  is similar to the usual condition that n-lX'X converges to 

a positive definite matrix. Analogously, Condition (a2) for this trimmed 

LCE plays an analogous role to that of unbiasedness for linear unbiased 

estimation. Suppose that By is a linear unbiased estimator of 0. Then, 

with the fact that B X  = I ,  nonstochastic matrices H and Ho such that 

HH; = (a2 - al)- 'B make &, an example of trimmed LCE. This implies 
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TRIMMED LEAST SQUARES ESTIMATOR 1839 

that the class of trimmed LCE's is a t  least as big with the size of the class 

of linear unbiased estimators. 

Let 6 has distribution function F with probability density function f .  

Denote by hi the i-th row of Ho and zi, the j-th element of vector zi for 

r = x and h. The following conditions are similar to the standard ones for 

linear regression models as given in Ruppert and Carroll (1980) and Koenker 

and Portnoy (1987), for example: 

(a3) n-' xy='=, r$ = O(1) for r = x and h and all j, 

(a4) n-'X'X = Q, + o(l), n-'HiX = Qhz + o(1) and nA'HiHo = 

Qh + o(1) where Q, and Qh are positive definite matrices and Qh, is a full 

rank matrix. 

(a5) n-' Cy='=, zi = 8, + o(l), for r = x and h, and where 8, is a finite 

vector with first element value 1. 

(a6) The probability density function and its derivative are both bounded 

and bounded away from 0 in a neighborhood of F- '(a) for a E (0 , l ) .  

For any two positive definite p x p matrices Q1 and Q2, we say that Q1 

is smaller than Q2 if Qz - Q1 is positive semidefinite. 

Definition 2.2. An estimator in the class of (a l ,  a2)-trimmed LCE's is 

called the best if it has asymptotic covariance matrix smaller than or equal 

to it of any estimator in this class. 

In analogy with the case of the best linear unbiased estimator, we will show 

that the best ( a l ,  a2)-trimmed LCE always exists. I t  can also be seen that 

the asymptotic covariance matrix of the best (al,az)-trimmed LCE will 

vary in the trimming percentage ( a l ,  a2) .  We then may further expect the 

existence of a uniformly best one. 

Definition 2.3. A trimmed LCE for some trimming percentage is said to 

be a uniformly best trimming LCE if it has asymptotic covariance matrix 

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 ]

 a
t 0

5:
15

 2
8 

A
pr

il 
20

14
 



1840 CHEN AND THOMPSON 

smaller than or equal to it of any best ( a l ,  az)-trimmed LCE, for all 0 < 
al < 0.5 < a 2  < 1. 

We are not going to study when a uniformly best trimming LCE exists. 

3. ASYMPTOTIC PROPERTIES OF THE TRIMMED LINEAR 
CONDITIONAL ESTIMATOR 

The following theorem gives a "Bahadur" representation of the (a l ,  a2)-  

trimmed LCE. 

Theorem 3.1. With assumptions (a1)-(a6), we have 

+ [ P 1 ( a l )  I (Q < F-I (a l ) )  + F-l(a2) ~ ( c i  > F-' (az)) - ((1 - a 2 ) ~ - '  (a2) 

The limiting distribution of the (a1, a2)-trimmed LCE follows from the 

central limit theorem (see, e.g. Serfling (1980, p. 30)). 

Corollary 3.2. n1/2(&,- (P+ytl,)) has an asymptotic normal distribution 

with zero mean vector and the following asymptotic covariance matrix: 

The (al,a2)-trimmed LSE proposed by Koenker and Bassett (1978) is de- 

fined by 

dl. = (x'Ax)-~x'A~. 

From the result of this estimator studied by Ruppert and Carroll (1980), we 

have 
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TRIMMED LEAST SQUARES ESTIMATOR 1841 

By letting H = (X1AX)-' and Ho = X ,  can see that condition (a2) also 

holds for &,. So, the (a l ,  a2)-trimmed LSE is in the class of (a l ,  a2)- 

trimmed LCE's. Moreover, Ruppert and Carroll (1980) provided the result 

that n1/2(bir - (/3+rtr)), where rtr = (a2 -a l ) - l  XQ;'B,, has an asymptotic 

normal distribution with zero means and covariance matrix u2(al ,  a2)Qi1,  

where 

FA' (a?) 

02(a1,a2) = (as  - a d - z [  / (6 - X)'dF(r) + al (F-l ( a l )  - (3.2) 
F-l(a1) 

The following lemma orders the matrices H Q ~ H ~  and Q, 

Lemma 3.3. For any matrices H and Qh induced from conditions (al)  and 

(a4), the difference 

HQ,& - ( a 2  - Q ~ ) - ~ Q ; ~  (3.3) 

is positive semidefinite. 

The relation in (3.3) then implies the following main theorem. 

Theorem 3.4. Under the conditions (a.3)-(a.6), the ( a l ,  a2)-trimmed LSE 

a, is the best ( a l ,  a2)-trimmed LCE. 

Since the ( a l ,  a2)-trimmed LSE always exists, then the best ( a l ,  a2)-trimmed 

LCE always exists. However, the existence of uniformly best trimming LCE 

depends on the underlying distribution. Suppose that there is a (a;, a;) so 

that u2(a;, a;) = <P2<1u2(a1, a2) ,  then the best (a;, a;)-trimmed 

LCE is the uniformly best trimming LCE. Two questions induced from above 

discussion are then raised. First, how big is the class of ( a l ,  a2)-trimmed 

LCE's? Secondly, are the best ( a l ,  a2)-trimmed LCE and the uniformly 

best trimming LCE unique if they exist? We are not going to study the 
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1842 CHEN AND THOMPSON 

scope of the trimmed LCE's. However, we will introduce a class of (a l ,  a2)- 

trimmed NE's which is shown to be a subclass of the (a1,aa)-trimmed 

LCE's. We will also show that if there is a best (a1,aa)-trimmed LCE, 

then it is asymptotically equivalent to the best (a ' ,  a2)-trimmed WE. Let 

H = (X1WAX)-' and Ho = WX with W a diagonal tnatrix of weights. 

This shows that the Mallows-type bounded influence trimmed means also 

form a subclass of trimmed LCE1s (see De Jongh et al (1988) for their large 

sample properties). In particular, &. is the one with W the identity matrix 

and then belongs to this subclass. A direct result from Theorem 3.4 is that 

fitjt, is the best Mallows-type bounded influence trimmed mean. In the next 

section, we will introduce the trimmed TVE. 

4. TRIMMED INSTRUMENTAL VARIABLES ESTIMATORS 

Let S be the n x k, k > p, observation matrix of instrumental variables. 

Each instrument is a variable independent of the disturbance variables and 

correlated with the independent variables. Denote by s: the i-th row of S 

and si, the j-th element of si. We add the following conditions: 

(a7) n-I Cy=l st, = O(1) for all j, 

(a8) n-'SIX = Q,, +o( l ) ,  and n-'S'S = Q, +o(l) ,  where Q, is a k x k 

positive definite matrix and Q,, is a full rank matrix, 

(a9) n-' Cy=, si = 8, + o(1). 

We then define the trimmed WE. 

Definition 4.1. Let P, be the idempotent matrix S(SIS)-IS'. The trimmed 

WE is defined by 

I t  will be shown that the trimmed TVE is a ( a l ,  a2)-trimmed LCE. 

Even in this trimmed regression model, it is apparent that there may exist 

many sets of instruments that one might consider using. Thus, we shall be 
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TRIMMED LEAST SQUARES ESTIMATOR 1843 

concerned with finding the instruments for which the corresponding trimmed 

N E  has smallest covariance matrix. 

Definition 4.2. (1) An estimator in the class of (a ' ,  a2)-trimmed TVE's is 

called the best if it has asymptotic covariance matrix smaller than or equal 

to any estimator in this class. 

(2) A trimmed IVE for some trimming percentage is called the uniformly 

best trimming W E  if it has asymptotic covariance matrix smaller than or 

equal to it of any best (al ,  a2)-trimmed WE, for 0 < a1 < 0.5 < a 2 .  

We first show the relation between the N E  and the LCE. 

Lemma 4.3. ( (AX) 'P ,AX) - ' (AX) 'S (S1S) - '  converges to the full rank 

matrix (a2 - al)- '  (Q~,Q~'Q,,)-'Qi,Q;' in probability. 

This lemma then implies that condition (a l )  holds. One can check that con- 

dition (a2) also holds. Then the trimmed N E ' s  form a subclass of trimmed 

LCE's. 

We state the asymptotic properties of the trimmed WE. The following 

theorem gives a "Bahadur" representation of 

Theorem 4.4. With the assumptions, we have 

where rg = (a2 - I ~ ~ ) - ~ A ( Q ~ ~ Q ; ' Q ~ ~ ) - ' Q ~ ~ Q ; ~ ~ ,  and 8, has been defined 

as limn,,n-' Cy=l si. 

The limiting distribution of the trimmed N E  is stated in the following 

corollary. 

Corollary 4.5. n'/2(b, - ((P + 7,)) has an asymptotic normal distribution 

with zero mean vector and the following asymptotic covariance matrix 
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1844 CHEN AND THOMPSON 

5. BEST TRIMMED INSTRUMENTAL VARIABLES 

ESTIMATOR 

Consider the design of instrumental variables with S = X and then P, = 

X(XIX)-'XI. The asymptotic covariance matrix in this design is 

The matrix in (4.2) subtracted by the tnatrix of (5.1) is 

By assumption (a2), the difference matrix ((Q~,Q;lQ,,)-l&~xQ;l - Q;') 

is positive semidefinite. I t  can also easy to check that 

We then have the theorem of best trimmed WE. 

Theorem 5.1. The following trimmed WE 

is a best (a, ,  a2)-trimmed IVE and also a best ( a l ,  az)-trimmed LCE. 

This says that this (a1,az)-trimmed LSE is asymptotically equivalent to 

the best ( a l ,  a2)-trimmed WE and then the best ( a l ,  02)-trimmed LCE is 
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TRIMMED LEAST SQUARES ESTIMATOR 1845 

not unique. If there is a (a;, a;)-trimmed LSE which is a uniformly best 

LCE, then the best (a;, a;)-trimmed W E  is also a uniformly best LCE. 

This says that if there is a trimmed LSE which is a uniformly best LCE 

then the uniformly best trimmed LCE is not numerically unique. 

For a large sample inference methodology, we here give the limiting dis- 

tribution of the trimmed TVE when the distribution F is symmetric. 

Corollary 5.2. When the distribution F is symmetric and we let a1 = 

1 - a 2  = a,O < a < 0.5 then n'I2(& - /3) has an asymptotic normal 

distribution with zero mean vector and the following asymptotic covariance 

matrix 

F-' (1 -a) 

(1 - 2a)-l[/ ~ 2 d ~ ( r ) ( ~ ~ , ~ ~ ' ~ . z ) ' 1  + 2a(~- ' (o))~Q; ' ] .  
F-' (a) 

6. LARGE SAMPLE INFERENCE 

Here we sketch a large-sample methodology for confidence ellipsoids and 

hypothesis testing based on the trimmed W E  for the case of symmetric 

distribution. To do this, we need first to estimate the asymptotic covariance 

matrix of be. Let Q, = n-' C;='=, xixi, Q ,̂, = n-I C:=l six: and Q, = 

, : and also F-' (1 - a )  = 6'()(1- a )  - bs) where 6 is a pvector n-' c;=l s.3 

with first element value 1 and else zeros. Furthermore, let 

where ei = yi - x$~,  i = 1, ..., n. 

F-'(1-a) 2 Theorem 6.1. V + (1 - 2c1)-~[$,-, (a) E ~ F ( C ) ( Q ~ ~ Q ~ ~ Q ~ ~ ) - '  + 2a 

(F-'(~))~Q;'] in probability. 

For 0 < u < 1, let Fu(rl ,  7-2) denote the (I-u) quantile of the F distribution, 

with rl and r2 degrees of freedom, and let 
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1846 CHEN AND THOMPSON 

Suppose for some integer I, K is matrix of size I x p ,  and K has rank b. Let m 

be the number of observations yi  lying outside the interval ( x $ ' ( a ) ,  x$( l  - 
a)). Then the region of P 

has probability of approximately u. If K = I,, the confidence ellipsoid 

for p has an asymptotic confidence coefficient of approximately 1  - u. More- 

over, if we test Ho : K P  = u by rejecting Ho whenever 

( K &  - v ) ' ( K v K ' ) - ' ( K B ,  - 1,) 2 d,(e, n - m - p )  

has an asymptotic size of u. 

7.  APPENDIX 

Proof of Theorem 3.1. Inserting ( 1 . 1 )  in the equation (2.2), we have 

Now, we consider a representation of IX-' /*H;AC. Let 

The following result, which also uses the Jureckova and Sen (1987) ext.ension 

of Billingsly's Theorem, will provides the representation for n - ' 1 2 ~ ; ~ c .  
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TRIMMED LEAST SQUARES ESTIMATOR 1847 

for p = I ,  . . . , p  and Tn = Op(l).  

To complete the proof of Theorem 3.1, from (7.1) and the representation of 

&a)  (see Ruppert and Carroll (1980)) we have 

The theorem is then followed from (7.2) and Condition (al) .  

Proof of Lemma 3.3. Denote by plim(Bn) = B if Bn converges to B in 

probability. Let 

C = HHo - (XIAX)-'XI. 

With this, plim(CX) = plim(HHoX) - plim(XIAX)-'XIX = 0. 

Then 

Proof of Lemma 4.3. From Condition (ag), we need only to show that 
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1848 CHEN AND THOMPSON 

The following result, which uses the Jureckova and Sen (1987) extension of 

Billingsley's Theorem, will give an expansion of the rrlatrix 11-l(SIAX). 

where q,k is the jk-th term of the matrix Q,,, and s,,, xik are the ij-th and 

ik-th terms of S and X, respectively. We then have the statemerlt (7.3). 

Theorems 4.4 and 4.6 are followed from the arguments for Theorern 3.1 arid 

then their proofs are omitted. 

Proof of Theorem 6.1. From the representation of regression quatitile in 

Ruppert and Carroll (1980) and the trimmed TVE bs we have p(1 - a) -+ 
F-I (1 - a) in probability. Now, 

I(x$(a) < yi < t$(l - a ) )  + n-I c: r(x$(a) < y, < x$(1 - a)). 
i=l  

From the fact that n 1 l 2 ( h - ~ )  = 0,(1) and the Condition (a8), the theorem 

follows from the result that 

F- l ( l  - a ) )  + op(I) 

which follows from Lemma A.4 of Ruppert and Carroll (1980). 
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