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Abstract

For Stokes equations with a discontinuous viscosity across an arbitrary interface or/and singular forces along the interface, it is
known that the pressure is discontinuous and the velocity is non-smooth. It has been shown that these discontinuities are coupled
together, which makes it difficult to obtain accurate numerical solutions. In this paper, a new numerical method that decouples the jump
conditions of the fluid variables through two augmented variables has been developed. The GMRES iterative method is used to solve the
Schur complement system for the augmented variables that are only defined on the interface. The augmented approach also rescales the
Stokes equations in such a way that a fast Poisson solver can be used in each iteration. Numerical tests using examples that have analytic
solutions show that the new method has average second order accuracy for the velocity in the infinity norm. An example of a moving
interface problem is also presented.
� 2006 Elsevier Ltd. All rights reserved.
1. Introduction

The incompressible Stokes or Navier–Stokes equations
with a discontinuous viscosity and singular forces arise from
many important applications in fluid and bio-fluid mechan-
ics. One particular example is Peskin’s immersed boundary
(IB) model that was introduced to simulate the blood flow
in a human’s heart [28,29,37]. The idea of IB formulation
is to treat the complicated immersed boundary (such as a
heart valve) as a force generator in the fluid domain, or
mathematically, a Dirac delta function force distribution
along the immersed boundary. In this paper, we consider
the following two-dimensional stationary Stokes equations:

rp ¼ r � l ruþ ðruÞT
� �

þ g

þ
Z

C
fðsÞd2 x� XðsÞð Þds; x 2 X; ð1:1Þ

r � u ¼ 0; x 2 X; ð1:2Þ
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where u = (u,v) is the velocity vector, p is the pressure, C is
an arbitrary interface parameterized by the arc-length s,
and g(x) is an external force. The force density f is only de-
fined on the interface C1 that separates two fluid regions X�

and X+. The viscosity l is assumed to be a piecewise
constant

l ¼ lþ; if x 2 Xþ;

l�; if x 2 X�:

�
ð1:3Þ

We refer the readers to Fig. 1(a) for an illustration of the
problem. The existence of the solution to the system
(1.1)–(1.2) can be found in [35].

There are at least two difficulties in solving (1.1)–(1.2)
numerically using finite difference methods. The first one
is to deal with the singular force term. A simple way is to
use Peskin’s discrete delta function approach to distribute
the singular force to nearby grid points. Such a discretiza-
tion is typically first order accurate and will smooth out the
1 The singular source term
R

C fðsÞd2ðx� XðsÞÞds can also be written as
((f Æ n)n + (f Æ s)s)d(C), or in the form of ((f Æ n)n + (f Æ s)s)j$ujd(u), where
u is a level set function whose zero level set represents the interface C.
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Fig. 1. (a) A diagram for the incompressible Stokes equations defined on a
domain X with an interface C across which the viscosity l is discontin-
uous. (b) Force density decomposition in which f1 and f2 are the force
density in the x- and y-directions, while f̂ 1 and f̂ 2 are the force density in
the normal and tangential directions.
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solution. The second difficulty is how to deal with the dis-
continuous viscosity. A simple smoothing method may
introduce large errors, see [21] for a one-dimensional exam-
ple there.

In the case of a continuous viscosity with a Dirac delta
function source distribution along an interface, various
methods have been developed in the literature. We refer
the readers to [4,5,9,18,26,37] for various methods and
the references therein. The difficulty with a discontinuous
viscosity is that the jump conditions for the pressure and
velocity are coupled together, see (2.7)–(2.10), which makes
it difficult to discretize the system accurately.

In this paper, we develop a new second-order sharp
interface method that uses the exact jump conditions for
the two two-phase Stokes equations (1.1)–(1.3) with a dis-
continuous viscosity. The idea is to introduce two aug-
mented variables that are defined only along the interface
so that the jump conditions can be decoupled and the
immersed interface method (IIM) [17,19] can be applied.
The GMRES iterative method is applied to the Schur com-
plement system for the discrete augmented variables. Fur-
thermore, our approach rescales the original problem and
enables us to use a fast Poisson solver in the iterative pro-
cess. Each GMRES iteration requires solving the rescaled
Stokes equations, which can be done by calling a fast Pois-
son solver three times, and an interpolation scheme to eval-
uate the residual of the Schur complement. While
augmented approaches have been developed for elliptic
interface problems or problems defined on irregular
domain problems in [3,8,10,20,23,24,40], and for dealing
with the pressure boundary condition in [22], the aug-
mented approach proposed in this paper provides a way
to get a second order immersed interface method using a
finite difference discretization to solve the Stokes equations
(1.1)–(1.3) with a discontinuous viscosity.

The main focus of this paper is to test and implement
our proposed augmented approach to the two-phase
Stokes equations. Our implementation and results reported
in this paper are based on the cubic spline representation of
the interface [19]. In order to apply the method for prob-
lems on multi-connected domains and moving interface
problems, the level set method is preferred, see, for exam-
ple, [24,27,32]. The level set method using the augmented
approach for the two-phase Stokes equations has yet to
be developed.

A few other finite difference methods may be applicable
for solving the Stokes equations (1.1)–(1.3) with a discon-
tinuous viscosity. A simple approach is the smoothing
method that treats the viscosity as a continuous function
using

lðxÞ ¼ l� þ ðlþ � l�ÞH �ðuðxÞÞ; ð1:4Þ

where u(x) is a two-dimensional Lipschitz continuous
function whose zero level set is the interface C, H� is a
smoothed Heaviside function, see, for example, [33,34,
36]. In this way, a standard Stokes solver on a rectangular
region can be used. The disadvantage is that the solution is
smeared in a neighborhood of the interface and it is usually
first order accurate. Among sharp interface methods, that
is, methods for which the computed solution satisfies the
jump conditions across the interface either exactly or
approximately, the fast Stokes solver on irregular domains
based on an integral equation coupled with a finite differ-
ence discretization [2,6] may be applicable to the two-phase
Stokes flow discussed here. In [25], an immersed interface
method that requires three fast Poisson solvers within each
iteration was developed assuming that the jump in the
viscosity is small so that the jump conditions can be
approximated with those for a continuous viscosity, that
is, the coupling terms in (2.7)–(2.10) are ignored. Such
approximation may not be valid anymore if the jump in
the viscosity is large. The ghost fluid method developed
in [14] for the two-phase Navier–Stokes equations is appli-
cable to the two-phase Stokes equations with first order
accuracy. It is also possible to generalize the finite volume
methods developed for elliptic and Navier–Stokes equa-
tions on irregular domains in [1,12] to the two-phase Stokes
flow.

Motivated by the augmented approach (fast IIM) [20]
for elliptic interface problems with piecewise constant coef-
ficients, Bube and Wiegmann developed the explicit
immersed interface method (EJIIM) for elliptic interface
problems in [38,40]. The EJIIM introduces unknown jumps
in the solution and its up to second order derivatives along
the interface. The GMRES method is then applied for the
unknown jumps. The EJIIM has been applied to nonlinear
1D interface problems in [39] and two-dimensional elastic
equations in shape design in conjunction with the level
set method [31]. While we believe that the EJIIM should
be applicable to the two-phase Stokes flow, it has not yet
been done and the derivation and implementation are not
trivial. Furthermore, the augmented system of equations
using EJIIM will be larger than the augmented system in
this paper because more unknowns will be introduced as
augmented variables.

Our method is a new finite difference method that re-
scales the problem, has second order accuracy in the max-
imum norm, and takes advantage of a fast Poisson solver.
These are a few merits about the new method that is
competitive against other finite difference methods such
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as the one that uses smoothing technique and a discrete
delta function.

While augmented methods have some similarities to
boundary integral methods to find a source strength, the
augmented methods have a few special features: (1) no
Green function is needed, and therefore no need to evalu-
ate singular integrals; (2) no need to set up the system of
equations for the augmented variable explicitly; (3) appli-
cable to general PDEs with or without source terms; (4)
the process does not depend on boundary conditions. On
the other hand, we have less information about the condi-
tion number of the Schur complement system and how to
apply pre-conditioning techniques. A boundary integral
method requires less computation compared with the aug-
mented method if only the velocity on the interface is
needed. The augmented method proposed here requires less
computation compared with a boundary integral method if
we need the velocity in the entire domain as in many
applications.

The paper is organized as follows. In the next section,
we discuss the jump conditions of the Stokes equations
with a discontinuous viscosity along an interface. We will
see how the jump conditions for the pressure and velocity
are coupled together, and explain how to decouple the
jump conditions by introducing two augmented variables
and two augmented equations. In Section 3, we present
the new algorithm in detail. We explain how the GMRES
iterative method can be applied to the discrete augmented
variables without explicitly forming the coefficient matrix.
In Section 4, we present some numerical experiments using
examples that have analytic solutions to check the conver-
gence and the performance of the new method. An example
of moving interface is also presented there.

2. Jump conditions for the Stokes equations with a

discontinuous viscosity and singular forces

Referring to Fig. 1(a) and Eqs. (1.1)–(1.3), we assume
the interface C is a smooth curve. We use n and s to repre-
sent the unit normal and tangential directions at a point
(X,Y) on the interface. We use f̂ 1ðsÞ ¼ fðsÞ � n and
f̂ 2ðsÞ ¼ fðsÞ � s to represent the force density in the normal
and tangential directions. If C is smooth, then in a neigh-
borhood of C, the distance function d(x,C) is also a smooth
function. The normal and tangential directions of C can be
extended to the neighborhood, for example, n = $d(x,C)/
j$d(x,C)j. Therefore the quantities such as u Æ n, ou

on,
ou
os,

etc., are well defined in the neighborhood of C.
The interface conditions for the two-phase Stokes equa-

tions with a discontinuous viscosity and a Dirac delta func-
tion singular force are derived in [11]. The idea is from the
immersed interface method to express all the quantities in
the local Cartesian coordinate at a point (X,Y) on the
interface C as,

n ¼ ðx� X Þ cos hþ ðy � Y Þ sin h;

g ¼ �ðx� X Þ sin hþ ðy � Y Þ cos h;

�
ð2:5Þ
where h is the angle between the x-axis and the normal
direction at the point (X,Y), see Fig. 1(b) for an illustra-
tion. In the local coordinate system, the interface can
parameterized by n = v(g), g = g. Note that v(0) = 0,
v 0(0) = 0, v 0(0) = j, the curvature of the interface at the
point (X,Y). The unit normal and tangential directions
are

n ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðv0ðgÞÞ2

q ;� v0ðgÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðv0ðgÞÞ2

q
0B@

1CA;

s ¼ v0ðgÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðv0ðgÞÞ2

q ;
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðv0ðgÞÞ2
q

0B@
1CA:

ð2:6Þ

We also express the velocity components in the tangential
and normal directions as û ¼ u � n and v̂ ¼ u � s.

The jump conditions at a fixed point (X,Y) (or (0,0) in
the local coordinate system) are summarized in the follow-
ing theorem.

Theorem 1. Assume C(s) 2 C2, f̂ 1ðsÞ 2 C1, and f̂ 2ðsÞ 2 C1.

Let p and u be the solution to the Stokes equations (1.1)–

(1.2). We have the following jump conditions across the
interface C at the fixed point (X,Y) in terms of the local

Cartesian coordinate system

½p� ¼ 2 l
oû
on

� �
þ f̂ 1; ð2:7Þ

op
on

� �
¼ ½g � n� þ of̂ 2

og
þ 2 l

o2û
og2

� �
� 4j l

ov̂
og

� �
; ð2:8Þ

l
ov̂
on

� �
þ l

oû
og

� �
þ f̂ 2 ¼ 0; ð2:9Þ

½lr � u� ¼ 0; ð2:10Þ
½u� ¼ 0; ð2:11Þ

where the jump [ Æ ] of a quantity, for example, [p] at a point

X is defined as

½p�jX2C ¼
def

lim
x!X;x2Xþ

pðxÞ � lim
x!X;x2X�

pðxÞ: ð2:12Þ
Note that, although the jump condition op
on

� 	
is not

needed to close the system mathematically, the condition
is used in our numerical algorithm to obtain second-order
discretization for the pressure. The jump condition is not
arbitrary but determined from the governing equations
and the force strength. This is similar to the discussion of
the boundary condition of the pressure when a no-slip
boundary condition is prescribed for the velocity.

We will omit the subscript X 2 C in the rest of the paper
for simplicity. The first jump condition (2.7) is the result of
balancing force in the normal direction while the third one
(2.9) is the result of balancing force in the tangential direc-
tion. The jump condition (2.10) is obtained from the
incompressibility condition $ Æ u = 0. The jump condition
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for the normal derivative of the pressure (2.8) can be
obtained by applying the divergence operator to the
momentum equation (1.1),

rp ¼ r � lðruþ ðruÞTÞ þ g

excluding the interface, see [11] for the details.
From the incompressibility condition, one can easily

prove that oû
on

h i
¼ ou

on � n
� 	

¼ 0. If l is continuous, then

l oû
on

h i
¼ 0 and 2 l o2 û

og2

h i
� 4j l ov̂

og

h i
¼ 0, and the jump condi-

tions for the pressure and the velocity are decoupled in
(2.7)–(2.10). In this case, we recover the jump conditions
derived and used in [16,18]. A second order accurate
immersed interface method has been developed in [18,19]
if the viscosity is continuous.

Note that using the invariance of the first order deriva-
tives, the jump conditions (2.7) and (2.9) can also be writ-
ten as

½p� ¼ 2 l
ou

on
� n

� �
þ f̂ 1; ð2:13Þ

l
ou

on
� s

� �
þ l

ou

os
� n

� �
þ f̂ 2 ¼ 0: ð2:14Þ

These jump conditions can be found in the literature.
To get a second order accurate algorithm based on the

immersed interface method for the Stokes equations with
a discontinuous viscosity, our strategy is to introduce two
intermediate, or augmented variables, along the interface
so that the jump conditions can be decoupled. We also
need two augmented equations to close the system of the
equations.

There are different ways to introduce augmented vari-
ables so that the jump conditions can be decoupled. For
example, one could introduce l ou

on

� 	
as an intermediate

unknown so that the jump conditions in the pressure and
the velocity are de-coupled. Different augmented variables
and equations will lead to different algorithms. Note that
for a discontinuous viscosity, there are two different scales
corresponding to the two-phase flow. Generally, if the vis-
cosity ratio max{l�,l+}/min{l�,l+} is large, then the
velocity field with smaller viscosity has larger gradient than
that with larger viscosity. Furthermore, with a constant vis-
cosity and a periodic boundary condition, we can use a fast
Poisson solver to solve the stationary Stokes equations, see
[18,19]. Based on these two considerations, we introduce
the jumps [lu](s) and [lv](s) along the interface as two aug-
mented variables. The advantages and details can be seen
in the rest of the paper.

Using this local coordinate system, we have o
on ¼ o

on and
o
os ¼ o

og. We can rewrite the last two jump conditions
(2.9)–(2.10) in terms of the augmented variables [lu](s)
and [lv](s) as follows.

Lemma 1. Let p, u, and v be the solution to the Stokes

equations (1.1)–(1.2). Define

~u ¼ lu; ~v ¼ lv; ~u ¼ ð~u;~vÞ: ð2:15Þ
Then we have the following jump relations for ~u and ~v

o~u
on

� �
¼ f̂ 2 þ

o~u

os
� n

� �
 �
sin h� o~u

os
� s

� �
cos h; ð2:16Þ

o~v
on

� �
¼ � f̂ 2 þ

o~u

os
� n

� �
 �
cos h� o~u

os
� s

� �
sin h; ð2:17Þ

o~u

on
� n

� �
¼ � o~u

os
� s

� �
: ð2:18Þ

Proof. Note that n = (cosh, sinh) and s = (�sinh, cosh).
Re-write the incompressibility condition [l$ Æ u] = 0 in
the local coordinates, we have

o~u
on

� �
cos h� o~u

os

� �
sin hþ o~v

on

� �
sin hþ o~v

os

� �
cos h ¼ 0;

ð2:19Þ
which is

o~u
on

� �
cos hþ o~v

on

� �
sin h ¼ � o~u

os
� s

� �
: ð2:20Þ

Re-write the interface relation (2.14) in the local coordi-
nates, we have

� o~u
on

� �
sin hþ o~v

on

� �
cos h ¼ �f̂ 2 �

o~u

os
� n

� �
: ð2:21Þ

From the two equalities (2.20) and (2.21) above, we solve
o~u
on

� 	
and o~v

on

� 	
to get (2.16) and (2.17). The last equality is ver-

ified by substituting o~u
on

� 	
with (2.16), and o~v

on

� 	
with (2.17) in

the following:

o~u

on
� n

� �
¼ o~u

on

� �
cos hþ o~v

on

� �
sin h ¼ � o~u

os
� s

� �
: �
3. The numerical algorithm

Our numerical method is based on the following
theorem.

Theorem 2. Let p, u, and v be the solution to the Stokes

equations (1.1)–(1.2). Let q1ðsÞ ¼ ½~u�ðsÞ ¼ ½lu�ðsÞ, q2ðsÞ ¼
½~v�ðsÞ ¼ ½lv�ðsÞ, and q(s) = (q1(s), q2(s)). Then ~u, ~v, p, q1(s),

q2(s) are the solution of the following augmented system of

partial differential equations:

Dp ¼ r � g;
½p� ¼ f̂ 1 � 2 oq

os � s;
op
on

� 	
¼ ½g � n� þ of̂ 2

os þ wðqÞ;

(
ð3:22Þ

D~u ¼ px � g1;

½~u� ¼ q1;
o~u
on

� 	
¼ f̂ 2 þ oq

os � n
� �

sin h� oq

os � s
� 


cos h;

(
ð3:23Þ

D~v ¼ py � g2;

½~v� ¼ q2;
o~v
on

� 	
¼ � f̂ 2 þ oq

os � n
� �

cos h� oq

os � s
� 


sin h;

(
ð3:24Þ

~u
l

� �
¼ 0;

~v
l

� �
¼ 0; ð3:25Þ
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where

wðqÞ ¼ 2
o2q̂1

og2
� 2j

oq̂2

og
; ð3:26Þ

q̂1 ¼ q � n, and q̂1 ¼ q � s in the local Cartesian coordinate

system.

The proof of the theorem is straightforward from the
Stokes equations (1.1)–(1.2), the jump conditions in Theo-
rem 1 and Lemma 1. The periodic boundary condition is
used here so that we are not introducing additional bound-
ary condition for the pressure.

The existence and uniqueness of the solution to the system
above is the same as the original incompressible Stokes equa-
tions (1.1)–(1.2). This is because if (u,v) and p are the solu-
tion to the original Stokes equations, then they are also the
solution to the system in Theorem 2 according to the defini-
tion of (u,v), Theorem 1, and Lemma 1. On the other hand, if
(u,v) and p are the solution to the system (3.22)–(3.25) above
plus the periodic boundary condition, then they satisfy all
the equations in (1.1)–(1.2) and the incompressibility condi-
tion. So they are also solution to the original problem.

Notice that if we know q, then the jump conditions for
the pressure are all known and we can solve the pressure
independently. After the pressure is solved, we can solve
the velocity from (3.23) and (3.24). The three equations with
the given jump conditions can be solved using the immersed
interface method [17–19] in which a fast solver is invoked
with modified right hand sides at grid points near or on
the interface. This observation is the basis of our new
method. The compatibility condition for the two augmented
variables are the two equations in (3.25) (which means that
the velocity is continuous across the interface). It is also
important to mention that the incompressibility condition
is used to obtain the pressure Poisson equation of (3.22).

Once the augmented variables ([lu] and [lv]) and the
augmented equations (the two equations in (3.25)) are cho-
sen, the success of the numerical algorithm depends on how
efficiently we can solve the augmented variables. Note that
the augmented approaches have been developed for elliptic
interface problems with a piecewise constant coefficient
[8,20], and the fast algorithms for Poisson and biharmonic
equations on irregular domains [3,10,24,23].

We assume that the domain X is a rectangle: [a,b] ·
[c,d], and use a uniform Cartesian grid

xi ¼ aþ ihx; i ¼ 0; 1; . . . ;m; hx ¼
b� a

M
;

yj ¼ cþ jhy ; j ¼ 0; 1; . . . ; n; hy ¼
d � c

N
:

For simplicity of discussion, we also assume that M = N.
We first choose a set of interface points, sometimes also

called the control points, {Xk} = {(Xk,Yk)}, k = 1,2, . . . ,
Nb, on the interface.2 The auxiliary variable q(s) = (q1(s),
2 In a front tracking method, {Xk} is a set of points that represents the
interface, see [19], for examples in which a cubic spline is used. In a level
set method, the interface points can be chosen as the orthogonal
projections of irregular grid points on the interface, see [8,20], for example.
q2(s)) is defined, and the augmented equations (3.25) are
discretized, at {Xk}. We use upper case letters such as Pij,
Uij, Vij, Qk, for the discrete approximations at grid points
and at the interface points, respectively. We use the bold
face upper case letters without subscripts to represent the
vectors formed by those discrete components.

Given an initial guess of Q at the interface points, we
can approximate its first and second order tangential deriv-
atives oq

os and o2q

os2. Thus all the jump conditions in (3.22)–
(3.24) are known and we can solve (3.22)–(3.24) using the
immersed interface method [17,18]. Note that the jump
conditions for the pressure and the velocity are decoupled
if we know Q. Since the solution depends on Q, the solu-
tion can be written as P(Q), eUðQÞ and eVðQÞ.

If the computed eUðQÞ and eVðQÞ satisfy the two equa-
tions in (3.25), then P(Q), eUðQÞ=l and eVðQÞ=l are an
approximate solution to the original system (1.1)–(1.2).
Otherwise, we use an accurate linear interpolation scheme
to evaluate the residual of the two equations in (3.25)
which will be explained in Section 3.2.

3.1. The discrete system of equations in the matrix–vector
form

Given a discrete approximation of (q1,q2) at {Xk}, we
can solve the first three equations (3.22)–(3.24) using the
immersed interface method [18] to get an approximate
solution: the pressure P(Q), the scaled velocity eUðQÞ andeVðQÞ. Generally the computed velocity ðeUðQÞ; eVðQÞÞ do
not satisfy the two augmented equations in (3.25), that is,
ðU;VÞ ¼ ðeU=l; eV=lÞ may not be continuous across the
interface.

Let us assemble the discrete solution {Pij}, {Uij}, and
{Vij} together as a big vector fU whose dimension is
3MN. We denote also the vector of the discrete values of
(q1,q2) at the interface points {Xk} by Q whose dimension
is 2Nb. Then the discrete solution of (3.22)–(3.24) given Q

can be written as

AfU þ BQ ¼ F1 ð3:27Þ

for some vector F1 and sparse matrices A and B. It requires
solving three Poisson equations with different force terms
and jump conditions to get fU.

Once we know the solution fU given Q, we can use

ðeU; eVÞ and the jump conditions oeU
on

h i
and oeV

on

h i
which also

depend on Q, to get ½UðQÞ� ¼ ½eUðQÞ=l� and ½VðQÞ� ¼
½eVðQÞ=l� at those interface points {Xk}, 1 6 k 6 Nb. If
both k[U(Q)]k and k[V(Q)]k are smaller than a given toler-
ance, then the method has already converged and Q, eU=l,eV=l are the approximate solution. The interpolation

scheme to get ½eUðQÞ=l� and ½eVðQÞ=l�, which will be
explained in detail in the next sub-section, depends fU, Q

linearly. Therefore, we can write

½UðQÞ�jC ¼ ð½eU=l�; ½eU=l�ÞT ¼ SfU þ EQ� F2; ð3:28Þ
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where S and E are two sparse matrices, and F2 is a vector.
The matrices depend on the interpolation scheme but do
not need to be actually constructed in our algorithm. We
want to choose such a vector Q that the continuity condi-
tion for the velocity is satisfied along the interface C. If we
put the two matrix–vector equations (3.27) and (3.28) to-
gether we get

A B

S E

� � fU
Q

" #
¼

F1

F2

� �
: ð3:29Þ

Note that Q is defined only on a set of interface points {Xk}
on the interface while fU is defined at all grid points. The
Schur complement for Q is

ðE � SA�1BÞQ ¼ F2 � SA�1F1 ¼ F: ð3:30Þ
After we solve (3.30) for Q, we can get fU easily. Because
the dimension of Q is much smaller than that of fU, we ex-
pect to get a reasonably fast algorithm for the two-phase
Stokes equations.

In implementation, we use the GMRES [30] iterative
method to solve (3.30). The GMRES method only requires
the matrix–vector multiplication, and thus the Schur com-
plement, maybe a dense matrix, of Q does not have to be
explicitly constructed. We explain below how to evaluate
the right hand side F of the Schur complement, and how
to evaluate the matrix–vector multiplication needed in the
GMRES iteration.

3.1.1. Evaluation of the right hand side of the Schur

complement

First we set Q = 0 and solve the de-coupled system
(3.22)–(3.24), or (3.27) in the discrete form, to get fUð0Þ
which is A�1F1 from (3.27). From the interpolation scheme
(3.28), we also have

½Uð0Þ�jC ¼ SfUð0Þ þ E0� F2 ¼ SfUð0Þ � F2: ð3:31Þ

Note that the residual of the Schur complement for Q = 0

is

Rð0Þ ¼ ðE � SA�1BÞ0� F ¼ �F ¼ �ðF2 � SA�1F1Þ

¼ �F2 þ SfUð0Þ ¼ ½Uð0Þ�jC ð3:32Þ

which gives the right hand side of the Schur complement
system with an opposite sign.
3.1.2. Evaluation of the matrix–vector multiplication

The matrix–vector multiplication of the Schur comple-
ment system given Q is obtained from the following two
steps:

Step 1: Solve the coupled system (3.22)–(3.24), or (3.27) in

the discrete form, to get fUðQÞ.
Step 2: Interpolate fUðQÞ using (3.28) to get [U(Q)]jC.

Then the matrix–vector multiplication is

ðE � SA�1BÞQ ¼ ½UðQÞ�jC � ½Uð0Þ�jC: ð3:33Þ
This is because
ðE � SA�1BÞQ ¼ EQ� SA�1BQ

¼ EQ� SðA�1F1 �fUðQÞÞ ðfrom ð3:27ÞÞ;
¼ EQþ SfUðQÞ � F2 þ F2 � SA�1F1

¼ ½UðQÞ�jC þ F ðfrom ð3:28ÞÞ;
¼ ½UðQÞ�jC � ½Uð0Þ�jC ðfrom ð3:32ÞÞ:

Now we can see that a matrix–vector multiplication is
equivalent to solving the coupled system (3.22)–(3.24), or

(3.27) in the discrete form, to get fU, and using an interpo-
lation scheme (3.28) to get [U(Q)]jC at the interface points.

Since we know the right hand side of the linear system of
equations and the matrix–vector multiplication of the coef-
ficient matrix, it is straightforward to use the GMRES or
other iterative methods.

3.2. The least squares interpolation scheme to compute the

residual

The interpolation scheme (3.28) to evaluate ½eU=l� and
½eV=l� is crucial to the efficiency of the method. This is
because the interpolation coefficients will affect the entries
of the Schur complement, so its condition numbers. To
reduce the number of iterations, it is important to couple
the solutions on both sides of the interface using the jump
conditions. Although the least squares interpolation
scheme is not a new idea anymore, the details vary with
problems. We explain the least squares interpolation
scheme for computing (3.28) to see why we have the second
matrix–vector equation in expression (3.29).

Given an approximation to the augmented variable Q,
we can solve the pressure, and then the velocity
ðU;VÞ ¼ ðeU=l; eV=lÞ from (3.22)–(3.24). SinceeU

l

" #
¼
eUþ
lþ
�
eU�
l�

;

we need to evaluate f eU þg and f eU �g at all interface points
to get the vector ½eU=l�. To explain the idea, however, we
just need to explain the interpolation scheme for eU �ðXÞ
at a point X on the interface. The interpolation scheme
can be written as

eU �ðXÞ ¼
Xks�1

k¼0

ck
eU i�þik ;j�þjk

þ C; ð3:34Þ

where ks is the number of grid points involved in the inter-
polation scheme, ðxi� ; yj� Þ is the closest grid point to X, and
C is a correction term. We should point it out that a one-
sided interpolation scheme works poorly in the sense that
the convergence speed is slow for the GMRES iteration.
Below we discuss how to determine the coefficients ck and
the correction term C using the information from both
sides of the interface. Note that ck and C depend on X,
but for simplicity of the notation, we have omitted the
dependency.
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We use an un-determined coefficients method to deter-
mine the coefficients ck by minimizing the truncation error
of (3.34) when eU i�þik ;j�þjk

is substituted by the exact solu-
tion ~uðxi�þik ; yj�þjk

Þ. Using the local coordinates system
centered at the point X, see (2.5), and denoting the local
coordinates of ðxi�þik ; yj�þjk

Þ as (nk,gk), we have the follow-
ing from the Taylor expansion:

~uðxi�þk; yj�þkÞ ¼ ~uðnk; gkÞ
¼ ~u� þ nk~u

�
n þ gk~u

�
g þ 1

2
n2

k~u
�
nn

þ nkgk~u
�
ng þ 1

2
g2

k~u
�
gg þOðh3Þ; ð3:35Þ

where the + or � sign is chosen depending on whether
(nk,gk) lies on the + or � side of C, ~u�, ~u�n ; . . . ; ~u�gg are eval-
uated at the local coordinates (0,0), or X = (X,Y) in the
original coordinates system (Fig. 2). Note that we should
have used something like ~uðX ; Y Þ ¼ �~uð0; 0Þ to distinguish
the two coordinate systems. However, we omit the bars
and use the same notation ~uðX ; Y Þ ¼ ~uð0; 0Þ for simplicity.

We carry out this expansion at all the grid points used in
the interpolation scheme and plug (3.35) into (3.34). After
collecting and arranging terms, we can write

~u�ðXÞ � a1~u� þ a2~uþ þ a3~u�n þ a4~uþn þ a5~u�g þ a6~uþg

þ a7~u�nn þ a8~uþnn þ a9~u�gg þ a10~uþgg þ a11~u�ng

þ a12~u�ng þ C; ð3:36Þ

where the ai’s are given by

a1 ¼
X
k2K�

ck; a2 ¼
X
k2Kþ

ck;

a3 ¼
X
k2K�

nkck; a4 ¼
X
k2Kþ

nkck;

a5 ¼
X
k2K�

gkck; a6 ¼
X
k2Kþ

gkck;

a7 ¼
1

2

X
k2K�

n2
k ; cka8 ¼

1

2

X
k2Kþ

n2
kck

a9 ¼
1

2

X
k2K�

g2
kck; a10 ¼

1

2

X
k2Kþ

g2
kck;

a11 ¼
X
k2K�

nkgkck; a12 ¼
X
k2Kþ

nkgkck:

ð3:37Þ
+

( 1 1)

X

Ω

Ω

η

η

−

ξ

ξ

,

Fig. 2. A diagram of the local coordinates used in the interpolation (3.35).
Note that ~uþ ¼ ~u� þ q1 and o~u
on

� 	
is known from (2.16).

From [18,19], we also have the following interface
relations:3

~uþg ¼ ~u�g þ
dq1

dg
;

~uþnn ¼ ~u�nn þ j
o~u
on

� �
� d2q1

dg2
þ ½px � g1�;

~uþgg ¼ ~u�gg � j
o~u
on

� �
þ d2q1

dg2
;

~uþng ¼ ~u�ng þ j
dq1

dg
þ d

dg
o~u
on

� �
;

ð3:38Þ

where j is the curvature of the interface at X. Therefore we
can express all the quantities from + side in (3.36) in terms
of those from � side and the known quantities. Thus
(3.34), when eU i�þik ;j�þjk

is substituted by the exact solution
~uðxi�þik ; yj�þjk

Þ, can be written as

~u�ðXÞ �
X

k

ck~uðxi�þik ; yj�þjk
Þ þ C

¼ a1~u� þ a2~uþ þ a3~u�n þ a4~uþn þ a5~u�g þ a6~uþg þ a7~u�nn

þ a8~uþnn þ a9~u�gg þ a10~uþgg þ a11~u�ng þ a12~uþng þ C

¼ ða1 þ a2Þ~u� þ ða3 þ a4Þ~u�n þ ða5 þ a6Þ~u�g
þ ða7 þ a8Þ~u�nn þ ða9 þ a10Þ~u�gg þ ða11 þ a12Þ~u�ng

þ a2½~u� þ a4½~un� þ a6½~ug� þ a8½~unn�
þ a10½~ung� þ a12½~ung� þ C:

To minimize the local truncation error, we should set the
following linear system of equations for the coefficients ck

by matching the terms of ~u�; ~u�n ; . . . ; ~u�ng:

a1 þ a2 ¼ 1; a3 þ a4 ¼ 0;

a5 þ a6 ¼ 0; a7 þ a8 ¼ 0;

a9 þ a10 ¼ 0; a11 þ a12 ¼ 0:

ð3:39Þ

The system of equations for {ck} is independent of jumps
which means we can calculate {ck} outside of the GMRES
iteration. Once we have the coefficients, the correction term
is

C ¼ �ða2½~u� þ a4½~un� þ a6½~ug� þ a8½~unn� þ a10½~ung� þ a12½~ung�Þ

¼ �a2q1 � a4

o~u
on

� �
� a6

dq1

dg

� a8
o~u
on

� �
j� d2½~u�

dg2
þ ½px � g1�


 �
� a10

d2q1

dg2
� o~u

on

� �
j


 �
� a12

d½~u�
dg

jþ d

dg
o~u
on

� �
 �
:

ð3:40Þ

We choose a neighborhood of {X} that contains
more than six different grid points so that we have an
3 Note that q1 now is a quantity defined only on the interface, and we
can only take its derivatives along the interface which is called surface
derivative in the literature.



Z. Li et al. / Computers & Fluids 36 (2007) 622–635 629
under-determined system. In our numerical tests, we
choose ks = 12, that is, we selected 12 closest grid points
to X = (X,Y) as the interpolation stencil. We use the singu-
lar value decomposition (SVD) to find the least squares
solution, which also has the least l � 2 norm among all
the solutions. In this way, the magnitude of the coefficients
ck is controlled and balanced. The least squares interpola-
tion plays an important role in the stability of the
algorithm.

The only trade-off of the least squares interpolation is
that we have to solve an under-determined system of equa-
tions. However, the size of the linear system is small and
the coefficients can be pre-determined before the GMRES
iteration. The extra time needed in dealing with the inter-
face is usually less that 5% of the total CPU time and the
percentage decreases as the mesh size (h) decreases.

Remark. By setting a1 + a2 = 0 and a3 + a4 = 1 while
keeping other equations unchanged in (3.39), we can easily
get the normal derivative of the solution u. This is the
method that we used in Section 4 for the convergence rate
analysis of the computed normal derivative of the velocity.

There are also a few issues about how to evaluate px and
py at all grid points before we can solve the velocity. Taking
px as an example, if (xi�1,yj), (xi,yj), (xi+1,yj) are on the
same side of the interface, we can approximate px by the
standard central difference,

ðpxÞij �
1

2h
ðP iþ1;j � P i�1;jÞ:

Otherwise, we use

ðpxÞij �

1
h ðP i;j � P i�1;jÞ

if ðxi�1; yjÞ and ðxi; yjÞ are on the same side;

1
h ðP iþ1;j � P i;jÞ

if ðxi; yjÞ and ðxiþ1; yjÞ are on the same side;

P ij � P lj � ½p� � ½px�ðxl � X �ijÞ
ðxi � xlÞ

otherwise:

8>>>>>>>>>>>><>>>>>>>>>>>>:
In the last case the interface cuts through both between xi�1

and xi, and xi and xi+1. Let ðX �ij; yjÞ be one of the two inter-
sections between the interface and the grid line y = yj. The
subscript l = i � 1 or l = i + 1 is chosen such that jxl � X �ijj
is the smaller one. The sign in the expression above de-
pends on which side of the interface the point (i, j) is on,
and [px] (or [py] in the y-direction) are calculated at
ðX �ij; yjÞ from

½px� ¼
op
on

� �
cos h� op

os

� �
sin h;

½py � ¼
op
on

� �
sin hþ op

os

� �
cos h:

The analysis of such approximations to px (or py) is dis-
cussed in [19].
4. Numerical experiments and analysis

In this section, we present several numerical tests to
check the order of accuracy and efficiency of the aug-
mented method proposed in this paper. In the first three
examples, we choose the interface as a unit circle and we
know the analytic solution under different situations. It is
important to mention that the reason for choosing the cir-
cular interface is just for the sake of constructing the exact
solutions that satisfy Eqs. (1.1)–(1.3) and the jump condi-
tions (2.7)–(2.11). The circular interface is not a restriction
of our method. In fact, we will also show the results for
more complicated interfaces in this section.

In all the numerical tests, the interface points are chosen
in such a way that the interface mesh size Ds has the same
order of magnitude as the Cartesian mesh size h. In other
words, the ratio Ds/h is a constant. When we reduce the
grid mesh h by half during a grid refinement analysis pro-
cess, we also reduce the interface mesh size Ds by half.

How many interface points that are needed to represent
the interface depends on the complexity of the interface.
The detailed analysis about the effects of the number of
interface points can be found in [20]. The surface deriva-
tives needed in the algorithms are computed using the cubic
spline generated by the interface points {Xk}, see [19]. The
main cost of the algorithm is from the fast Poisson solver
that requires O(N2 logN) operations, where N is the num-
ber of grid lines in the x- and y-directions. Therefore, each
GMRES iteration requires about O(3N2 logN) operations.
All the simulations are done with double precision.

Most of the computations are done on workstations or a
Notebook PC’s within a few seconds to a few minutes for
stationary Stokes problems. The tolerance of GMRES iter-
ation is set as � = 10�6. The GMRES is set to re-started
after Nb iterations, where Nb is the number of interface
points where Q is defined. In almost all the cases, the
GMRES converges in much fewer steps than Nb. The ini-
tial guess for the GMRES iteration is chosen as zero vector
unless 0 is the exact solution, in which case a random vec-
tor is used. Throughout this section, the computational
domain is X = [�2,2] · [�2,2] unless it is stated otherwise.

Example 4.1. We start with a simple example where the
velocity is smooth and the pressure is discontinuous across
the interface. The exact velocity and the pressure are given
by

u ¼ yðx2 þ y2 � 1Þ; ðx; yÞ 2 X; ð4:41Þ
v ¼ �xðx2 þ y2 � 1Þ; ðx; yÞ 2 X; ð4:42Þ

p ¼ 1; if x2 þ y2
6 1;

0; if x2 þ y2 > 1:

�
ð4:43Þ

The interface is the unit circle. The viscosity is

l ¼
1; if x2 þ y2

6 1;
1
2
; if x2 þ y2 > 1:

(
ð4:44Þ



Fig. 3. Linear regression analysis of the convergence order in log–log scale
for the pressure and the velocity for Example 4.1. The order of accuracy
for the pressure and the velocity are 1.9187 and 1.9416, respectively.
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The external forcing term g is given by

g1 ¼
�8y; if x2 þ y2

6 1;

�4y; if x2 þ y2 > 1;

�
ð4:45Þ

g2 ¼
8x; if x2 þ y2

6 1;

4x; if x2 þ y2 > 1;

�
ð4:46Þ

which has a finite jump across the interface. The normal
and tangential force density are

f̂ 1 ¼ ½p� � 2 l
ou

on
� n

� �
¼ �1; ð4:47Þ

f̂ 2 ¼ � l
ou

on
� s

� �
� l

ou

os
� n

� �
¼ �1; ð4:48Þ

calculated from (2.7) and (2.9), respectively.

In Table 1, we show the result of the convergence rate
analysis. We use the Dirichlet boundary condition for the
velocity u, and the Neumann boundary condition op

on ¼ 0
for the pressure when we solve the three Poisson equations
(3.22)–(3.24). Similarly, the Dirichlet boundary condition
for the velocity and Neumann boundary condition for
the pressure are used in other examples when the exact
solution is not periodic in this section. In [7,13], the correct
boundary conditions for the pressure has been derived. The
Neumann boundary conditions for the pressure is coupled
with the velocity. Since the augmented approach proposed
in this paper is an iterative method, we can use the updated
pressure and velocity to approximate the boundary condi-
tion as proposed in [7,13]. The fast Poisson solver that we
use if from the Fishpack which allows Dirichlet, Neumann,
and periodic boundary conditions along each side of a rect-
angular domain. The errors in Table 1 are measured in the
maximum norm at all grid points, for example,

EuðNÞ ¼
1

2
max

06i;j6N
jUij � uðxi; yjÞj þ max

06i;j6N
jV ij � vðxi; yjÞj


 �
;

ð4:49Þ
where u(xi,yj) is the exact solution at (xi,yj) while Uij is the
approximate solution and so on. In all the tables in this sec-
tion, N is the number of grid lines used in both x- and y-
directions. The ratio

p-order ¼ logðEpðNÞ=Epð2NÞÞ
log 2

; ð4:50Þ

is an indication of the order of accuracy for the pressure.
On average, we observe second order convergence for all
the quantities. The last column is the number of iterations
Table 1
Numerical results and convergence analysis for Example 4.1

N Ep p-order Eu

32 8.2573 · 10�3 6.5931 · 10�3

64 3.0540 · 10�3 1.4353 1.7372 · 10�3

128 9.4747 · 10�4 1.6883 3.9504 · 10�4

256 2.6866 · 10�4 1.8183 8.2274 · 10�5

512 7.4314 · 10�5 1.8541 2.5053 · 10�5
(No.) of the GMRES method. We can see that the number
of iterations remains roughly the same as we halve the
mesh size h.

The errors usually do not decrease monotonically as we
refine the grid, see [20]. To be more precise, we use linear
regression analysis to find the approximate order of accu-
racy. In Fig. 3, we show the error plot on a log–log scale
for the pressure and the velocity versus the grid spacing
h = hx = hy, which shows that, from the slopes, the average
convergence rate of the pressure and the velocity are 1.9187
and 1.9416, respectively. The mesh size varies from
N = 100 to N = 320 according to N = 100 + 5k, k =
0,1, . . . , 44. The order of accuracy for the normal velocity
ou/on is 2.1928 from the linear regression analysis.

Example 4.2. In the first example, while the pressure is
discontinuous, the velocity is smooth and vanishes at the
interface. Thus the exact solution to the augmented
variable q = [lu] is zero which makes the problem easier
to compute. In this example, we keep all the quantities u, v,
p in (4.41)–(4.48) inside the unit circle unchanged, but set
both pressure and the velocity outside the circle to be zero.
Therefore, the periodic boundary conditions are satisfied.
u-order Eou/on
ou
on-order No.

2.4605 · 10�2 8
1.9242 6.0768 · 10�3 2.0176 9
2.1367 1.6713 · 10�3 1.8623 8
2.2635 4.1920 · 10�4 1.9953 7
1.7155 1.0445 · 10�4 2.0048 7



Table 2
Numerical results and convergence analysis for Example 4.2

N Ep p-order Eu u-order Eou/on
ou
on-order No.

32 8.4430 · 10�3 3.4549 · 10�3 2.8308 · 10�2 9
64 2.8405 · 10�3 1.5716 8.8800 · 10�4 1.9600 6.1798 · 10�3 2.1956 10

128 8.0952 · 10�4 1.8110 2.2666 · 10�4 1.9700 1.8260 · 10�3 1.7589 11
256 2.5417 · 10�4 1.6713 4.7693 · 10�5 2.2487 5.3612 · 10�4 1.7681 12
512 1.4086 · 10�5 2.1296 1.4086 · 10�5 1.7595 1.2538 · 10�4 2.0962 13
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The velocity is non-smooth and the jump in the normal
velocity is not a constant along the interface. Now the
normal force density component is still f̂ 1 ¼ �1, but the
tangential force density component is

f̂ 2 ¼ � l
ou

on
� s

� �
� l

ou

os
� n

� �
¼ �2: ð4:51Þ

The external force is also adjusted to g = 0 outside of the
circle. Thus, there is a finite jump in g across the interface
as well. In Table 2, we show the result of the convergence
analysis. Once again we observe second order accuracy
on average. Only a few iterations are needed in the
GMRES iteration and the number changes little as N in-
creases. The results of the linear regression analysis for
the pressure and the velocity are given in Fig. 4 which con-
firms average second order accuracy for both the pressure
and the velocity.

Example 4.3. In previous examples, the force density com-

ponents are constants, and ½l o2 û
os2� ¼ 0. In this example, we

construct the exact solutions in such a way that all the
jumps and their derivatives along the interface are non-
constant functions. The exact velocity and the pressure
are given by
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Fig. 4. Linear regression analysis for Example 4.2. The average conver-
gence order for the pressure and the velocity are porder = 1.9168,
uorder = 2.1519.
u ¼

y
4
; if x2 þ y2

6 1;

y
4
ðx2 þ y2Þ; if x2 þ y2 > 1;

8><>: ð4:52Þ

v ¼
� x

4
ð1� x2Þ; if x2 þ y2

6 1;

� xy2

4
; if x2 þ y2 > 1;

8><>: ð4:53Þ

p ¼
� 3

4
x3 þ 3

8
x


 �
y; if x2 þ y2

6 1;

0; if x2 þ y2 > 1:

8<: ð4:54Þ

The external forcing term g is

g1 ¼
� 9

4
x2 þ 3

8


 �
y; if x2 þ y2

6 1;

�2lþy if x2 þ y2 > 1;

8<: ð4:55Þ

g2 ¼
� 3

4
x3 þ 3

8
x� 3l�

2
x; if x2 þ y2

6 1;

lþ

2
x; if x2 þ y2 > 1;

8><>: ð4:56Þ

which is discontinuous across the interface. The force
density components in the normal and tangential directions
are

f̂ 1 ¼
3

4
cos3 h� 3

8
cos h


 �
sin h� 3

2
½l� cos3 h sin h; ð4:57Þ

f̂ 2 ¼
1

2
lþ þ 3

4
½l� cos2 hð1� 2 cos2 hÞ; ð4:58Þ

respectively. All the jump conditions (2.7)–(2.10) are satis-
fied. We use the exact Dirichlet boundary condition for the
velocity and the homogeneous Neumann boundary condi-
tion for the pressure.

In Table 3, we show the convergence rate analysis for
different jump in l. We scale the problem such that
max{l�,l+} = 1, and test our results for l�/l+ = 10,
10�3, and 103. While the accuracy does depend on l�/l+,
the average convergence rates are about the same (second
order accurate). Note that, there are two very different
scales for the problems in Table 3(b) and (c). The number
of iterations seems to be dependent on the ratio l�/l+ but
not on the mesh size N. Note that the number of iterations
of the GMRES method in Table 3(c) is many more than
that in Table 3(b). One intuitive explanation is the follow-
ing. When l+	 l�, the solution inside the circle is much
smoother than that outside. In other words, it is more dif-
ficult to resolve the solution outside than that inside. Since
there are more grid points outside of the interface, there are



Table 3
Numerical results and convergence analysis for Example 4.3

N Ep p-order Eu u-order Eou/on
ou
on-order No.

(a) l� = 1, l+ = 0.1
32 6.8928 · 10�2 4.6299 · 10�2 2.0170 · 10�2 17
64 5.6851 · 10�3 3.5998 3.4079 · 10�3 3.7640 3.8114 · 10�3 2.4038 17

128 2.2966 · 10�3 1.3077 1.2068 · 10�3 1.4977 8.7465 · 10�4 2.1235 17
256 5.4715 · 10�4 2.0695 2.6908 · 10�4 2.1651 2.2514 · 10�4 1.9579 14
512 1.5365 · 10�4 1.8323 6.4921 · 10�5 2.0513 5.6411 · 10�5 1.9968 14

(b) l� = 0.001, l+ = 1
32 1.3803 · 10�2 8.1811 · 10�1 13.323 12
64 4.1261 · 10�3 1.7421 2.2177 · 10�1 2.0017 2.8062 2.2371 13

128 1.0414 · 10�3 1.9863 6.2257 · 10�2 1.8328 7.7665 · 10�1 1.8533 11
256 3.5892 · 10�4 1.5368 1.4046 · 10�2 2.1481 1.8162 · 10�1 2.0969 11
512 7.0865 · 10�5 2.3405 2.8175 · 10�3 2.3177 4.7867 · 10�2 1.9293 9

(c) l� = 1, l+ = 0.001
32 0.6950 42.0260 1.4587 36
64 1.4356 · 10�2 2.0017 9.4294 · 10�1 5.4780 2.6627 · 10�1 2.4537 30

128 6.5307 · 10�3 1.1363 3.1469 · 10�1 1.5832 5.9376 · 10�2 2.1649 31
256 1.1757 · 10�3 2.4737 4.6464 · 10�2 2.7598 1.4749 · 10�2 2.0093 36
512 3.0160 · 10�4 1.8260 1.1697 · 10�3 1.9900 3.4355 · 10�3 2.1020 35

The CPU time for (c) are 1.5527, 2.8925, 6.1523, 17.275, and 44.248 s, respectively, for the 5 different grids.

Fig. 5. The interface for Example 4.4.

Table 4
Numerical results and convergence analysis for Example 4.4 with l� = 1
and l+ = 0.01

N Ep p-ratio Eu u-ratio CPU (s) No.

32 16.149 6.6068 · 10�1 3.5957 48
64 2.8549 5.6566 9.4029 · 10�2 7.0263 8.9805 41

128 6.9682 · 10�1 4.0970 2.5461 · 10�2 3.6931 21.986 39
256 1.4587 · 10�4 4.7770 3.7740 · 10�3 6.7464 59.186 35
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more iterations needed in this case. If we increase the
radius of the interface from r = 1 to r = 1.5, then the num-
ber of the GMRES iterations is down to 22 from 36 in
Table 3(c) for N = 32. This is consistent with our explana-
tion above. Another explanation is that: In the absence of
information from the outer region, the inner solution
would be arbitrary up to an additive constant. That con-
stant is determined by consistency with the outer solution
and takes some extra effort by the solver to pin down. This
problem does not arise for l+
 l� because in this case the
outer solution is (relatively) small so that it is not difficult
to approach the correct constant. In any case, the issue is
less sensitive because of the scaling.

Example 4.4. In the examples above, the interface is
chosen as a circle so that we can construct exact solutions
to compare with the computed solution. In this example,
we test our method for a complex geometry. The interface
is given by

q ¼ 0:35þ 0:1 sinð6hÞ; 0 6 h 6 2p; ð4:59Þ
in polar coordinates in the rectangular domain [�1,1] ·
[�1,1], see Fig. 5. The curvature of the interface varies both
in the magnitude and the sign, and the source term is g = 0.
The force density is f̂ 1 ¼ 0:1j and f̂ 2 ¼ �0:1, respectively,
where j is the curvature. Periodic boundary conditions are
used for all the variables. Since the analytic solution is not
available, we compare the computed solution with the solu-
tion that is obtained from the finest grid, 512 by 512. In
Table 4, we show the convergence rate analysis for the
pressure and the velocity. We also listed the number of
iterations, the CPU time in seconds, and the ratio of two
consecutive errors. For a second order method, the ratio
is between 4 and 5. The justification of such an analysis
is given in [19]. The interface points are initially chosen
from (4.59) with equally spaced Dh. Then they are re-
distributed with equally spaced arc-length by the cubic
spline package developed in [19].



Fig. 6. Contour plot of stream-function of the shear flow with various viscosity ratio k and Ca. In all of cases Ca = 1.3898, c = 0.4605 except for (d) in
which Ca = 0.4695, c = 1.4605. (a) k = 0.04 and t = 0. (b) k = 0.04 and t = 0.75. (c) k = 0.08 and t = 0.75. (d) k = 1 and t = 0.75. (e) k = 6.4 and t = 0.
(f) k = 6.4 and t = 0.75. The drop is the solid-dot line in the plots.
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Compared with previous examples, the number of
GMRES iterations is larger. This is not surprising since
the curvature of the interface is large. Nevertheless, the
expected second order accuracy on average is still
observed.
Example 4.5. As a final example, we show the motion and
deformation of a liquid drop in simple shear flow in two
space dimensions. We refer the readers to [15] and the
references therein for detailed description of the problem
and physical explanations.
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The set-up of the problem is as follows. A circular
viscous drop with viscosity l2 is placed in a shear flow with
viscosity l1. The velocity of the shear flow without drop is
u = (Gy, 0), where G is the shear rate. The computational
domain is X = [�2,2] · [�2,2]. The Dirichlet boundary
condition uoX = (Gy, 0) is used along oX; and Neumann
boundary condition op/on = 0 is used for the pressure along
oX. The capillary number is defined as Ca = Gr0l1/c, where
r0 is the radius of the circular drop, c is the surface tension.
The source strength is f̂ 1 ¼ f � n ¼ cj, where j is the curva-
ture. The ratio of the viscosity is k = l2/l1. A front tracking
method is used to evolve the interface. The crucial para-
meters are the capillary number Ca and the viscosity ratio
k. The long-term behavior of the interface has different con-
figurations depending on the values of Ca and k. Typical
long-term configurations include internal circulations and
an asymptotic equilibrium state as explained below.

In Fig. 6 we present a sequence of contour plots of the
stream function of the velocity for the two-phase Stokes
flow in comparison with the results in [15]. In our simula-
tion, the initial drop is a circle with r0 = 0.75 and the shear
rate is G = 0.9143. The parameters are chosen to mimic the
set-up in [15]. We try to re-produce the results there except
now it is in two space dimensions. Our results agree with
those presented in [15] qualitatively. A quantitative com-
parison is not available. The stream-function is obtained
by solving the Poisson equation Dw = vx � uy with the
boundary condition determined from the shear flow. When
k is small, we observe two regions of recirculating fluid
within the drop. Generally, for smaller k, we observe more
deformation but larger angle (less tilting) between the
longer axis of the drop and the x-axis. As k gets larger,
we see less deformation but smaller angle (more tilting)
between the longer axis of the drop and the x-axis. All
these agree with the results and analysis discussed in [15].
Note that for various parameters, internal circulations do
not always occur. For instance, for circular drop at t = 0
with k = 1, the solution of the pressure is piecewise con-
stant and the solution of the velocity is simply the shear
flow itself: u = (Gy, 0). While we do observe internal circu-
lation for Ca = 0.4695 and c = 1.4605 as presented in
Fig. 6(d), this is not true for Ca = 1.3898 and c = 0.4605.
Also at t = 0.75, for all the simulations in Fig. 6 we have
observed that the drop has reached its steady state.

5. Conclusion

In this paper, a new second order accurate finite differ-
ence method has been developed for incompressible sta-
tionary Stokes equations with a discontinuous viscosity
in which the jump conditions for the pressure and the
velocity are coupled together. The idea is to introduce
two augmented variables that are only defined along the
interface so that the jump conditions can be decoupled.
The GMRES iterative method then is used to solve the
Schur complement system for the augmented variables.
The main cost in one step of the GMRES iteration is three
calls to a fast Poisson solver. Numerical examples demon-
strate the efficiency and accuracy of the method. The idea
should be applicable to other interface problems with cou-
pled jump conditions. One of the remaining open questions
is how to use a preconditioning technique for the Schur
complement system.
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