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Abstract—Polycrystalline silicon thin-film transistors (Poly-Si
TFTs) with F-ions-implantation were investigated in this study.
The electrical characteristics and reliability of the F-ions-im-
planted poly-Si TFTs were reported for solid phase crystallization
(SPC) and excimer laser crystallization (ELC) methods respec-
tively. The thermal annealing causes F-ions to pile up at the
poly-Si interface, without the initial pad oxide deposition. With
the introduction of fluorine in poly-Si film, the trap state density
was effectively reduced. Also, the presence of strong Si-F bonds
enhances electrical endurance against hot carrier impact by using
F-ions-implantation. These improvements in electrical character-
istics are even obvious for the ELC poly-Si TFTs compared to the
SPC ones.

Index Terms—Excimer laser crystallization (ELC), F-ions im-
plant, polycrystalline silicon thin-film transistors (poly-Si TFTs),
SPC.

I. INTRODUCTION

I N RECENT YEARS, the polycrystalline silicon thin-film
transistors (poly-Si TFTs) were widely used in many

application, especially for active-matrix liquid phase crystal
displays (AMLCDs) [1], [2]. The major attraction of the poly-Si
TFTs in AMLCDs lies in the significantly improved carrier
mobility, as well as the ability to integrate the pixel switching
elements, panel array, and peripheral driving circuit on the
same substrate [3]–[5]. Low temperature technology is required
to realize commercial flat plane display (FPD) on inexpensive
glass substrate when fabricating high performance poly-Si
TFTs, since the maximum process temperature is limited to
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less than 600 C. The solid phase crystallization (SPC) and
excimer laser crystallization (ELC) methods were widely used
to recrystallize amorphous silicon (a-Si) to poly-Si at low tem-
perature fabrication process. The SPC process, requiring 24–48
h, is a time consuming procedure, which obviously affects the
throughput and thermal budget of fabrication processes [6].
Furthermore, the resultant lower field effect mobility will limit
the development for SPC poly-Si TFTs for small grain size.
The excimer laser system can create larger grain size and little
intra-grain defect than using conventional SPC method [7], [8].
Furthermore, the laser annealing process is not a high tempera-
ture fabrication and a rapid process. Hence, the laser annealing
system is generally applied in flat plant display application.
However, the difference of thermal expansion coefficient for
molten poly-Si and buffer oxide causes serious mechanical
stress during the ELC thermal annealing process.

The off-state electrical characteristics of poly-Si TFTs are
dominated by the trap state density of grain boundary. Based on
this issue of poly-Si TFTs, the method for reducing trap state
density is applied to enhance the electrical characteristics. The
typically used passivation methods are hydrogen plasma treat-
ment and ion implantation [9]–[11]. The hydrogen plasma treat-
ment is widely used to passivate trap states at poly-Si grain
boundaries to avoid the undesirable leakage current [9]. How-
ever, it is difficult to control hydrogen concentration precisely
in the poly-Si TFTs [9]. Also, the Si-H bonds are not strong
enough against the hot carrier impact, during high electrical bias
operation. One of the promising strategies on the electrical im-
provement of the poly-Si TFTs was proposed using F-ion im-
plantation to eliminate the defects in the grain boundaries [10],
[11]. Several proposed F-implantation technologies are summa-
rized as followed. In the initial study, the pad oxide deposition
on a-Si layer before crystallization was implemented to cause
F-ions to pile up at the interfaces between the poly-Si and the
oxide to eliminate the strain bonds. Also, F-implanted poly-Si
TFTs without pad oxide deposition step were proposed to study
in our previous work [12], [13]. The oxidized a-Si film on sur-
face during thermal crystallization provides the driving force for
the implanted fluorine elements to segregate on the surfaces.
The proposed modified F-implantation passivation technology
reduces manufacture process steps, and exhibits high potential
for the application on AMLCDs. The undesirable strain bonds
in the interface between poly-Si and SiO are passivated by
using F-ions-implantation. Furthermore, the segregated F-ions
at the interface between poly-Si and buffer oxide eliminated the
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Fig. 1 (a) Cross-section of F-ions incorporated poly-Si TFTs. (b) The SIMS analysis of F-ions in poly-Si channel after SPC. (c) The SIMS analysis of F-ions in
poly-Si channel after ELC.

strain bonds which are generated during rapid excimer laser an-
nealing, leading to the superior electrical characteristics [14]. In
addition, the strong Si-F bond replaced the weak Si-H and Si-Si
bonds, resulting in the superior electrical DC stress reliability
compared to standard poly-Si TFTs.

This work investigated the electrical characteristics of F-im-
planted poly-Si TFTs without the initial deposition of pad oxide
before crystallization process. The poly-Si crystallization were
realized by using conventional solid phase crystallization (SPC)
and excimer laser crystallization (ELC). The behavior of F-im-
planted a-Si during the both the above crystallization steps were
discussed. Also, the electrical reliability of poly-Si TFTs using
both the crystallization methods were compared in this work.

II. EXPERIMENTS

The 50-nm-thick undoped a-Si layer was deposited by de-
composition of pure silane SiH on oxide-coated silicon wafer
with using low pressure chemical vapor deposition (LPCVD)
system at 550 C. Then the F-ions were implanted to the a-Si
layer without any pad oxide deposited first. The ion implantation
conditions were set at an ion accelerating energy of 11 keV and
the doping dosages are 5 10 cm . The crystallization for
F-ions-implanted a-Si and standard a-Si was realized by heating
in a furnace at 600 C for 24 h in N ambient and excimer
laser annealing system, respectively. The ELC was realized by
a KrF excimer laser system at room temperature in vacuum

10 torr with a laser energy of 300 mJ/cm . After pat-
terning and etching the active region, the 50-nm-thick tetraethy-
lorthosilicate (TEOS) layer and the 200-nm-thick poly-Si gate
were deposited by LPCVD system. The deposition temperature
of TEOS layer and poly-Si layer are 700 C and 575 C, respec-
tively. The ions are used for the source–drain ion implantation
after patterning and etching the poly-gate. The ion accelerating
energy is 17 keV and the dosage is 5 10 cm . The activation
was realized by depositing of the TEOS passivation layer using
LPCVD system at 700 C for 3 h. The contact hole regions were
patterned and etched by a buffer oxide etching (BOE) solution.
Finally, the aluminum metallization was performed, followed by
350 C sintering in the thermal furnace for 30 min. The device
cross section is shown in Fig. 1(a).

III. RESULTS AND DISCUSSION

The behavior of F-ions in poly-Si after thermal annealing
was investigated in this work. Fig. 1(b) and (1c) show the
secondary ions mass spectroscope (SIMS) analysis of F-ions
after SPC and ELC, respectively. It is found that the F-ions are
piled up at the surface of poly-Si and the interface between
poly-Si and buffer oxide. Without pad oxide deposited on a-Si
layer, the F-ions are segregated to the poly-Si surface during
recrystallization. Hence, it needs no extra thermal annealing
step and no additional process steps for the F piling up. In addi-
tion, the electrical characteristics of F-ions-implanted poly-Si
TFTs are investigated in this study. Fig. 2 shows the transfer
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Fig. 2. The transfer characteristics of the poly-Si TFTs for F-ions-implantation
dosage of 5 � 10 cm and standard.

TABLE I
THE PARAMETERS OF THE POLY-Si TFTS FOR F-IONS-IMPLANTED AND

STANDARD USING SPC METHOD AND ELA METHOD

characteristics of poly-Si TFTs for F-ions-implantation dosages
of 5 10 cm and standard poly-Si TFTs. It is clearly
found that the electrical characteristics are improved with
F-ions-incorporated poly-Si TFTs no matter using SPC method
or ELC method. The major parameters including field-effect
mobility , threshold voltage , subthreshold swing

, and trap state density are summarized in the
Table I. It is considered that the reduction of trap state density
improves the electrical characteristics for the two types of
devices. The fluorine effectively passivates the dangling bond,
leading to lower trap state density. The threshold voltage
is defined as the gate voltage that yields the drain current

nA . The threshold voltage is greatly
reduced by using F-ions-implantation. The poly-Si TFTs with
reduced have even more potential for the application on
AMLCD. In addition, the is greatly improved in this work.
It is found that the value for poly-Si using SPC method
varies from 19.74 cm V s to 54.48 cm V s. Furthermore,
the value of F-ions-implanted poly-Si TFT (ELC method)
is approximately two times to those of standard (56.65 cm V s
to 103.94 cm V s).

Fluorine piled up at the poly-Si/buffer-oxide interface, con-
firmed by SIMS analysis, and passivated the stress-induced
strained bonds to form stronger Si-F bonds due to the high
electronegativity of F atoms. The reduction of trap states be-
tween poly-Si and buffer oxide improves the performance of
the poly-Si TFTs, such as , , and [14]. Hence, the
superior electrical characteristics are attributed to the relaxation
of mechanical stress and trap state elimination in poly-Si TFTs,
especially for using ELC method.

The activation energy calculation is useful to confirm
the fact of trap state density elimination for F-ions-implanted
poly-Si TFTs. Fig. 3(a) and (b) show the of drain current
as a function of gate voltage measured at V for stan-
dard and F-ions-implanted poly-Si TFTs. The activation en-
ergy was extracted by the measurement of charac-
teristic in the temperature range from 20 C to 150 C. From
the equation , using the linear fitting of
the versus the 1/KT plot, in which K is the Boltzmann
constant and T is the temperature. Then the activation energy
can be extracted. The related with the barrier height in the
poly-Si channel, expresses the carriers transportability [15]. For
the F-ions-implanted poly-Si TFTs, the value of extracted
from on-state current is reduced, while extracted from the
off-state current is increased, indicating that F-ion implantation
effectively reduces the trap state density. The of off-state
current is increased and the of on-state current is reduced
for the F-ions-implanted poly-Si TFT, indicating that F implan-
tation alters the trap state density. This result is consistent with
the above discussion. Furthermore, by calculating the trap states
density distribution in the bandgap [16], the trap state densi-
ties for SPC method and ELC method, are clear reduced with
F-ions incorporation are shown in Fig. 4(a) and (b), respectively.
It is consistent with the result of activation energy as shown in
Fig. 3(a) and (b). It is believed that the reduced trap states den-
sity causes the enhanced electrical characteristics. F-ions-incor-
porated poly-Si TFTs obtain reduced both the tail states and the
deep states. The reduced deep states lead to decreased in
n-ch poly-Si TFTs [10]. The tail state reduction improves the
electrical characteristics such as s.s and value [10], also
compatible with our experimental results.

The study also considered the DC stress reliability for F-ions-
implanted poly-Si TFTs. To investigate the device reliability, the
poly-Si TFTs were bias stressed at and V
for time duration of 100, 200, 600, and 1000 s. Fig. 5 shows the

values by the SPC method and ELC method. F-ions-im-
planted poly-Si TFTs are found to yield more moderate
values than in standard poly-Si TFTs. Furthermore, hot carrier
multiplication near the drain side degraded the , and

values. The and also reflect the reliability of the
proposed TFT device. Figs. 6 and 7 illustrate the and

after DC bias stress and demonstrate the F-ions implan-
tation significantly reduce hot-carrier-induced degradation, re-
spectively. Degradation induced by hot carrier stress can be at-
tributed to the generation of gate oxide/poly-Si interface states
and/or the Si-Si and/or Si-H weak bonds in the poly-Si channel
[17], [18]. The Si dangling bonds are terminated by F-ions, and
the resulting strong Si-F bonding enhances the endurance to hot
carrier impact, thus improving the overall electrical reliability.

The electrical characteristics of poly-Si TFTs using ELC
method are superior to using SPC method for larger grain size
and less intra grain defect. However, the hot carrier impact
is found to degrade the electrical characteristics. Compared
with both crystallization methods, the ELC method indeed
clearly improves the electrical characteristics, such as the .
The resultant higher causes more serious degradation on
electrical properties. In contrast, with F-ion implantation the
improvement of DC bias stress reliability for ELC poly-Si TFTs
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Fig. 3. (a) The activation energy (E ) of the poly-Si TFTs (SPC) for F-ions-implantation dosage of 5�10 cm and standard at V = 5 V. (b) The activation
energy (E ) of the poly-Si TFTs (ELC) for F-ions-implantation dosage of 5 � 10 cm and standard at V = 5 V.

Fig. 4. (a) The trap state distribution in the bandgap of the poly-Si TFTs (SPC) for F-ions-implantation dosage of 5� 10 cm . (b) The trap state distribution
in the bandgap of the poly-Si TFTs (ELC) for F-ions-implantation dosage of 5 � 10 cm .

Fig. 5. The threshold voltage variation verse stress time for standard poly-Si
TFTs and F-ions-implanted poly-Si TFTs for dosage of 5� 10 cm .

is distinct. The lower trap state density for F-ions-implanted
poly-Si TFTs (ELC), as shown in Table I, dominates the elec-
trical improvement. The passivated Si dangling bonds (Si-F) can
resist the hot carrier impact, although higher hot carrier energy
can be obtained from ELC poly-Si TFTs with superior .

The ELC method clearly improved the electrical characteris-
tics, but degraded the DC stress reliability due to the high carrier

Fig. 6. The on current variation verse stress time for standard poly-Si TFTs and
F-ions-implanted poly-Si TFTs for dosage of 5� 10 cm .

field effect mobility. However, the F-ions-implantation for ELC
method is more useful to improve the ability to resist the elec-
trical DC stress.

IV. CONCLUSION

The electrical characteristics of the F-ions-implanted poly-Si
TFTs have been investigated in this study. The fluorine ions seg-
regated 5 10 cm at the poly-Si interfaces by SPC and
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Fig. 7. The subthreshold swing variation verse stress time for standard poly-Si
TFTs and F-ions-implanted poly-Si TFTs for dosage of 5� 10 cm .

ELC processes, which effectively reduces the trap state density
to enhance the electrical characteristics. The improvement of
threshold voltage for SPC and ELC with the incorporation of
fluorine ions are from 6.24 V to 4.78 V and 3.07 V to 1.19 V,
respectively. Also, the strong Si-F bonds instead of the Si-H and
Si-Si bonds can prevent hot carrier impact near the drain side,
and possess superior electrical reliability over typical poly-Si
TFTs. These improvements in electrical characteristics indicate
the proposed F-ions-implantation method is suitable for high
performance poly-Si TFT application in the display fields.
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